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Abstract. Cloud environments are being increasingly used for the de-
ployment and execution of complex applications and particularly for
Service-Component Architecture (SCA) based applications. Among other
characteristics, Cloud environments are expected to provide elasticity in
order to allow a deployed application to rapidly change the amount of its
allocated resources in order to meet the demands variation while ensur-
ing a given QoS. However, ensuring a correct elastic SCA-based applica-
tion is not guaranteed in cloud. Applying elasticity mechanisms should
preserve functional properties and improve non functional properties re-
lated to QoS, performance, and resource consumption. In this paper, we
propose an approach for verifying and deploying the elastic SCA-based
application. Our approach is based on the Event-B formal method. To
this aim, we formally model the SCA artifacts using Event-B and we de-
fine the Event-B events that model the elasticity mechanisms (duplica-
tion/consolidation) for SCA-based applications. In addition, we formally
verify, using the Proof Obligations and the ProB [1] animator, that our
approach preserves the semantics of the SCA compositions. Once the
elastic SCA-based applications are validated, they can be deployed in a
cloud environment using an elastic SCA deployment framework.

Keywords: Service Component Architecture, elasticity, Event-B, automatic
verification, Cloud.

1 Introduction

The rapid development of processing and storage technologies and the success
of the Internet opened the gate to emerge a new trend of IT services paradigm,
called Cloud Computing. This paradigm enables ubiquitous on-demand network
access to a shared pool of configurable computing resources [2]. Cloud Computing
delivers services at different levels (i.e. infrastructure, platform, software, etc.)
using resources such as networks, servers, applications, CPU and storage, etc.
Cloud environments are increasingly used for the deployment and execution
of complex applications and particularly for Service-Component Architecture
(SCA) based applications. SCA is a set of specifications for the development of
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applications based on service-oriented architecture (SOA). The main idea behind
this approach is to define how to create components and what mechanism to use
for describing the communication of these components.

In this paper, we are interested in another very important characteristic of
Cloud Computing called Elasticity. Indeed, Cloud Computing is expected to
provide a rapid elasticity at different service levels in order to allow a Cloud
service to rapidly adapt the amount of its allocated resources and meet the
demands variation while ensuring the required QoS [3]. Our goal is to build
elastic SCA-based applications that are able to adapt to the workload changes,
that is, scale-up by adding new components or scale-down by removing some of
others ones. The problem consists in ensuring that the execution of the elasticity
mechanisms on the deployed SCA-based application can preserve their functional
and non-functional properties. By preserving functional properties, we mean
given a client request the execution of an application and the execution of its
related elastic application, provided with elasticity mechanisms, both involve
the same component services executed in the same order. Thus any application
and its related elastic application should have the same operational behavior.
Nevertheless, the elastic application should provide better performance or QoS.
As an example, when the number of invocations increases, the response time of
a non-elastic application increases quicker than the response time of its related
elastic application face to the same number of invocations.

To address the above-mentioned issues, we propose in this paper a novel
approach for the formal modeling, verification and provisioning of elastic SCA-
based applications. First, we identify the requirements for the modeling of SCA-
based application and elastic SCA-based applications. Second, we define a for-
mal framework for modeling, SCA applications and their elasticity mechanisms
using Event-B. Third, we provide tools to check how the modeled SCA-based
applications satisfy the identified requirements. Finally, we propose mechanisms
for the deployment and provisioning of SCA-based application in the Cloud.
Our approach will permit to significantly reduce development and maintenance
cost, and also increase credibility of complex SCA-based applications deployed
in Cloud.

The rest of this paper is organized as follows: Section 2 presents a summary
of the related work, the basic knowledges of Event-B and a motivating example.
In Section 3, we present an Event-B formal model of the elastic SCA-based
applications. We propose, in Section 4 a transformation algorithm for automatic
modeling of the SCA-based applications elasticity and the evaluation of the
proposed approach. Section 5 concludes this paper and presents some future
works.

2 Background and related work

In this section, we present a summary of related work and the main concepts
of the SCA-based applications. Then, we introduce the basic knowledges of the
Event-B method that are relevant for the comprehension of the paper.
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2.1 Related work

One of the most relevant issues raised by the Cloud environment is the elas-
ticity at different levels. Elasticity is the ability to determine the amount of
resources to be allocated as efficiently as possible according to users requests.
Many approaches based on predictive or reactive strategies have been proposed
to address this issue [4, 5]. Reactive strategies [6–8] are based on Rule-Condition-
Action mechanisms. While predictive strategies [9, 10] are based on predictive-
performance models and load forecasts.

In [11], the authors introduce the Vienna Platform for Elastic Processes
(ViePEP), a platform for realizing elastic processes in cloud environment. ViePEP
allows the monitoring of the process execution and the reasoning about optimiz-
ing resources utilization using the current and future system landscape. To do
this, the platform can carry out a set of elasticity actions. In [12, 13], the authors
extend ViePEP with two works. The first extension consists of a prediction and
reasoning algorithm, based on knowledge about the current and future process
landscape, for elastic process execution. While the second consists of a schedul-
ing and resources-allocation algorithms, based on user defined non-functional
requirements, in order to optimize resources utilization. Though the authors dis-
cuss the elasticity at the process level as we did in our approach, the ViePEP
approach seems to be difficult to use. In fact, since the ViePEP Reasoner en-
sures the elasticity of all the deployed processes, it may be not elastic. In [14],
the authors present ElaaS, a service for managing elasticity in the Cloud. ElaaS
is implemented as a SaaS application that can be used in any cloud environ-
ment and on any cloud-enabled application. It is composed of a set of pluggable
components for managing applications, monitoring and business logic. Elasticity
is insured based on the deployment graph of the considered application and its
KPI. While the idea of pushing elasticity management to the applications is in
line with our approach, the ElaaS is difficult to use since it assumes efforts from
the application designer who will be in charge of delivering necessary informa-
tion for the business logic manager for elasticity enforcement. In [15], the authors
present a framework for modeling and reasoning about non-functional properties
that should reflect elasticity of deployed business services. As defined the elastic
properties and mechanisms can tackle any application, since the characteristics
of business processes (structure or behavior) are not considered in the proposed
approach. The elasticity mechanisms serve all the deployed processes which can
lead to the overload of the elasticity mechanisms. In [16], the authors present an
approach that consists in producing a model for an elastic Service-based Busi-
ness Process (SBP) which is the result of the composition of the SBP model
with models of mechanisms for elasticity. Unlike our approach, the proposed ap-
proach requires an effort from the designer. In addition, the proposed approach
changes the nature of the considered SBP. In [17], the authors consider scaling at
both the service and application levels in order to ensure elasticity. They discuss
the elasticity at the service level as we did in our approach. Nevertheless, the
correctness of the proposed mechanisms is not proved since the approach is not
based on a formal model.
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The formal specification is necessary to properly research, analyze and ma-
nipulate Web services. Several formalisms have been proposed, such as Process
Algebra [18], Event Calculus [19], Petri Nets [20], or Event-B [21]. In [22], au-
thors proposed a work consisting in translating a formal signature model and a
behavior model for SCA to Promela, and Promela specifications are thereafter
verified with the model checker SPIN. In [23], a formal language (SRML-P) is
presented to specify the interaction protocol between components. SRML-P pro-
vides a mathematical framework, in which some service-modeling primitives are
defined and application models can be reasoned about. In [24], authors proposed
an MDE approach to obtain SCA models and to verify the properties of these
models. They applied two transformations: the first one to obtain SCA models
using UML 2.0 meta-model and the second transformation to ensure the ver-
ification of these properties of models using Event-B meta-model. Thus, they
defined transformation rules in the ATL language to ensure the consistency of
the model. In [25], authors proposes a framework for modeling services based
applications. They proposes an executable language based on SCA standard and
the ASM formal method for modeling service behavior and interactions in an
abstract way. However, all these works are not suitable for Cloud environments
since they do not support the elasticity of an SCA composition.

The approaches for elasticity, mainly those we cite above, did not take into
account SCA-based applications. The work we present in this paper is new in
the sense that it (1) transforms a non-elastic SCA composition into an elastic
one (2) tackles the problem of elasticity of SCA-based application at the SaaS
level, (3) is based on a formal model and (4) proposes a formal verification of
the elasticity mechanisms.

2.2 Service Component Architecture (SCA)

Service Component Architecture (SCA) [26] defines a general approach that
describes how to create components and which mechanism to use for describing
how those components communicate together. SCA defines a generalized notion
of a component. It also specifies how those components can be combined into
larger logical structures called composites. Indeed, the implementation defines
the component’s functions, e.g. Java class or BPEL process, while the SCDL
configuration specifies how SCA components interact with each others, using a
common set of abstractions including services, references and properties [27].

Each component exposes its business logic as one or more services and it uses
references to invoke services from other components. Besides, a component can
define some properties which contain values that can be read by that component
when it’s instantiated. A wire is an abstract representation of the relationship
between a reference and some services that meet its needs. A set of compo-
nents communicating between each other by means of services are called SCA
composite. Though, composites can call external composite services through pro-
moted references and they can expose their own services to external composites
through promoted services. Services of components promoted by the composite
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can be used as services from outside requestors, while references denote that the
composite is served by outside composites services.

Each component has a limited capacity in terms of services it can offer.
However, the demands can increase/decrease at any moment leading to over-
provisioning or under-provisioning problem. To avoid such a problem, an elas-
ticity mechanism should be used in order to adapt the offered capacity with
respect to the current demands. Basically, we propose to duplicate (resp. consol-
idate) each overloaded (resp. under-overloaded) component when its demands
become greater (resp. lower) than the capacity offered by the component itself
and their created copies. Recall that the consolidation consists in removing the
unnecessary copies of the under-overloaded components.

To sum up, the development of a SCA based-application should respect the
following requirements:

Req1. A composite is made of a set of components. Each component belongs to a
single composite and each composite must contain at least one component.

Req2. A composite is made of a set of services, references and properties. Each
service (resp. reference, property) belongs to at the most one composite. A
composite must have at least one service.

Req3. A component is made of a set of services, references and properties. Each
service (resp. reference, property) belongs to at the most one component. A
component must have at least one service/reference.

Req4. A service (resp. reference, property) cannot belong to a component and a
composite at the same time.

Req5. A wire permits to link services and references of components of the same
composite.

Req6. The service and the reference linked by a wire should belong to different
components.

Req7. Each service (resp. reference) that does not involve in a wire is promoted as
a service (resp. reference) of the composite.

Req8. Each property of a component is promoted as a property of the composite.
Contrary to a service or a reference, each component property is promoted
to a distinct composite property.

The elasticity mechanism must fulfill the following additional requirements:

Req9. A component may be a copy of a single component. A component may have
several copies.

Req10. If a component A is a copy of another component B then B cannot be a
copy of another component.

Req11. A copy and the original component should have similar functionalities: the
same number of services (resp. references, properties).

Req12. A copy cannot be used in a composite if the original component is not present
in this composite.

Req13. When a copy is used in a composite, its services (resp. references) are linked
to the same elements (services or references) as its original components.
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Req14. When a copy is used in composite, its property is promoted to a distinct
composite property.

Req15. At each moment if the request on a component is greater than the offered ca-
pacity, it should be possible to honor the request in the future by duplicating
the component.

Req16. At each moment if the request on a component is lower than the offered
capacity, it should be possible to remove in the future the unnecessary copies
of the component.

Figure 1 depicts an example of an online computer shopping application
based on SCA composition. This example will be carried on along this paper.

Fig. 1: Online Computer Shopping composite example

The online computer shopping composite is composed of four components:

– Requests component: receives requests to purchase a computer through
its service ”RequestsService” (S1). This service is promoted by the compos-
ite (compositeS1). The Requests component calls the Computer assembly
component service and the Invoice component service via its references, e.g.
”ComputerAssemblyReference”(R11) and ”InvoiceReference”(R12). The prop-
erty ”Country” (Country) of this component indicates the country where the
application is deployed.

– Computer assembly component: performs the assembly of computer
components according to the requester desires. This functionality is pre-
sented by its ”ComputerAssemblyService” (S2) service. The ”AssemblyDe-
liveryReference” (R2) refers to the service of the Delivery component.

– Invoice component: creates the invoice related to the purchased com-
puter. This component is accessible via its ”InvoiceService” (S3) service.
The ”InvoiceDeliveryReference” (R3) refers to the service of the Delivery
component.
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– Delivery component: delivers the computer with its invoice to the cus-
tomer. ”DeliveryService” (S4) is the interface of the component. If the de-
livery is international, the composition of our application may need exter-
nal service of international delivery. This is presented with the promotion
relationship between the ”InternationalDeliveryReference” (R4) of the cur-
rent component and the ”CompositeInternationalDeliveryReference” (com-
positeR4) of the composite.

In the next section, we present an Event-B model of an SCA-based application
that respects all the above requirements. Let us remark that the two last require-
ments are dynamic ones since they involve states taken at different moments:
the present and the future. Such requirements cannot be easily expressed as
invariants. This is why we suggest to model them as CTL formulas and verify
them using the approach introduced in [28].

2.3 Event-B

The Event-B [21] is a stepwise formal development method based on the theory
of sets. Compared to other formal methods (Petri Net [20], Event-calculus[29],
process algebra [18], etc.), the strong point of Event-B is that it offers a refine-
ment process that permits to master the complexity of a system. This is the
main reason for which we adopted Event-B as a formal method. Indeed, the
designers start by abstractly specifying the requirements of the whole system by
focusing more on its global goal/structure then details are gradually introduced
by refinement. An Event-B specification is made of two elements, named context
and machine, whose structures and links are depicted in Figure 2. A context
describes the static part of an Event-B specification; it consists of constants C
and sets (user-defined types) S together with axioms A that specify their proper-
ties. The dynamic part of an Event-B specification is included in a machine that
defines variables V and a set of events E. The possible values that the variables
hold are restricted using an invariant, denoted Inv, written using a first-order
predicate on the state variables.

Each event has the following form: ANY X WHEN G THEN Act END.
It can be executed if it is enabled, i.e. all the conditions G, named guards, prior
to its execution hold. Among all enabled events, only one is executed. In that
case, substitutions Act, called actions, are applied over variables. The execution
of each event should maintain the invariant. To this aim, proof obligations are
generated. For each event, we have to establish that:

∀S,C,X. (A ∧G ∧ Inv ⇒ [Act]Inv)

where [Act]Inv gives the weakest constraint on the before state such that the
execution of Act leads to an after state satisfying Inv.

Refinement is a process of enriching or modifying a model in order to augment
the functionality being modeled, or/and explain how some purposes are achieved.
Both Event-B elements context and machine can be refined. A context can be
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Fig. 2: Machine and context relationships

extended by defining new sets Sr and/or constants Cr together with new axioms
Ar. A machine is refined by adding new variables and/or replacing existing
variables by new ones Vr that are typed with an additional invariant Invr. New
events can also be introduced to implicitly refine a skip event. In this paper, the
refined events have the same form: ANY Xr WHEN Gr THEN Actr END.
To prove that a refinement is correct, we have to establish the following two
proof obligations (each element Yr refines its corresponding one Y ):

– guard refinement: the guard of the refined event should be stronger than the
guard of the abstract one:

∀(S,C, Sr, Cr, V, Vr, X,Xr).
(A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

– Simulation: the effect of the refined action should be stronger than the effect
of the abstract one:

∀(S,C, Sr, Cr, V, Vr, X,Xr).
(A ∧Ar ∧ Inv ∧ Invr ∧ [Actr]Invr ⇒ [Act]Inv)

To discharge the different proof obligations, the Rodin1 platform offers an
automatic prover but also the possibility to plug additional external provers like
the SMT and Atelier B provers that we use in this work. Both provers offer an
automatic and an interactive options to discharge the proof obligations.

3 Modeling elastic SCA-based application with Event-B

In this section, we present our approach for formalizing the elastic SCA-based
application. The formalization approach consists of two steps. We start by mod-
eling the SCA-based application without elasticity mechanisms. Then, we extend
this model by introducing the elasticity mechanism of a SCA-based application.

1 http://www.event-b.org/install.html



A verification and deployment approach for elastic SCA-based applications 9

3.1 Modeling SCA-based applications

In a first step, we start by modeling the structure of a composite and a component
together with the event that permits to create a new composite. For this aim,
we define a context ”SCAContext” that specifies some sets to represent all the
possible Composites (resp. Properties, References, Services, Components).
As we do not consider the evolution of the component’s structure, the services
(resp. references, properties) of a components are modeled as a constant partial
function that maps a given service (resp. reference, property) into its potential
component (Axioms axm1-axm3). The function is partial since a service may
not belong to any component. Contrary to the function modeling the properties
(Axiom axm3), the functions corresponding to services/references are surjective
since each components must have at least one service/reference (Axioms axm1
and axm2). In other words, the context ”SCAContext” models the requirement
Req3 (See Figure 3).

CONTEXT SCAContext
SETS
Composites
Properties
References
Services
Components
CONSTANTS
ComponentsReferences
ComponentsProperties
ComponentsServices
. . .
AXIOMS
axm1 : ComponentsServices ∈ Services 7� Components
axm2 : ComponentsReferences ∈ References 7� Components
axm3 : ComponentsProperties ∈ Properties 7→ Components
END

Fig. 3: An Event-B model for the SCA-based applications : the context

The above context is seen (clause SEES) by the machine ”SCAMachine” that
defines some variables to model the characteristics of each existing composite,
namely its components, services, references and properties (See Figure 4). The set
of the existing composites is modeled by the variable composites that is subset
of the given set Composites (invariant inv1). Similarly to a component, the
invariants inv2 and inv3 model the requirement regarding the services/references
of a composite. The invariant inv4 models the requirement Req4 regarding
services, similar invariants have been defined for references/properties. Finally,
the invariant inv5 models the components that constitute a composite (Req1).

The wire connecting the services and the references is represented by a rela-
tion defined between the services/references of the components that involve in
a composite. Invariants inv6, inv7 and inv8, of Figure 5 cover the requirements
(Req5) and (Req6).
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MACHINE SCAMachine
SEES SCAContext
VARIABLES
composites
CompositesReferences
CompositesServices
. . .
INVARIANTS
inv1 : composites ⊆ Composites
inv2 : CompositesServices ∈ Services 7� composites
inv3 : CompositesReferences ∈ References 7� composites
inv4 : dom(CompositesServices) ∩ dom(ComponentsServices) = ∅
inv5 : contained ∈ Components 7� composites

. . .
END

Fig. 4: An Event-B model for the SCA-based applications : the machine (1)

INVARIANTS
inv6 : wires ∈ ComponentsReferences−1[dom(contained)]↔

ComponentsServices−1[dom(contained)]
inv7 : ∀x, y · (x 7→ y ∈ wires⇒

contained(ComponentsReferences(x)) = contained(ComponentsServices(y))
inv8 : ∀x, y · (x 7→ y ∈ wires⇒ ComponentsReferences(x) 6= ComponentsServices(y))

Fig. 5: An Event-B model for the SCA-based applications : the machine (2)

Figure 6 depicts the Event-B invariants related to the promotion of ser-
vices/references/properties of a component. The invariants inv9 and inv10 (resp.
inv11 and inv12) model the promotion of services (resp. references) as a total
function from the set of services (resp. references) that do not involve in wires
into the services (resp. references) of the composite. They cover the requirement
Req7. Requirement (Req8) related to the promotion of properties is modeled
by a bijective function (inv13).

INVARIANTS
inv9: promotedServs ∈

ComponentsServices−1[contained−1[composites]]\ran(wires)→
CompositesServices−1[composites]

inv10: ∀x, y·(x 7→ y ∈ promotedServs⇒
contained(ComponentsServices(x)) = CompositesServices(y))

inv11: promotedRefs ∈
ComponentsReferences−1[contained−1[composites]]\dom(wires)→

CompositesReferences−1[composites]
inv12: ∀x, y·(x 7→ y ∈ promotedRefs⇒

contained(ComponentsReferences(x)) = CompositesReferences(y))
inv13: promotedProps ∈

ComponentsProperties−1[contained−1[composites]]��
CompositesProperties−1[composites]

inv14: ∀x, y·(x 7→ y ∈ promotedProps⇒
contained(ComponentsProperties(x)) = CompositesReferences(y))

Fig. 6: An Event-B model for the SCA-based applications : the machine (3)
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To create a new composite, an event AddComposite is defined in the machine
”SCAMachine”. More details about the specification of this event can be found
at [30]. According to the Event-B model presented in this section, the SCA-based
application of Figure 1 is modeled by:

Composites = {composite1, . . .}
Components = {RC,CAC, IC,DC, cRC, . . .}
Services = {compositeS1, S1, S2, S3, S4, cS1, . . .}
References = {R11, R12, R2, R3, R4, compositeR4, cR11, cR12, . . .}
Properties = {compositeCountry, Country, cCountry, ccompositeCountry, . . .}
ComponentsProperties = {Country 7→ RC, cCountry 7→ cRC, . . .}
ComponentsServices = {S1 7→ RC,S2 7→ CAC,S3 7→ IC, S4 7→ DC, cS1 7→ cRC, . . .}
ComponentsReferences = {R11 7→ RC,R12 7→ RC,R2 7→ CAC,R3 7→ IC,

R4 7→ DC, cR11 7→ cRC, cR12 7→ cRC, . . .}

CompositesReferences = {compositeR4 7→ composite1, . . .}
CompositesServices = {compositeS1 7→ composite1, . . .}
contained = {RC 7→ composite1, CAC 7→ composite1, IC 7→ composite1,

DC 7→ composite1, . . .}
wires = {R11 7→ S2, R12 7→ S3, R3 7→ S4, R2 7→ S4, . . .}
CompositesProperties = {compositeCountry 7→ composite1, . . .}
promotedProps = {Country 7→ compositeCountry, . . .}
promotedRefs = {R4 7→ compositeR4, . . .}
promotedServs = {S1 7→ compositeS1, . . .}

Let us remark that the set Components (resp. Services,References, Properties)
includes the information about the original elements but also their copies. How-
ever at the current abstraction level, these copies are considered like other com-
ponents.

3.2 Modeling the elasticity in SCA-based applications

Recall that ensuring SCA-based applications elasticity consists in providing
Cloud environments with mechanisms that allow a deployed SCA-based applica-
tion to scale up or down whenever needed. To scale up a SCA-based application,
the elasticity mechanisms must duplicate the application in order to create as
many instances as needed to handle the dynamically received requests. To scale
down a SCA-based application, these mechanisms should consolidate the appli-
cation in order to remove useless instances, thereby avoiding under-utilization
of resources. In this section, we extend the formalization, developed in the pre-
vious section, with elasticity mechanisms in order to formally model the elastic
SCA-based applications. The elasticity mechanisms are two operations namely
duplicate and consolidate. The first operation is used to scale-up the SCA-based
application, while the second one is used to scale it down.

In Event-B, the elasticity mechanism is introduced using the refinement.
Thus, we create a second abstraction level that refines the first one. Basically,
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we extend the first context by defining a new one SCAcontextCopy (See Figure
7) and a new machine SCAMachineRef (See Figure 8) that refines the machine
SCAMachine. The context SCAcontextCopy defines a set of constants together
with their properties to model the copy relationship between some components:

1. Requirement (Req9) (resp. Req10, Req11) is covered with the axiom axm1
(resp. axm2 and axm3)

2. Axioms axm4 and axm5 matches the services of a components and those
of its copy. Similar axioms have been defined for the references and the
properties matching.

3. Axiom axm10 defines the capacity of each non-copy component. A copy
component has implicitly a same capacity as the original one. This is why
we choose to do not specify it.

CONTEXT SCAcontextCopy
EXTENDS SCAContext
CONSTANTS
copy copyServices copyReferences copyProperties
AXIOMS
axm1: copy ∈ Components 7→ Components
axm2: dom(copy) ∩ ran(copy) = ∅
axm3: ∀x, y(x 7→ y ∈ copy ⇒

card(ComponentsProperties−1[{x}]) = card(ComponentsProperties−1[{y}])∧
card(ComponentsServices−1[{x}]) = card(ComponentsServices−1[{y}])∧
card(ComponentsReferences−1[{x}]) = card(ComponentsReferences−1[{y}]))

axm4: copyServices ∈ ComponentsServices−1[dom(copy)]→ ComponentsServices−1[ran(copy)]
axm5: ∀x, y(x 7→ y ∈ copyServices⇒ ComponentsServices(x) 7→ ComponentsServices(y) ∈ copy)

. . .
axm10: ComponentsCapacity ∈ Components\dom(copy)→N1

Fig. 7: An Event-B model for the SCA-based applications elasticity: the context

According to this previous formal specification, our example gives:

copy = {cRC 7→ RC, . . .}
copyServices = {cS1 7→ S1, . . .}
copyReferences = {cR11 7→ R11, cR12 7→ R12, . . .}
copyProperties = {cCountry 7→ Country, . . .}

The context SCAcontextCopy being defined, we model the elasticity mecha-
nism, thanks to the refinement concept of Event-B, by introducing some addi-
tional variables and two new events Duplicate and Consolidate. The following
variables have been added together with the invariants described in Figure 8:

– containedCopy : this partial function states the possible composite to which
a component copy belongs to (inv1). Invariant (inv2) permits to distinguish
the functions containedCopy and contained by specifying that containedCopy
exclusively concerns the component copies whereas contained is related to
the original one. Invariant (inv3) models the requirement (Req12).
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– wiresCopy : this relation describes the possible links between the services/ref-
erences of a component copy and the services/references of the other compo-
nents (inv4). Invariants (inv6) and (inv7) covers the requirement (Req13)
regarding the services of a component copy; a similar invariant is defined for
the references.

– CompositesPropertiesCopy : this partial function states the possible compos-
ite to which a property copy belongs to.

– promotedPropsCopy : this total function states the promotion links between
the properties copies of the components and the properties copies of the
composites (Invariant (inv8)). It covers requirement (Req14).

– promotedRefsCopy (resp. promotedServsCopy): this relation states the pro-
motion links between the services (resp. references) copies of the components
and the services (resp. references) copies of the composites.

– ComponentsNeed : this total function specifies the application needs on each
component (Invariant (inv9)).

– ComponentsOffered : this total function specifies the capacity offered by a
component and the copies belonging to the composite. (Invariants (inv10)
and (inv11))

MACHINE SCAMachineRef
REFINES SCAMachineRef
SEES SCAcontextCopy
INVARIANTS

inv1 : containedCopy ∈ dom(copy) 7→ composites
inv2 : dom(contained) ∩ dom(copy) = ∅
inv3 : ∀x, y·(x 7→ y ∈ copy ∧ x ∈ dom(containedCopy)⇒

y ∈ dom(contained) ∧ containedCopy(x) = contained(y))

inv4 : wiresCopy ∈ ComponentsReferences−1[dom(containedCopy)] ∪ dom(wires)↔
ComponentsServices−1[dom(containedCopy)] ∪ ran(wires)

inv5: promotedServsCopy ∈ copyServices−1[dom(promotedServs)]∩
ComponentsServices−1[dom(containedCopy)]→ ran(promotedServs)

inv6 ∀x, y(x 7→ y ∈ copy ∧ x ∈ dom(containedCopy)⇒
(∀z(z ∈ ComponentsReferences−1[{x}]⇒

wiresCopy[{z}] = (wires ∪ wiresCopy)[{copyReferences(z)}])))
inv7: ∀x, y(x 7→ y ∈ copy ∧ x ∈ dom(containedCopy)⇒

(∀z(z ∈ ComponentsServices−1[{x}] ∧ copyServices(z) ∈ dom(promotedServs)⇒
z ∈ dom(promotedServsCopy)∧

promotedServsCopy(z) = promotedServs(copyServices(z))

inv8: promotedPropsCopy ∈ ComponentsProperties−1[containedCopy−1[composites]]��
CompositesPropertiesCopy−1[composites]

inv9: ComponentsNeed ∈ dom(contained)→N1
inv10: ComponentsOffered ∈ dom(contained)→N1
inv11: ∀x.x ∈ dom(contained)⇒ ComponentsOffered(x) = ComponentsCapacity(x)×

(card(dom(containedCopy)copy[{x}]) + 1)
....

Fig. 8: The refined machine

Duplication Excessive invocations of a component can exceed its capacity,
which directly affect its Quality of Service (Qos). As a solution to overcome



14 Mohamed Graiet et al.

the overload problem, we suggest to add a copy of this component into the
related composite. This is modeled by the event Duplicate of Figure 9 where
a component comp is duplicated by adding a copy copycomp (Guards grd1,
grd2 and grd3). This event occurs when the needed capacity of the concerned
component exceeds the capacity provided by the component itself and all the
copies already present in the composite (Guard grd4). In that case, copycomp
is added to the composite of the comp component (act1). The services (resp.
references) of copycomp are linked to the same elements as those of comp (actions
act2, act3 and act4). Also, new properties are added to the related composite
and links are created to promote the properties of copycomp (actions act5 and
act6). Finally, the capacity offered by the component is updated (action act7).

Duplicate =̂
ANY comp copycomp pros promProp
WHERE

grd1: comp ∈ Components ∧ comp ∈ dom(contained)
grd2: copycomp ∈ Components ∧ copycomp /∈ dom(contained ∪ containedCopy)
grd3: copycomp 7→ comp ∈ copy
grd4: ComponentsNeed(comp) > ComponentsOffered(comp)
grd5: pros ⊆ Properties \ (dom(CompositesProperties ∪ CompositesPropertiesCopy)∪

dom(ComponentsProperties)) ∧ card(pros) = card(ComponentsProperties[{copycomp}])
grd6:promProp ∈ ComponentsProperties−1[{copycomp}]�� pros

THEN
act1: containedCopy(copycomp) := contained(comp)
act2: wiresCopy := wiresCopy∪
( ⋃

ref ·(ref ∈ ComponentsReferences−1[{copycomp}]∧
copyReferences(ref) ∈ dom(wires ∪ wiresCopy))
|{ref} × (wires ∪ wiresCopy)[{copyReferences(ref)}]

)
∪
( ⋃

ser·(ser ∈ ComponentsServices−1[{copycomp}]∧
copyServices(ser) ∈ ran(wires ∪ wiresCopy))

|(wires ∪ wiresCopy)−1[{copyServices(ser)}]× {ser}
)

act3: promotedRefsCopy := promotedRefsCopy∪
(

s
⋃

ref ·(ref ∈ ComponentsReferences−1[{copycomp}]∧
copyReferences(ref) ∈ dom(promotedRefs))
|{ref 7→ (promotedRefs)(copyReferences(ref))}

)
act4: promotedServsCopy := promotedServsCopy∪

( ⋃
ser·(ser ∈ ComponentsServices−1[{copycomp}]∧

copyServices(ser) ∈ dom(promotedServs))
|{ser 7→ promotedServs(copyServices(ser))}

)
act5: CompositesPropertiesCopy := CompositesPropertiesCopy ∪ (pros× {contained(comp)})
act6: promotedPropsCopy := promotedPropsCopy ∪ promProp
act7: ComponentsOffered(comp) := ComponentsOffered(comp) + ComponentsCapacity(comp)

END

Fig. 9: Modeling the duplication operation

Let us consider that the capacity of the component RC is equal to 10 and
the need of the application is 15. So to meet this demand, the event Duplicate is
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executed resulting in adding the copy cRC to the composite. Figure 10 depicts
the initial composite after the duplication of the component RC. From the Event-
B modeling point of view, the variable added in the refined machine are as
follows:

containedCopy := {copycomp 7→ composite1}
wiresCopy := {CR11 7→ S2, CR12 7→ S3, CR3 7→ S4, CR2 7→ S4, . . .}
CompositesPropertiesCopy = {CcompositeCountry 7→ composite1, . . .}
promotedPropsCopy = {CCountry 7→ compositeCountry, . . .}
promotedServsCopy = {CS1 7→ compositeS1, . . .}

Fig. 10: Online Computer Shopping composite example after duplicating RC

Consolidation Figure 11 depicts the Event-B specification of the event Consolidate.
This event is enabled when the needed capacity on a component can still be hon-
ored even if a copy is removed (guard grd3). Thus, this event consists in removing
a copy copycomp of a component from a composite. Moreover in order to pre-
serve the different invariants; all the variables are updated such as each pair
involving copycomp is deleted from these variables (actions act1-act6). Finally,
the capacity offered by the component is updated (action act7). The consoli-
dation operation is defined as dual to the duplication operation that removes
a copy of a component whenever this copy is under-provisioned. After a finite
number of consolidation we restore the original SCA composition. Of course to
make the needed capacity on a component evolve (increase/decrease), we have
defined the event SetNeed that set the variable ComponentsNeed (See Figure
12).

The global architecture of the Event-B development is depicted in Figure 13:
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Consolidate =̂
ANY copycomp
WHERE

grd1: copycomp ∈ Components ∧ copycomp ∈ dom(containedCopy)
grd2: copycomp ∈ dom(copy)
grd3: ComponentsNeed(copy(copycomp)) ≤ ComponentsOffered(copy(copycomp))-

ComponentsCapacity(copy(copycomp))
THEN

act1: CompositesPropertiesCopy :=

promotedPropsCopy[ComponentsProperties−1[{copycomp}]] C−CompositesPropertiesCopy

act2: promotedPropsCopy := ComponentsProperties−1[{copycomp}]C− promotedPropsCopy

act3: wiresCopy := ComponentsServices−1[{copycomp}]C− wiresCopyB−
ComponentsReferences−1[{copycomp}]

act4: containedCopy := {copycomp}C− containedCopy

act5: promotedRefsCopy := ComponentsReferences−1[{copycomp}]C− promotedRefsCopy

act6: promotedServsCopy := ComponentsServices−1[{copycomp}]C− promotedServsCopy
act7: ComponentsOffered(copy(copycomp)) :=

ComponentsOffered(copy(copycomp))- ComponentsCapacity(copy(copycomp))
END

Fig. 11: Modeling the consolidation operation

SetNeed =̂
ANY comp need
WHERE

grd1: comp ∈ dom(contained)
grd2: need ∈ N1

THEN
act1: ComponentsNeed(comp) := need

END

Fig. 12: Modeling the SetNeed event

Fig. 13: The Event-B architecture model

4 Implementation and evaluation

In the previous section, we detailed the Event-B model of a SCA-based ap-
plication and how we formally modeled the artifacts of the SCA specification
(composite, components, services, references, properties, wires, etc.). Also, we
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presented our modeling approach of the elasticity of the SCA-based applica-
tions. In this section, we describe the validation of the Event-B model, the tool
that implements the translation approach together with its evaluation.

4.1 Validation

To validate the Event-B model built in the previous section, we have operated
into two steps. In the first step, we have used the ProB [1] animator/model
checher that permits to play different scenarios and check the behavior of the
Event-B models with respect to the desired system by showing at each step
the values of each variable, which events are enabled and which are not. In a
next step, we used ProB in order to ensure that the invariant is not trivially
falsified. When ProB finds a counter-example for the invariant, it provides the
sequence of the operations that leads to an invalid state from the initial state. In
such cases, we reworked and fixed our Event-B specification by adding/modifying
some guards/actions. When ProB found no counter-example on the whole Event-
B models; this gave us some confidence about the correctness of the specification
before performing the proof activity. The proof obligations that are generated
to ensure, on the one hand, that each event preserve the invariants and, on the
other hand, to verify that refinement is correct. To this end, 140 proof obligations
have been generated: 70% of them are automatically discharged by the automatic
prover, the remainder proofs are not very difficult, the automatic prover fails to
discharge them because they require several steps. To carry out their proof, we
use the interactive prover by helping it find the right steps and rules to apply.
Moreover, we have expressed and verified the requirements Req15 and Req16
as CTL formulas. For instance, Req15 is modeled by:

AG (comp ∈ dom(contained)∧
ComponentsNeed(comp) > ComponentsOffered(comp)∧
card(copy−1[{comp}])× ComponentsCapacity(comp) ≥

(ComponentsOffered(comp)− ComponentsNeed(comp))
⇒

EF ComponentsNeed(comp) ≤ ComponentsOffered(comp))

The second condition ensures that there is enough copies to satisfy the de-
mand. To verify the above formula, we have applied the proof-based approach
introduced in [28]. To prove a CTL formula AG (ψ ⇒ EF ψ), the approach con-
sists in exhibiting a program that starting from a ψ-state terminates in a state
that satisfies φ. For the above formula, the program would be:

while (ComponentsNeed(comp) > ComponentsOffered(comp))
do Duplicate(comp)
invariant ψ
variant max(0, ComponentsNeed(comp)− ComponentsOffered(comp))
end

where ψ is equal to:
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comp ∈ dom(contained)∧
ComponentsNeed(comp) > ComponentsOffered(comp)∧
card(copy−1[{comp}])× ComponentsCapacity(comp) ≥

(ComponentsOffered(comp)− ComponentsNeed(comp))

To prove that this program establishes the formula, we have to verify:

1. the variant of the loop denotes a natural number:

max(0, ComponentsNeed(comp)− ComponentsOffered(comp)) ∈ NAT

2. to ensure the termination of the loop, the execution of the eventDuplicate(comp)
should make the variant decrease:

∀n.(n ∈ NAT∧
n = max(0, ComponentsNeed(comp)− ComponentsOffered(comp))

⇒
[Duplicate(comp)]

(max(0, ComponentsNeed(comp)− ComponentsOffered(comp)) < n)

3. the invariant ψ is preserved by each iteration of the loop :

ψ ⇒ [Duplicate(comp)]ψ

All the above formulas have been established as correct which validates the
requirement Req15.

4.2 Transformation algorithm for automatic verification of the
elastic SCA-based application

Here, we proceed at extending the SCA2B plug-in [31]. This tool automates the
transformation of the SCDL description, i.e. the ”.composite” file, of a SCA-
based application to a formal Event-B model. Thus, to automate the modeling
of the elasticity events, we extend the SCA2B plug-in by creating a new Machine
that refines the abstract machine and we add to the refined Machine two methods
where each one generates one of the elasticity events.

In this section, we present an approach for automatic formalizing the elastic
SCA-based application. Our approach consists in two steps:

– (i) transform an elastic SCA-based application to an Event-B model;
– (ii) check the correctness of the elastic SCA-based application;

We introduce an algorithm for automatic generating an event-B model of the
elastic SCA-based applications (see Algorithm 1).

The algorithm that we propose is generic in the sens that it takes as input
any SCA-based application (SCAFile). It returns an Event-B model composed
of three components type namely a context, a machine and the refined machine.
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Algorithm 1 SCATranslator Algorithm

Require: SCAFile
Ensure: Event-B project
1: ContextF ile← createContext(SCAFile)
2: MachineF ile← createMachine(SCAFile, ContextF ile)
3: RefinedMachineF ile← refineMachine(MachineF ile, SCAFile)

Our transformation algorithm is executed in three main steps: generate an
abstract model composed of a machine and a context (see lines 1-2), and (ii)
refine this abstract model by introducing the concept of the elasticity (see line
3). At the first step, we use the following two functions: createContext and
createMachine . createContext firstly reads the input file (e.i. the ”.composite”
file that holds the description of an example of an SCA-based application). Then,
it creates the SCA artifacts abstract sets and the related axioms. In other words,
each artifact of the SCA specification (e.g. components, services, references, etc.)
is represented as we have defined in the previous section.

The createMachine function, after reading the SCA descriptor file (SCA-
CompositeFile), creates the set of variables that are then taken as parameters
for the creation of the invariants. These lasts define the type of variables and
the relationship between the different artifacts of the SCA specification (e.g.
ComponentsServices, ComponentsReferences, promotedServs, wires, etc.).

The second step of our transformation algorithm allows to extends the cre-
ated model with elasticity. This is done by using a function refineMachine. This
algorithm deals with the creation of a new machine that includes the elasticity
mechanisms. Indeed, like the ”creatMachine” , it starts by reading the SCA de-
scriptor file (e.i. ”.composite” file) then it creates the set of variables on which
we apply gluing invariants in order to maintain the same state and semantic of
the first machine. Finally, we add procedures where each one focus on creating
one of the two proposed elasticity events (e.i. Duplication, Consolidation). These
last ones deal with the current input SCA descriptor file and create the adequate
actions depending on the composite example.

4.3 Deployment approach of the elastic SCA-based application

The goal of this section is to give an overview about the deployment of elastic
SCA-based application after a correctness verification process. In [32], authors
propose a deployment framework for non-elastic SCA-based applications. This
deployment framework can not be used for deploying elastic SCA-based appli-
cation that are validated using our verification approach.

In our approach, we propose an elastic deployment framework for deploying
elastic SCA-based application. Our deployment framework is an extension of
[32] to deal with the elasticity properties of SCA-based applications. To achieve
our goal, we extend the packaging framework by adding generic modules imple-
menting our elasticity mechanisms, i.e. Duplication/Consolidation. The figure
14 shows the extended framework
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Fig. 14: Extended Packaging Framework

– Router Module: Through this module, we can dedicate a router for each
service Micro-Container composing the SCA-based application. Hence, in-
vocation between services Micro-Containers is done via routers. Thus, the
router task is to manage the different copies of its attached service Micro-
Containers. To do so, we provided the router with a routing table which con-
tains the running copies. The routing table is dynamically updated whenever
an elasticity action is executed.

– Controller Module: In order to manage the duplication/consolidation mech-
anisms, we develop a new generic module, called ”Controller Module”. Thus,
this module generates the elasticity controller which is responsible of analyz-
ing work-flow data of the SCA-based application and performing elasticity
actions (duplication/consolidation). At this point, we explain how we provide
services Micro-Containers with elasticity modules that ensure the execution
of elasticity actions (Duplication/Consolidation) whenever a duplication or
consolidation condition is verified i.e., a component is overloaded or un-
derloaded. On one hand, if a component is overloaded and the duplication
condition verified, the controller deploys a new copy of the concerned compo-
nent. Consequently, the component provides its correspondent router with
its coordinates in order to inform him that he is active. Thus, the router
updates its routing table by adding this new entry (Figure 15-(A)). On the
other hand, when a component is underloaded and the consolidation con-
dition verified, the controller proceeds to execute the consolidation action.
Indeed, it communicates with the related router in order to update its rout-
ing table by removing the unnecessary entry. Then, the controller removes
the concerned copy of service (Figure 15-(B)).

As shown previously, our packaging framework generates a set of Micro-
Containers and an elasticity controller container. The generated chain execution
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Fig. 15: The Duplication and Consolidation Controller Actions

is equivalent to the execution of the original SCA-based application and it leads
to the same expected results. Thus, our deployment approach preserves the se-
mantic of the SCA-based application, since no modifications were made on the
functionnalities of the components. Hence, the elasticity operations executed by
the controller do not violate the semantics of the concerned SCA-based appli-
cation, because adding a new copy of a service consists in instantiating other
Micro-Container of the same packaged service and removing an unnecessary
copy means releasing its dedicated resources.

We use the response time as a metric for our elasticity mechanisms. Indeed,
we choose to define for each component of the SCA-based application two thresh-
old response time values namely tmax and tmin. The threshold tmax define a
lowest acceptable response time for the overall application. The second one de-
fine a maximal acceptable response time for SAC-based application. The reason
behind using these two thresholds is to ensure a certain QoS level and to opti-
mally manage the used resources. In our use case, if the response time is over the
maximum threshold, a duplication action is triggered (i.e. adding a new copy of
the concerned service). In case that the response time goes lower than the de-
fined minimum response time, a consolidation action is executed (i.e. removing
a service copy).

4.4 Evaluation

In this section, we evaluate the efficiency of our approach. To achieve this goal,
we compare the behavior of the SCA-based application before and after adding
our elasticity mechanisms. Regarding the calls arrival scenario, we launch several
simultaneous clients where each one sends sequentially a number of requests.

Experimental setting. The experimentation was performed on a computer
with Pentium 4, 2.8 GHz, 4 GB of RAM, Windows 8 professional edition.

In this section, we present an example of an online computer shopping ap-
plication based on SCA composition. This example will be carried on along this
paper. As depicted in figure 1, the online computer shopping composite is com-
posed of four components:
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As case study, we consider the online computer shopping application. The
architecture of the online computer shopping application is shown in figure 1. The
online computer shopping application is elastic and its correctness is validated
using our approach. It is deployed in a cloud environment using our deployment
framework. For this particular application, we set the value of tmin and tmax
to 800 and 8000 seconds respectively.

Fig. 16: Response Time of Non-elastic SCA-based Application and of Two In-
stantiated Copies

Experimental result. Our first deployment scenario is simply running the
non-elastic version of our deployed online computer shopping application. The
obtained experimental results show that the response time of the non-elastic
SCA-based application is increasing in analogy with the number of clients calls,
as shown on the figure 16.

The second curve on the same figure shows the result of our second exper-
iment scenario. In this last one, we instantiate from the start two copy of our
SCA-based application. In this case, we can see that the response time of the
SCA-based application has significantly decreased and almost been linear in the
interval [500,1000] of clients calls.

Also, we note that after 1000 calls, the curve started to increase exponentially,
while always maintaining a lower response time than of the non-elastic SCA-
based application. This can be understood and explained by the fact that the
number of copies (two copies in this scenario) is no longer sufficient to treat
the incoming calls in a linear manner. However, this result reassures as that our
elasticity mechanisms are working and giving better results.
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5 Conclusion

In this paper, we proposed an approach for verifying and deploying the elastic
SCA-based application. To perform an elastic SCA composition, we formally
modeled and verified the elasticity mechanisms, i.e. Duplication event and con-
solidation event, using the Event-B method. The proposed Event-B model allows
designers to check the correctness of the associated application. Our approach is
implemented as an Eclipse plug-in, called Elastic SCA2B and available in [30],
together with the SCA designer plug-in. Once the elastic SCA-based applications
are validated, they can be deployed in a cloud environment using an elastic SCA
deployment framework. Figure 17 depicts a screenshot on the application of
the plug-in on the case study. The tool creates a Event-B project containing
mainly the specification described in Section 3 where the initialization of the
first machine contains the structure of the case study with the different elements
(components, references, services, etc.) are defined as constants in the contexts.

Fig. 17: A SCA2EventB plug-in for the verification of SCA applications

As perspectives of this work, we plan on going further in the evaluation
phase for our deployed elasticity mechanisms. We believe that future and more
exhaustive experiments will allow us to explore in details the benefits of using
elasticity mechanisms for SCA-based application.

Another axis on which other future work may be conducted is the extension
of our modeling approach. Indeed, more details (refining the condition of the
execution of the elasticity mechanisms) can be added in the XSD File of the
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service-component architecture. These information can help refining the condi-
tion of the execution of the elasticity mechanisms and can give an idea about
the consumption of the resources and the execution time.
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