Physical Activity Monitoring with Mobile
Phones

Lin Sun!, Daqing Zhang!, and Nan Li?

'Handicom Lab, TELECOM SudParis,

9, Rue Charles Fourier, 91011, France
!{LinSun, DaqingZhang}@it-sudparis.eu
2National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210093, China
2lin((}lamda.nju.edu.cn

Abstract. The rich sensing ability of smart mobile phones brings an
unique opportunity to detect and long-term monitor people’s physical
activities. However, with mobile phone the application has to comply
with people’s usage habit of it and thus capture the right moment to
recognize activities, which will potentially cause great in-class variances.
As a result, the model potentially becomes complex and costs much com-
puting resources in mobile phone. This paper recognize people’s physical
activities when they place the mobile phone in the pockets near the pelvic
region. Experiment results show that the accuracy could reach 97.7%. To
reduce the model size, evaluation of each feature attribution contribution
for the accuracy is performed. And the result shows that we can cut the
feature dimension from 22 to 8 while obtaining the smallest model.
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1 Introduction

Long-term physical activity monitoring of mass population provides rich oppor-
tunities for monitoring people’s physical active patterns and finding opportu-
nities to changing unhealthy lifestyles. For example, to change the sedentary
lifestyles, Sharkra [1], Fish’N’Step [12] and UbiFit Garden [6] use interesting
games which adopts people’s physical activity (i.e. walking steps) as the input
to stimulate them to be physically active. However, currently such systems re-
quire additional sensing devices to be attached on human body, which is trouble-
some and costly for deploying to large population. Mobile phone based physical
activity recognition, which embracing the rich sensing power in existing phone
platforms, requires no additional devices and no extra spending. And thus it be-
comes the ideal solution for physical activity monitoring. With this technology,
we can easily monitor when and where individuals perform what kind of physical
activities, making them more aware of their heath and lifestyle status. Besides,
more sophisticated applications can devised to help change the prevailing seden-
tary lifestyle. For example, not only can we stimulate people to conduct more
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physical activities by games only running within the mobile phone platform, but
also we can also find valuable opportunities from their daily activity patterns,
such as encouraging bicycling for short-time driving, or driving to a little further
place from the destination and then walking there.

Despite the increasing sensing power of mobile phones, mobile phone based
activity recognition still has many difficulties that so far greatly prevent it from
mass adoption. We identify three key issues that are critical to mass adoption of
such application and are different concerns from previous sensor based activity
recognition studies.

1. Complying with people’s usage habits. Since people use mobile phones pri-
marily for communications and people have various usage habits, such as placing
them in different positions and orientations unintentionally while carrying them,
the system has to comply with their usage habits instead of asking them to place
their mobile phones in predefined locations and orientations.

II. Finding the right activity recognition opportunity. The fundamental setup
of activity recognition is that the sensors can capture discriminative signals of the
target activities. However, In the case of mobile phone based activity recognition,
not all the deployment of them can be used for activity recognition, such as when
people put the mobile on the desk instead of carrying them on, or just sway with
their arms when they sit down. Consequently, we have to find the right moment
that the mobile phone is able to detect the right body movement signals.

1II. The activity recognition application has to be resource saving. Power con-
sumption is a critical concern for mobile phone applications. As the activity
recognition program is supposed to be running all along in the background of
the mobile phone system, it easily causes battery drain. Besides, large amount
of computations also slows the mobile phone and affects the running of other
applications, which is not acceptable for user acceptance. And thus the activity
recognition application should be small enough to save resources.

However, as the mobile phone may be placed in different body locations
with diverse orientations, the signals may reflect movements of different body
parts and different sensor orientations. As a result, it leads to the great in-class
variance and produces big classification models, which is in conflict with resource
saving.

Capturing the opportunities when people put their mobile phones in the
pockets around the pelvic region, we recognize 7 typical physical activities that
people conduct daily in this paper, including stationary, walking, running, bicy-
cling, ascending stairs, descending stairs, and driving. Our contributions in this
paper lie in the following three parts. Firstly, we conduct experiment to exam-
ine the opportunities of recognizing physical activities using the accelerometer
sensor embedded in the mobile phones in the scenario. Secondly, based on the
extracted 22 features, we evaluate the classification abilities of 6 common used
machine learning algorithms. The result reveals that Support Vector Machine [4]
achieves the best performance at 97.7%. Thirdly, through the proposed feature
reduction method, we successfully reduce the feature dimension from 22 to 8,
while obtaining the smallest model size.
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2 Related Work

In this section we introduce the activity recognition studies that collect sens-
ing data from mobile phones or from sensor platforms that share similar usage
pattern. The major concern is that mobile phone has various possible deploy-
ment positions and orientations. An earlier work conducted by Lester et al. [11]
investigated three representative locations, including the wrist, the waist and
the shoulder and found that the general HMM model for all the three locations
performs only a slightly worse than that of the separate HMM model for each
location. However, the sensor boards in the study are constrained by traps or
bags, which limit the orientation freedom of themselves, and also these locations
aren’t the usual positions for mobile phones. To solve the varying orientation
problem when carrying on mobile phone freely, Yang [17] computed the vertical
and horizontal components of the sensor reading based on gravity estimation
work of Mizell [14]. However, results in [13] showed that the method failed to
outperform the method which just adds the accelerometer magnitude as one
dimension of the sensor reading. It is probably caused by the inaccuracy of mag-
nitude estimation method. And also it didn’t consider the varying deployment
positions of mobile phones.

A few studies, like ours, focused on activity recognition with data collected
from commercial mobile phones. Kwapisz et al. [10] collected data from mobile
phones carried in the front pants leg pockets and recognize similar activities
like us with machine learning techniques. However, the mobile phones in in fixed
orientations and the pocket locations is specific, which limits the usage in real life.
Gerald et al. [2] introduced several aspects of activity recognition with mobile
phones, including the wearing positions, sampling rate, activity types and mobile
phone requirement. However, it didn’t introduce the recognition solutions.

Different from above works, we study the possibility of activity recognition
with mobile phones freely placed in the pockets near pelvic region, which is
practical for daily usage of such system. Based on the extracted features, we
evaluate the performances of different recognition algorithms and the impact
of the sampling window length. And feature reduction is performed to get the
smallest model size while obtaining high recognition accuracy.

3 Assumption, Experiment and Feature Extraction

3.1 Assumption

As demonstrated in [15], the pelvic region is an ideal deployment position for
recognizing various physical activities. And also the pockets of normal clothes
are designed around this region (i.e. the front and rear pockets of jeans, the front
pockets of the coat as shown in Fig 1(a)). As revealed by [8], over 60% men get
used to putting their mobile phones into their pockets. And thus we are trying to
seize the opportunity when people place their mobile phone inside their pocket
around the pelvic region to recognize their physical activities.
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Fig. 1. (a) Pocket locations. For each pocket shown, there is a corresponding one in
the left side of the body. (b) Four phone orientations when users put the mobile phone
into the right front jean’s pocekt.

Table 1. The sampling time of the each activity during the experimentation

Activity |[Station|Walk|Run|Bicycle|Ascend stairs|Descend stairs|Drive| Total
Time(Hour)| 10.4 | 9.8 |6.3| 6.6 4.6 4.0 6.5 |48.2

We choose all the pockets shown in Fig 1(a) as the potential mobile phone
deployment positions. Due to the constraints of pocket shapes, we observed
that people usually put the mobile phone into each pocket with four typical
orientations. For example, Fig 1(b) shows the scenario when people put the
mobile phone inside the jeans pocket.

In this paper we choose seven typical physical activities that people con-
duct daily, including stationary, walking, running, bicycling, ascending stairs,
descending stairs and driving. Stationary is the status when people are still, in-
cluding standing, sitting and lying down. For the activities people conduct while
sitting down, the mobile phone isn’t suitable to be placed in the rear pocket of
the trousers, since it may be crushed by human body.

3.2 Experiment

We conduct experiment to collect the accelerometer data with Nokia N97 at
a sampling rate of 40Hz for each activity with each possible combinations of
location and orientation. Seven subjects from our campus participated in the
experiment. After launching the sampling application, the participants put the
mobile phone into the target pocket and conduct the activity for a duration
about 5 to 10 minutes. And then they take the mobile phone out and terminate
the application, which saves the accelerometer records during this period of time
into a file. While residing in the pockets, the mobile phone is completely free
to rotate or move. Since the first and the last few seconds of the records are
the overhead when people put the mobile into the pocket and take it out of
the pocket, they are removed from the official record. Totally we get 48.2 hours
training data as shown in Table 1.
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3.3 Feature Extraction

As demonstrated in [13], the accelerometer magnitude does help improve the
classification accuracy as one dimension of sensor readings. So we add it to
the sensor reading and prepare a 4-D raw data set Then we use half overlap-
ping window to separate the data record into a number of equal-sized windows.
We evaluate the influences of different window length for the following reasons.
Firstly, it’s intuitive that long time observation should help to recognize the ac-
tivities to some extent. So we want obtain the optimized window length to get
the best recognition accuracy. Secondly, within the range of acceptance, larger
window length implies that the activity recognition frequency is smaller, which
could save the energy consumption.

We employ five feature types including Mean, Variance, Correlation, FFT En-
ergy and Frequency-domain Entropy because they have produced good results
in previous works [16, 13]. In total, 22 features are extracted from each window
(4 features for each Mean, Variance, Energy, Frequency-Domain Entropy, re-
spectively, and 6 features for Correlation) and forms a 22-D feature vector. All
the feature vectors forms a feature matrix with each column corresponding to
one element of a specific feature type. The data of each column is normalized to
[0,1].

4 Result Analysis

In this section we firstly compares the recognition accuracies of different machine
learning algorithms and the impact of the window length on the performance.
After that, we perform feature reduction to get a small and compact model.

4.1 Recognition Accuracy Comparison

WEKA toolkit [7] and LibSVM [5] are used to perform the classification with
the extracted features. We adopt 10-folder cross validation to get the final ac-
curacy. All the features are randomly divided into 10 equal-sized folders. Each
time we select one folder as the testing dataset and the rest as the training
data set. Then the final accuracies is generated by averaging the cross validation
results. We also perform grid research to get the best parameters for each clas-
sifiers. The classification accuracy of each algorithms with respect to different
window length is revealed in Fig. 2. It can be seen that SVM performs the best
(97.7%) comparing with the rest algorithms. And following is Random Forest [3]
(96.5%), whose performance is almost the same when the tree number exceeds
20. Naive Bayes [9] and RBF Network performs the worst around 70%. When
the window length grows from 1 second, the classification accuracy increases for
each algorithm. For SVM and Random Forest, it reaches a stable level when
the window length is over 6 second. It validates our intuition that with longer
time observation, the classification accuracy increases and then reaches a stable
level. To save the resource consumption, reducing the classification frequency
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Fig. 2. The classification accuracy of different algorithms with respect to different
window lengths.

would be acceptable with stable accuracies for some applications. However, the
drawback is that the classification granularity would become coarse when the
window length increases.

4.2 Feature Dimension Classification Contributions and Reduction

To obtain a compact classification model, we evaluate the feature attribute con-
tribution according to Algorithm 1. We choose the window length as 6 seconds
and evaluate the feature contributions with SVM. We show the recognition ac-
curacy with the number of left feature dimensions in Fig. 3 (a). It can be seen
that when the feature number exceeds 7, the recognition accuracy become stable.
As the computation cost when predicting with SVM model is directly related
with the number of support vectors and also the feature dimensions, here we
compares the support vector numbers with different attribute numbers of the
model in Fig. 3 (b). It’s surprising to see that the number of support vectors
decreases to the smallest level when there are 8 attributes and then increases
with more feature attributes. As a result, choosing these 8 attributes can reduce
the number of support vectors and feature dimensions.

5 Conclusion

Mobile phone based activity recognition, which caters to the demand of long-
term physical activity monitoring, has to comply with people’s usage habits,
capture the right moment for activity recognition and save resource. This paper
explore the opportunity of recognizing seven typical daily physical activities
when people put their mobile phones inside the pocket near the pelvic region.
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Fig. 3. (a), Feature Validation Result. The least contribution feature is extracted in
each loop and the horizontal dimension is the number of left contributes. (b), The
number of Support Vectors with different dimensions.

Algorithm 1 Feature Contribution Evaluation

1: DS is the feature dataset T is the feature dimension of DS
2: while 1 < T do

3:

4
5:
6:
7.
8

9:
10:
11:
12:
13:
14:
15:

AcCmas < 0
fort=1to T do
D+ DS
Exclude the #** dimension from D,
Perform 10-folder cross validation on D; and get the average accuracy Acct
if Accmar < Accy then
AcCmas — Acct
MinLossD «+t
end if
end for
Exclude the MinLossD'" dimension from DS
T is the feature dimension of DS
end while

Experiment shows that the recognition accuracy reaches 97.7% when people put
their mobile phones freely into the pockets. To obtain a compact model, feature
validation is performed to evaluate the contributions of each feature attribute
and feature reduction is conduct the get rid of the little contribution attributes.
Result shows that we can reduce the feature dimension to 8 and meanwhile
obtain the smallest model with little loss of recognition accuracy.
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