
A Performance Study of Java Garbage Collectors on
Multicore Architectures

Maria Carpen-Amarie
Université de Neuchâtel
Neuchâtel, Switzerland

maria.carpen-amarie@unine.ch

Patrick Marlier
Université de Neuchâtel
Neuchâtel, Switzerland
patrick.marlier@unine.ch

Pascal Felber
Université de Neuchâtel
Neuchâtel, Switzerland

pascal.felber@unine.ch

Gaël Thomas
Telecom SudParis

Évry, France
gael.thomas@telecom-sudparis.eu

ABSTRACT
In the last few years, managed runtime environments such
as the Java Virtual Machine (JVM) are increasingly used
on large-scale multicore servers. The garbage collector (GC)
represents a critical component of the JVM and has a signif-
icant influence on the overall performance and efficiency of
the running application. We perform a study on all available
Java GCs, both in an academic environment (set of bench-
marks), as well as in a simulated real-life situation (client-
server application). We mainly focus on the three most
widely used collectors: ParallelOld, ConcurrentMarkSweep
and G1. We find that they exhibit different behaviours in
the two tested environments. In particular, the default Java
GC, ParallelOld, proves to be stable and adequate in the
first situation, while in the real-life scenario its use results
in unacceptable pauses for the application threads. We be-
lieve that this is partly due to the memory requirements of
the multicore server. G1 GC performs notably bad on the
benchmarks when forced to have a full collection between
the iterations of the application. Moreover, even though
G1 and ConcurrentMarkSweep GCs introduce significantly
lower pauses than ParallelOld in the client-server environ-
ment, they can still seriously impact the response time on
the client. Pauses of around 3 seconds can make a real-time
system unusable and may disrupt the communication be-
tween nodes in the case of large-scale distributed systems.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures;
D.4.2 [Software]: Garbage collection

Keywords
Performance analysis, multicore, garbage collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02 ...$15.00
http://dx.doi.org/10.1145/2712386.2712404.

1. INTRODUCTION
Nowadays, multicore systems are the norm for standalone

servers or components of big server farms. The performance
of modern computers will continue to improve with the in-
creasing number of cores per CPU. Today, server applica-
tions often execute on language runtime, for example with
JBoss, Spark or Neo4j. A critical part of any language run-
time is the Garbage Collector (GC). A significant effort has
been put into optimizing garbage collectors for multicores
[15, 18, 11, 16], in order to reduce the application stalls.
However, recent studies show that current GCs do not scale
well with the number of cores [12] and that they can gener-
ally degrade the application responsiveness or throughput.

In this work we study to what extent can the GC affect
the application performance and give some pointers on what
configurations can have an important impact on the applica-
tion execution. We assess the performance in terms of both
responsiveness (i.e., the delay between the generation of an
event and its acknowledgement) and throughput (i.e., the
amount of work performed in a given period of time). We
also measure the duration of the GC pause times, i.e., the
period of time when none of the application threads is pro-
gressing. We experiment with the OpenJDK8 Java Virtual
Machine (JVM), being one of the most extensively used lan-
guage runtimes. All collectors in JVM are generational; this
means that the heap is split in two parts: the Young and
the Old Generation. All allocations are made in the Young
Generation, and the objects that survive a few collections are
moved to the Old Generation. As an optimization for mul-
ticore systems, a Thread Local Allocation Buffer (TLAB)
is used in the Young Generation (i.e., chunks of the Young
Generation are pre-allocated for each thread, which subse-
quently takes care of the local allocations). Thus, most of
the time there is no need for synchronization support when
allocating new objects. We exhaustively test the efficiency
of all current GCs both in an academic environment (with
a set of benchmarks in the DaCapo suite), as well as in a
real-life scenario (running the massively scalable database
Apache Cassandra). The benchmark experiments are split
in two categories: (1) when a system (full) GC is forced be-
tween the benchmark iterations and (2) when no system GC
takes place and the memory is collected only when needed.

Overall, our study tends to show that sometimes the GC
might have an unexpected behaviour (e.g., longer pauses
for smaller Young Generation size, TLAB decreasing per-

formance in some cases, etc.). In detail, we found that:

• Total execution time: we measure the total execu-
tion time for the benchmarks in our subset with differ-
ent GC and heap sizes. G1 GC has the worst through-
put amongst the GCs for test case (1), while for (2),
the GCs perform in a similar manner.

• GC pause time: we study the length of the applica-
tion pauses caused by the GC activity, when the heap
and the Young Generation sizes vary. We observe that
G1 GC performs the worst in situation (1) for all tests.

• GC statistics: even though the Serial GC has no
synchronization mechanisms, we find that it gives the
best execution in less than one fourth of the tests when
there are no GC pauses at all. Furthermore, for Con-
currentMarkSweep and ParNew GCs, we observe that
sometimes a smaller Young Generation size results in
a bigger average pause time for the same heap size.

• TLAB influence: we checked if enabling the TLAB
leads to a performance improvement for each GC and
benchmark. We considered a variation of 5% from the
average total execution time. We find that most of
the time the TLAB does not have any influence (ei-
ther good or bad), but sometimes it even degrades the
performance (e.g., for G1 and pmd benchmark).

• GC ranking: we order the GCs according to the best
execution times of the benchmarks in our experiments.
Based on this simple ranking and the previous tests
we find that the default GC, ParallelOld, is constantly
performing well, while both G1 and ConcurrentMark-
Sweep tend to degrade the application performance.

For the client-server experiments we used Cassandra DB
as the server and the YCSB benchmark on the client-side.
We discuss the impact of three most efficient GCs on multi-
core machines (ParallelOld, ConcurrentMarkSweep and G1):

• on the server side: a detailed analysis of Cas-
sandra’s logs indicates application pauses of up to 4
minutes for ParallelOld, and of 3-5 seconds for G1
and ConcurrentMarkSweep. Even though the latter
is much smaller than the former, it is not negligible in
systems where the responsiveness is critical.

• on the client side: we study the client response
time and observe that most of the peaks in the re-
sponse time correspond to the moments when a GC
took place. The result shows that the server is unable
to progress during the pause time. This degrades the
user experience and, possibly, the progress on other
nodes (that are either waiting for the response or sus-
pect that the collecting server is faulty).

Based on these observations, we draw the conclusion that
there are workloads that are executed better with particular
GCs and sometimes the assumptions on the GC activity do
not hold true for all scenarios. We show that on the bench-
mark suite Java’s default GC gives the best overall perfor-
mance, while on a memory-intensive database server, it in-
troduces unacceptable pauses and affects the response time
on the client. Moreover, even the concurrent low-pause GC,
ConcurrentMarkSweep, and G1 GC that ensures bounded

pause time, end up stopping the application threads for a
few seconds. This is still a significant pause that can affect
the execution of the application.

2. BACKGROUND
The Garbage Collector (GC) represents a critical el-

ement in any managed environment, such as Java Virtual
Machine (JVM). Its purpose is to automatically reclaim un-
used memory and protect the application from accessing in-
valid references. In order to do that, it must regularly stop
all the application threads in order to avoid concurrent ac-
cesses to the heap or the execution stacks between the GCs
and the application. This happens in single core, as well as
in multicore environments.

Typically, the garbage collectors in Java are generational
[17]. The generational algorithms are based on two obser-
vations: most allocated objects are not referenced for long
(they die young) and there are few references from older
to younger objects. All objects are allocated in the Young
Generation area; if they survive a number of collections, they
are copied to the Old Generation. When the application re-
ceives an ”Allocation Failure”message, it performs a garbage
collection of the Young Generation. The Young Generation
collections are fast and efficient, since the collected space is
small and likely to have a lot of objects that are no longer
referenced. The surviving objects are promoted to the Old
Generation. If there is no more space in the Old Generation
to bring new objects, then the GC executes a major (or full)
garbage collection, trying to free space in all generations.

In general, an application running in a managed environ-
ment will encounter multiple safepoints during its execution.
A safepoint is a step in the program execution when all
threads running Java code need to be stopped for a period
of time. This is also called a stop-the-world pause. Stop-
ping all threads is necessary for the initiator of the safepoint
to get exclusive access to the JVM data structures. There
are multiple reasons that could trigger a safepoint: garbage
collector pauses, code deoptimization, flushing code cache,
biased lock revocation, etc.

Table 1 represents the list of the GCs available in Java,
with a description of their components for the Young and
Old Generations. The only GC that does not use a par-
allel collection for the Young Generation is SerialGC. In
its case, both generations are collected sequentially, on a
single thread. However, SerialGC is the simplest GC, re-
quiring no synchronization mechanisms for allocating mem-
ory. The ParNew GC and Parallel GC both use a single-
threaded collection for the Old Generation. For the Young
Generation collection they take advantage of the same par-
allel algorithms as the ConcurrentMarkSweep GC, and re-
spectively the ParallelOld GC. The main difference between
these two parallel algorithms is that one of them was es-
pecially created to work with ConcurrentMarkSweep (be-
sides the Young Generation collection, it also takes care of
the synchronization needed during the concurrent phases of
ConcurrentMarkSweep in the Old Generation). Finally, the
newest GC, called Garbage-First, is a parallel collector for
both generations that can ensure a bounded pause time.

2.1 DaCapo Benchmarks
The DaCapo benchmark suite [3] is a memory-management

benchmarking tool for Java. It consists of the following set
of open source, real world applications:

Table 1: List of garbage collectors used in this work and their characteristics

GCs
Young Old

Parallel Copying
Concurrent

Parallel Compacting
Concurrent

Marking Copying Marking Compacting

Serial No Yes No No No Yes No No
ParNew Yes Yes No No No Yes No No
Parallel Yes Yes No No No Yes No No
ParallelOld Yes Yes No No Yes Yes No No
CMS Yes Yes No No Yes No Yes irrelevant
G1 Yes Yes No No Yes Yes Yes No

• avrora: single external thread, but internally multi-
threaded.

• batik: Mostly single-threaded both externally and in-
ternally.

• eclipse: single external thread, internally multi-threaded.

• fop: single-threaded.

• h2: multi-threaded (one client thread per hardware
thread).

• jython: single external thread, internally using one
thread per hardware thread.

• luindex: single external thread, internally it uses some
helper threads to a limited degree displaying limited
concurrency.

• lusearch: multi-threaded, one client thread per hard-
ware thread.

• pmd: single client thread, internally multi-threaded
using one worker thread per hardware thread.

• sunflow: multi-threaded, driven by a client thread per
hardware thread.

• tomcat: multi-threaded, driven by a client thread per
hardware thread.

• tradebeans: multi-threaded, driven by a client thread
per hardware thread.

• tradesoap: same as tradebeans.

• xalan: multi-threaded, driven by a client thread per
hardware thread.

When executing a DaCapo benchmark with the default
options, it only runs once, returning the execution time at
the end. However, a number of parameters can be fed to
DaCapo. An important option is the number of iterations
that the benchmark will execute. By default, the applica-
tion will perform a system GC between every two iterations.
This feature can also be disabled. When running multiple
iterations, all except the last one represent warm-up rounds;
the last iteration is the actual run of the benchmark. Besides
this property, one can also indicate the number of threads for
the current execution. This option will overwrite the default
setting of having one client thread per hardware thread.

2.2 CassandraDB
Cassandra [2] is a distributed on-disk NoSQL database,

with an architecture based on Google’s BigTable [6] and
Amazon’s Dynamo [8] databases. It provides no single point
of failure, and is meant to be scalable and highly available.
Data is partitioned and replicated over the nodes. Durability
in Cassandra is ensured by the use of a commit log where all
the modifications are recorded. Exploring the whole commit
log to answer a request is expensive; thus, Cassandra also
has a cache of the state of the database. This cache is par-
tially stored to disk and partially stored in memory. After
a crash, a node has to rebuild this cache before answering
client requests. For this purpose, it rebuilds the cache that
was stored in memory by replaying the modifications from
the commit log. Through a couple of configuration files, one
can select the GC, heap and Young Generation sizes and
modify the amount of memory used for the cache and for
the commit logs.

A good way to test the responsiveness of the database is
to run a benchmark on the client-side, such as Yahoo Cloud
Serving Benchmark (YCSB) [7]. YCSB Client is a workload
generator, having predefined core workloads that can be fur-
ther extended according to the user’s needs. The workloads
define the number of read, insert and update operations exe-
cuted on the database, the number of records that will be af-
fected, the execution time, etc. It can be used in two states:
the loading phase and the transactions phase. The former
only populates the database (loads the data), while the lat-
ter executes the specified workload against the database. At
the end, it returns statistics about the execution.

3. BENCHMARK APPLICATIONS

3.1 Experimental Setup
We perform the experiments on a 48-core server with

64GB RAM, running Ubuntu Linux on 64 bits. The cores
are distributed over 4 sockets: 2 NUMA nodes per socket,
each having 6 CPUs. Each core benefits of a 1.5MB Level-1
cache (different for instructions and data) and a 6MB Level-
2 cache. A 12MB Level-3 cache is available per NUMA node.
We use OpenJDK8 for all the tests. We considered as base-
line the default GC configuration used by Java: ParallelOld
GC, with a maximum heap size of ∼16GB, maximum Young
Generation size ∼5.6GB and TLAB enabled. We set both
the minimum and maximum heap size at the same value, so
that we have a fixed heap size.

Starting from this configuration, we ran benchmarks of

the DaCapo suite with all the supported GCs. We varied
the maximum heap size from the baseline to the maximum
amount of memory supported by the machine, i.e., 64GB.
Separately, we varied the Young Generation size from the
baseline to the heap size. Finally, we tested separately when
the TLAB is enabled or disabled. Typically, we used the de-
fault DaCapo configuration for the benchmarks, that takes
advantage of the maximum number of hardware threads
available on the machine. We generally configured 10 itera-
tions for each benchmark. We also switched between having
a system GC after each iteration and no system GC inserted
by the benchmark.

3.2 Subset of Benchmarks
There are 14 benchmarks in the most recent DaCapo suite,

released in 2009. Out of these, 3 benchmarks crashed on ev-
ery test: eclipse, tradebeans and tradesoap. For other bench-
marks, e.g., avrora, the execution time from one iteration to
the next varied significantly. Thus, in order to identify a
subset of stable benchmarks, we ran each 10 times, with the
baseline Java configuration. A run consisted of 10 iterations.
After each iteration a system GC takes place. We take as
metrics for stability the following two characteristics:

• The duration of last iteration: we do not take into
consideration the duration of warm-up rounds, expect-
ing the actual run duration to be stable.

• The total execution time: even though the dura-
tion for each iteration varies separately, we check if the
total execution time, i.e., the sum of the durations of
all iterations, remains constant.

Based on the information gathered we selected the bench-
marks listed in Table 2. All other benchmarks in the Da-
Capo group showed variations of more than 5% in both mea-
sured times: execution time and final round. We accepted
in our experiments the benchmarks that are stable for at
least one characteristic. In the rest of this section we will
only focus on the selected subset of benchmarks.

Table 2: Relative standard deviation for the total
execution time and final iteration for a subset of
DaCapo benchmarks

Benchmark Final iteration (%) Total execution time (%)

h2 1.8 1.2
tomcat 1.8 1.2
xalan 6.4 4.2
jython 5 3
pmd 1.1 0.8
luindex 2.8 4
batik 11.2 3.6

3.3 GC Pause Time
All currently implemented GCs in OpenJDK8 need to stop

the application threads in at least one of their collection
phases. We compare the pauses caused by GCs for the se-
lected benchmarks. Figure 1 shows the application pause
durations for all supported GCs when executing the Xalan

benchmark. We choose Xalan for clarity, all other bench-
marks having a similar behaviour. On both charts of the
figure, the X axis represents the total execution time of the
benchmark in seconds, while the Y axis indicates the du-
ration of the pause in seconds. Figure 1(a) illustrates the
application pause times when the system GC, which forces
a full collection, is activated between iterations, while in
Figure 1(b) this feature is deactivated (i.e., there are full
GCs only when needed). Both tests were conducted with
the baseline configuration for the heap/Young Generation
size and TLAB. We observe that the G1GC performs the
worst when it is forced to have multiple full collections, both
in terms of pause duration and execution time, which can
be 25% longer than for all the other GCs. In the example
showed by this benchmark, one of the best performing GCs
is ParallelOldGC, which is also the default GC for Java. In
contrast, Figure 1(b) shows only one pause generated by G1
(the singular point at 12 seconds of execution) and the worst
performance is given by the SerialGC in this case.

In order to further assess the efficiency of the existing GCs
we also checked their performance relatively to the execution
time of the selected subset of benchmarks. We illustrate
the results in Figure 2. The charts show only the last 6
iterations, considering that the first 4 warm-up rounds are
enough for the benchmark execution to stabilize. As for
Xalan, the G1GC is clearly the slowest when forced to do full
collections at every iteration. In the final iteration, which
corresponds to the actual benchmark run, ParallelOld has
the best execution time, G1 the worst and ParallelGC the
second worst, since its full collections are serial. However,
when the system GC is not imposed, G1 has one obvious
spike, which corresponds to the only performed collection.
In the last iteration, all GCs perform similarly in this case.

Next, we evaluated the correlation between the pauses
caused by the GCs and the sizes of the heap and the Young
Generation. We expected to find the relation described by
Blackburn et al [4, 5]: the total pause increases with the
decreasing Young Generation size, in applications that spend
most of the time in Young Generation collections. This hap-
pens because the total number of minor collections increases,
when the Young Generation is smaller. However, the av-
erage pause should decrease with the decreasing Young
Generation size.

First, we analyzed the relation of the GCs when there are
no pauses at all. As an example, the Batik benchmark did
not perform any garbage collection with our aforementioned
heap configuration and with the system GC disabled. In
this particular case, the SerialGC should have the lowest
execution time, since it is the simplest implementation that
does not need synchronization. However, for a 64GB heap
with a 12GB Young Generation size, it performs worse than
all other GCs. Moreover, in only 4 out of 18 experiments,
the total execution time of the SerialGC is the best.

Given the fact that some benchmarks did not show any
GC with our heap configuration, we ran the experiments
once more with the following heap sizes: 1GB, 500MB, 250
MB, and Young Generation sizes: 200MB, 100MB. Based on
both sets of experiments, we observed that our expectation
does not hold in all cases. We can take as an example the
H2 benchmark and its results for the ConcurrentMarkSweep
collector (Table 3). In the upper side of the table we keep
the heap size constant, at 64GB and vary the Young Gener-
ation size from 6GB to 48GB. We observe that the average

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30

G
C

 P
a
u

s
e
 D

u
ra

ti
o

n
 (

s
)

Execution Time (s)

ConcMarkSweepGC

G1GC

ParNewGC

ParallelGC

ParallelOldGC

SerialGC

(a) System GC

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16 18

G
C

 P
a
u

s
e
 D

u
ra

ti
o

n
 (

s
)

Execution Time (s)

ConcMarkSweepGC

G1GC

ParNewGC

ParallelGC

ParallelOldGC

SerialGC

(b) No System GC

Figure 1: GC pause time for the Xalan benchmark with and without a system GC between iterations

pause duration for the smallest Young Generation size is
significantly longer than for a bigger Young Generation size.
Likewise, the average pause duration for a Young Genera-
tion of 24GB is longer than the one for 48GB. In the second
part of the table, we list the results for the small heap and
Young Generation sizes. Having such a small amount of
memory for this benchmark results in hundreds of garbage
collections during the execution. It is interesting to point
out that in the case of a small heap the total pause time
can represent more than 50% of the total execution time.
Another important fact is that the ParallelOld collector be-
haved as expected in both situations.

Table 3: Statistics for the H2 benchmark with dif-
ferent heap and Young Generation sizes

Heap-YoungGen
size

#pauses
(full)

AVG
pause
time(s)

Total
pause
time(s)

Total
execu-
tion
time(s)

64GB-6GB 4(0) 1.33 5.34 196.23
64GB-12GB 2(0) 0.46 0.92 193.45
64GB-24GB 2(0) 0.55 1.11 193.31
64GB-48GB 2(0) 0.36 0.72 193.51

1GB-200MB 68(1) 0.07 4.53 192.39
1GB-100MB 136(1) 0.05 7.18 192.98
500MB-200MB 74(7) 0.13 9.78 193.19
500MB-100MB 135(3) 0.05 6.86 193.53
250MB-200MB 655(356) 1.05 689.72 1112.51
250MB-100MB 380(324) 1.33 503.89 788.43

3.4 TLAB Influence
The Thread Local Allocation Buffers (TLAB) rep-

resent chunks of Young Generation, one buffer per thread,
where the new objects are first allocated. This allows for
faster memory allocation, since the thread is able to allo-
cate memory inside the buffer without a lock.

We considered that the TLAB has a positive impact for a
GC when the total execution time for that GC was smaller
than the same experiment without TLAB. To account for
the variation in the execution times, we computed a 5%
deviation from the average execution time. Thus, if the
difference between the total times with and without TLAB
is included in the interval [-deviation,deviation], we say that
enabling the TLAB does not bring either improvement or
deterioration (=). If the total execution time without TLAB
is greater than the execution time with TLAB (plus the
deviation), it means that enabling the TLAB results in an
improvement in the execution time (+). Otherwise, we mark
it as negative influence (-).

Based on the results obtained for the baseline configu-
ration of the heap and Young Generation size, we observe
that in most cases the TLAB does not have a particular in-
fluence (Table 4). However, there are cases when enabling
the TLAB leads to a decreased performance (e.g., for G1
and ParNew). We observe that for the Xalan benchmark,
the TLAB is at most indifferent, creating a deterioration for
G1, ParallelGC and SerialGC.

3.5 GC Ranking
In order to have an overall idea on the GC influence over

the DaCapo benchmarks, we finally classified them accord-
ing to the number of experiments in which they performed
the best. An experiment is defined by a benchmark, a heap
size and a Young Generation size. For each experiment we
consider the run with the shortest execution time as the
best. The Y axis in Figures 3(a) and 3(b) shows the percent
of experiments for which each GC was employed in the best
run. When the system GC is enabled between all iterations
(Figure 3(a)) there is no column for G1 GC. That means
that G1 did not perform better than all other GCs in any
of the experiments. If we disable the system GC (Figure
3(b)), G1 GC improves, but it is still the worst according to
this metric. On the other hand, we observe that the default
GC, ParallelOld, has a good performance in both cases, con-
tributing to more than 20% of the best execution times with
system GC enabled and almost 30% otherwise.

Based on these results, we conclude that the ParallelOld

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 5 6 7 8 9 10

D
u

ra
ti

o
n

 (
s
)

Iteration

ConcMarkSweepGC

G1GC

ParNewGC

ParallelGC

ParallelOldGC

SerialGC

(a) System GC

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4 5 6 7 8 9 10

D
u

ra
ti

o
n

 (
s
)

Iteration

ConcMarkSweepGC

G1GC

ParNewGC

ParallelGC

ParallelOldGC

SerialGC

(b) No System GC

Figure 2: Execution time for the Xalan benchmark per iteration

Table 4: TLAB influence over all GCs and the selected subset of benchmarks

Benchmark ConcMarkSweepGC G1GC ParNewGC ParallelGC ParallelOldGC SerialGC

batik + = + = - =
h2 = = = = = =
jython = - - + = =
luindex = + - = = -
pmd = = = = = =
tomcat = = = = = =
xalan = - = - = -

GC is a fitting choice for a default GC, since it proves to
be stable and has good results. Running either of the con-
current collectors, G1 and ConcurrentMarkSweep, resulted
in both longer pause times and execution time. The next
section debates the impact of these three most important
GCs on a memory-intensive real-life application. We show
that in this case, ParallelOld has significant drawbacks, as
compared to the other two collectors.

4. CLIENT-SERVER APPLICATIONS
First, we analysed the impact of garbage collector activ-

ities on a set of benchmarks. The next step is to check if
the previous results hold on a real-life environment, such
as a client-server system. Our experiments follow two main
directions:

• the duration of the GC-induced pauses on the server

• the impact on the response time at the client side

For both experiments we use Cassandra DB on a single
node as the server in combination with the YCSB bench-
mark [7] as the client. We ran Cassandra 2.0.0 on a 48-core
machine, with 64GB RAM memory, and YCSB on a 16-core
machine, 8GB RAM. On the server we set the heap size at
64GB and the Young Generation size at 12GB. This exper-
iment also aims to evaluate the behaviour of the GCs with
a very big heap and Young Generations size. In the previ-
ous section we were unable to perform this test, since for

these values the DaCapo benchmarks were not filling up the
memory and there were no GCs. We chose this size for the
Young Generation according to the JVM recommendations
to be around one fourth of the total memory.

4.1 GC Impact on Server Side
We first study the performance of the default GC, Par-

allelOld. We based our main experiments on two different
Cassandra configurations. In both cases, the YCSB client is
used in the loading phase, i.e., it continuously populates the
database with records, for a specified amount of time.

• Default configuration: We ran the experiment with
100 client threads in parallel for one hour and two
hours, respectively. The shorter test case ends up with
no full GC; nonetheless the collection of the Young
Generation reaches a peak pause of around 17 seconds.
The latter stressed the memory even more by loading
records for an extra hour. This resulted in a full GC
that stopped the application threads for more than 160
seconds. Moreover, the Young Generation collections
take up to 25 seconds.

• Stress test configuration: We took advantage of
Cassandra’s internal data structures and configured it
to flush as rarely as possible its records to disk and
stress the memory until the server is saturated. That
is, we set up both the commitlog and the internal
caching structure of Cassandra (called memtable) to

 0

 5

 10

 15

 20

 25

 30

 35

 40

ParNew

ParallelOld

Serial

CMS
Parallel

N
u

m
b

e
r

o
f

e
x

p
e

ri
m

e
n

ts
 (

%
)

(a) System GC

 0

 5

 10

 15

 20

 25

 30

 35

 40

ParallelOld

Parallel

ParNew

Serial

CMS
G1

N
u

m
b

e
r

o
f

e
x

p
e

ri
m

e
n

ts
 (

%
)

(b) No System GC

Figure 3: GC ranking according to the number of experiments in which they performed the best

have the same size as the heap, which means that ev-
erything was always kept in memory. Moreover, we
already loaded the database with records so that when
it starts the memory would be already partially occu-
pied. Then, we ran the same workload as before for
two hours. This experiment results in a full GC lasting
around 4 minutes.

Finally, we experiment with ConcurrentMarkSweep and
G1 on the same heavy workload with the stress test config-
uration of Cassandra. Figure 4 shows the resulting pauses
caused by the GC activity. The X axis indicates the exe-
cution time. Even though the YCSB client itself ran for a
fixed amount of time (two hours), the total execution time
in the chart is longer. It also contains the loading step of
Cassandra: because of our configuration, the server must
first bring into memory all commitlogs and replay already
executed transactions. Only then we start the actual bench-
mark. We observe that the executions of ConcurrentMark-
Sweep and G1 are comparable in terms of stop-the-world
pause duration. Both of them reach pauses of more than 2
seconds, going up to 3.5 seconds for G1.

Even if the pauses caused by ConcurrentMarkSweep and
G1 are considerably smaller than those resulted from the
use of ParallelOld, they can still be unacceptable in certain
circumstances. Apache Cassandra is a distributed database,
supposed to run on multiple nodes for an indefinite amount
of time. In only two hours we succeeded to saturate the
server and obtain garbage collections lasting for a few sec-
onds with G1 and ConcurrentMarkSweep, respectively for
a few minutes with ParallelOld. Moreover, in a distributed
system, even a lag of a few seconds might result in the cur-
rent node being considered down and the initiation of a cum-
bersome synchronization protocol.

4.2 GC Impact on Client Side
We used a custom workload for the client-side experi-

ments: 50% read and 50% update operations. We ran the
experiment three times, with the three main garbage col-
lectors supported by Cassandra: Parallel Old, Concurrent
MarkSweep and G1.

The charts resulted from the above experiment are illus-
trated in Figure 5. In order to make the charts more read-
able and to reduce the size of the images, we only plotted

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
C

 p
a
u

s
e
 d

u
ra

ti
o

n
 (

s
)

Elapsed time (s)

CMS
G1

Figure 4: Application pauses for ConcurrentMark-
Sweep (CMS) and G1 garbage collectors with Cas-
sandra DB server

the highest 10000 points of every chart. The X axis repre-
sents the execution time passed since the beginning of the
experiment, in seconds. The Y axis indicates both the la-
tency of the aforementioned operations and the GC pause
length, during the experiment. We make two important ob-
servations:

1. most of the points are following a well defined low la-
tency line; moreover, for the update operations the line
of points is constant for all three GCs, while for the
read operation, the line has some increasing ”steps”.
Apart from the constant line of values, there are the
spikes that we expected to see: a few tens of points
with greater latency, for both kinds of operations.

2. by plotting the GC pause duration on the same chart
as the operation latencies, we observe that the highest
latencies correspond to the moments when a collection
took place. Thus, we conclude that the latency peaks
are strongly related to the garbage collection activity.

In order to further analyse the aforementioned results, we
computed the following for each of the 3 experiments with
different GC strategies:

• the average latency

Table 5: Statistics regarding the average latency for
READ and UPDATE operations for ParallelOld GC

READ UPDATE

AVG(ms) 4.875 0.993
MAX(ms) 372.361 229.155
MIN(ms) 0.644 0.545

0.5x-1.5x AVG (%reqs) 40.412 98.639
0.5x-1.5x AVG (%GCs) 0.0 0.0

>2x AVG (%reqs) 6.895 1.065
>2x AVG (%GCs) 100.0 100.0

>4x AVG (%reqs) 6.412 0.604
>4x AVG (%GCs) 100.0 100.0

>8x AVG (%reqs) 6.374 0.09
>8x AVG (%GCs) 100.0 100.0

>16x AVG (%reqs) 0.002 0.008
>16x AVG (%GCs) 94.595 100.0

• the percent of points and the percent of GCs between
0.5x and 1.5x the average

• the percent of points and the percent of GCs with a la-
tency greater than 2nx the average, where n = 1,2,3,...

Please note that these statistics were computed over the
whole set of points (more than 1 million for each GC), as
opposed to the charts which only used the highest 10000
points for readability. Also, we only increased n until the
percentage of points became too close to 0. Tables 5, 6 and
7 illustrate the resulted statistics.

Table 6: Statistics regarding the average latency for
READ and UPDATE operations for G1 GC

READ UPDATE

AVG(ms) 2.369 1.106
MAX(ms) 644.19 469.133
MIN(ms) 0.548 0.424

0.5x-1.5x AVG (%reqs) 95.325 99.029
0.5x-1.5x AVG (%GCs) 0.0 0.0

>2x AVG (%reqs) 1.73 0.766
>2x AVG (%GCs) 100.0 100.0

>4x AVG (%reqs) 1.107 0.526
>4x AVG (%GCs) 100.0 100.0

>8x AVG (%reqs) 0.603 0.124
>8x AVG (%GCs) 100.0 100.0

>16x AVG (%reqs) 0.596 0.005
>16x AVG (%GCs) 100.0 100.0

5. RELATED WORK
The performance of GCs has been an important topic ever

since the managed runtime environments started to be heav-
ily used both in research, as well as in production. The topic

Table 7: Statistics regarding the average latency
for READ and UPDATE operations for Concurrent-
MarkSweep GC

READ UPDATE

AVG(ms) 3.494 1.08
MAX(ms) 865.518 669.843
MIN(ms) 0.596 0.496

0.5x-1.5x AVG (%reqs) 53.382 98.811
0.5x-1.5x AVG (%GCs) 0.0 0.0

>2x AVG (%reqs) 3.828 0.921
>2x AVG (%GCs) 100.0 100.0

>4x AVG (%reqs) 2.983 0.556
>4x AVG (%GCs) 100.0 100.0

>8x AVG (%reqs) 2.958 0.066
>8x AVG (%GCs) 100.0 100.0

>16x AVG (%reqs) 0.003 0.005
>16x AVG (%GCs) 100.0 100.0

became hot once the GCs had to be adapted for multicore
systems and the algorithms turned challenging. With the
growth in the number of cores of today’s computing ma-
chines, a simple serial collector is not suitable any more.
However, because of the synchronization needed when mov-
ing objects, the current GCs are not fully concurrent either.
Thus, lots of studies and improvements have been proposed
in this area in the last few years.

The Garbage First (G1) GC [9], evaluated in this paper,
achieves real-time goals with high probability. It partitions
the heap in fixed-size regions and any set of regions can be
chosen for collection in order to ensure the time require-
ments. Besides G1, another two widely used JVM collectors
have been evaluated in this work: ConcurrentMarkSweep
[10] and ParallelOld [17].

Gidra et al [12] present in their paper a scalability study
for these three main GCs in OpenJDK, i.e., ParallelOld,
ConcurrentMarkSweep and G1. They evaluate the GCs on a
48-core NUMA machine, with the DaCapo benchmark suite.
They point out that the current GCs do not scale with the
number of threads and that the GC represents a significant
bottleneck in multicore systems. They also identify remote
scanning and remote copying as the most important prob-
lems concerning scalability. They add in [13] that another
significant performance issue is the lack of NUMA-awareness
when allocating objects. We consider that our contributions
complement this work with results obtained by varying other
properties than the application threads.

A new approach to developing concurrent garbage collec-
tors employs Transactional Memory (TM). TM represents a
technique that allows developers to write code without wor-
rying about concurrent interleaving, by just embedding crit-
ical sections within ”atomic blocks” (transactions). These
blocks can then execute concurrently in isolation, possibly
aborting upon conflict with the speculative execution of an-
other atomic block. Software TM (STM) is not applicable to
all problems from a pure performance perspective. However,
hardware TM (HTM) appears to be the perfect solution for
tackling specialized concurrency problems, such as fully con-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000 8000

L
a
te

n
c
y
 (

m
s
)

Time since beginning of experiment (s)

READ

UPDATE

GC

(a) ParallelOld

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 1000 2000 3000 4000 5000 6000 7000 8000

L
a
te

n
c
y
 (

m
s
)

Time since beginning of experiment (s)

READ

UPDATE

GC

(b) CMS

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000 6000 7000 8000

L
a
te

n
c
y
 (

m
s
)

Time since beginning of experiment (s)

READ

UPDATE

GC

(c) G1

Figure 5: Application response time for three GC strategies

current garbage collection. This new technique is used by
Alistarh et al [1] for automating memory reclamation and
reducing the pauses caused by the GC. They employ HTM
in order for the GC threads to always have a consistent view
of the variables accessed by other threads. The approach is
implemented in C and adds automatic memory reclamation
to classic data structures such as the non-blocking queue,
linked list, skip-list and hash-table. However, even though
StackTrack benefits of a superior performance as compared
to other memory reclamation algorithms, it can also reduce
the data structure throughput by up to 50%.

Another promising approach, described by Iyengar et al
[14], is the Collie algorithm, the first one to propose HTM
for Java VM. It is implemented on a specialized multicore
CPU built by Azul Systems. While it represents an impor-
tant first contribution in this field, the algorithm has two
main drawbacks: it only uses a single thread for collection,
which may be insufficient on large multicore systems, and
it requires two passes over the object graph, increasing the
probability of memory exhaustion during a collection. How-
ever, the main contribution is that this work indicates that
the current problems of responsiveness and scalability can
easily be addressed with the help of HTM.

6. CONCLUSIONS AND FUTURE WORK
In this work we evaluated the extent in which garbage col-

lectors affect the execution of an application, with respect
to throughput and responsiveness. We found that the re-
sults obtained from testing the GCs on a benchmark suite
are contradicted to some degree by the real-life usage in a

memory-intensive server application. We believe that one
of the reasons for this was the small memory footprint of
the benchmarks, which have been implemented in 2009 for
smaller memories than on today’s servers. However, by run-
ning the benchmarks we learned that the GCs are not always
behaving as expected. Contrary to our assumptions, our ex-
periments showed that:

• enabling the TLAB is not always beneficial, but can
also decrease the performance of the application.

• the average pause time of the GC can increase with the
young generation decrease, for the same heap size (this
happens for ConcurrentMarkSweep and ParNew).

• for the benchmark suite, the default GC, ParallelOld,
proved to be the most stable, having a very good per-
formance in terms of pauses and total execution time.

However, our experiments with Apache Cassandra Server
in combination with the YCSB client, using a large heap
and Young Generation, indicated the opposite: in this situ-
ation, ParallelOld resulted in huge pause times for the ap-
plication (up to 4 minutes long), becoming unacceptable in
practice. Even G1 and ConcurrentMarkSweep collectors in-
troduced pauses of a few seconds (up to 3.5 seconds for G1),
which might affect the application in case of a real-time or
distributed system, where the nodes need to communicate
without delay. We showed that the garbage collections also
harm the user experience: almost every peak in the client
response time was associated to a collection on the server.
Table 8 summarizes the benefits and disadvantages of the
three main GCs, based on our set of experiments.

Table 8: Advantages and disadvantages of the three
main GCs, according to our experiments

GC Experiment Throughput Pause Time

ParallelOld
DaCapo good short

Cassandra good unacceptable

CMS
DaCapo fairly good acceptable

Cassandra fairly good significant

G1
DaCapo bad unacceptable

Cassandra fairly good significant

Further on, we plan to implement and thoroughly test
a garbage collector that uses HTM. The state of the art
indicates that HTM could bring a lot of benefits for the
current GC implementations and it could soon be found in
any commodity hardware. We aim to repeat this evaluation
of the GC impact on application execution and compare the
new approach to the current available GCs.

7. REFERENCES
[1] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and

N. Shavit. Stacktrack: An automated transactional
approach to concurrent memory reclamation. In
Proceedings of the 9th European Conference on
Computer Systems, EuroSys ’14, 2014.

[2] Apache. The apache cassandra project.
http://cassandra.apache.org/, 2014.

[3] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The dacapo
benchmarks: Java benchmarking development and
analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 169–190, New York, NY, USA,
2006. ACM.

[4] S. M. Blackburn and K. S. McKinley. Immix: A
mark-region garbage collector with space efficiency,
fast collection, and mutator performance. In
Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’08, pages 22–32, New York,
NY, USA, 2008. ACM.

[5] S. M. Blackburn, K. S. McKinley, R. Garner,
C. Hoffmann, A. M. Khan, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovik, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. Wake up and smell
the coffee: Evaluation methodology for the 21st
century. Commun. ACM, 51(8):83–89, Aug. 2008.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[7] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[8] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[9] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In Proceedings of the
4th International Symposium on Memory
Management, ISMM ’04, pages 37–48, New York, NY,
USA, 2004. ACM.

[10] D. Detlefs and T. Printezis. A generational
mostly-concurrent garbage collector. Technical report,
Mountain View, CA, USA, 2000.

[11] H. Gao, J. Groote, and W. Hesselink. Lock-free
parallel and concurrent garbage collection by
mark&sweep. Science of Computer Programming,
64(3):341 – 374, 2007.

[12] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro.
Assessing the scalability of garbage collectors on many
cores. Best papers from PLOS’11, SIGOPS Operating
System Review (OSR), 45(3):15–19, 2011.

[13] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A
study of the scalability of stop-the-world garbage
collectors on multicores. pages 229–240, 2013.

[14] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The
collie: A wait-free compacting collector. In Proceedings
of the 2012 International Symposium on Memory
Management, ISMM ’12, pages 85–96, New York, NY,
USA, 2012. ACM.

[15] F. Pizlo, D. Frampton, E. Petrank, and
B. Steensgaard. Stopless: A real-time garbage
collector for multiprocessors. In Proceedings of the 6th
International Symposium on Memory Management,
ISMM ’07, pages 159–172, New York, NY, USA, 2007.
ACM.

[16] F. Siebert. Concurrent, parallel, real-time
garbage-collection. In Proceedings of the 2010
International Symposium on Memory Management,
ISMM ’10, pages 11–20, New York, NY, USA, 2010.
ACM.

[17] Sun. Whitepaper: Memory management in the java
hotspot virtual machine.
http://www.oracle.com/technetwork/java/javase/

memorymanagement-whitepaper-150215.pdf, 2006.

[18] G. Tene, B. Iyengar, and M. Wolf. C4: The
continuously concurrent compacting collector. In
Proceedings of the International Symposium on
Memory Management, ISMM ’11, pages 79–88, New

York, NY, USA, 2011. ACM.

