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Context of this presentation

This talk should :

Provide some basics in the domain of testing

Prepare the audience for following presentations

Provide some historical research results on testing

This talk is not :

My personal research resultsa

An exhaustive presentation

Advanced research, more a general view on the topic

aimplying that I am not a specialist of all of the presented topics!
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Why testing?

Famous bugs (non exhaustive panorama)

Ariane 5.01 (1996)

Patriot missile (1991)

First Pentium r Chip (1994)

Therac 25 (1985-1987)

... (long long list)

Urban legends also (F16 �ghter jet bug)

Wondering what the cost of software bugs? → $ 312 Billions per
year according to Cambridge University (2013).
In fact it depends on how late you �nd it.
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Why testing? (2)

Source : IBM Systems Sciences Institute

Consequences :

Product recall (Pentium r Chip, Toyota brake system bug
(2009))

Sometimes loss of human lifes (Therac 25, Patriot), loss of
expensive system (Ariane 5.01)

Space domain : send patches (NASA Curiosity Probe on Mars)
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What is testing?

Dynamic testing

Dynamic testing : the software (IUT)a is executed in order

To ensure a �correct� behaviour

To �nd bugs and defaults (Myers)

( 6= Static testing)

→ this presentation will focus mainly on dynamic testing techniques

aImplementation Under Test

but not so simple ...
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What is testing? (2)
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Di�culty(ies) of testing

Testing is a di�cult/expensive task

B. Gates :

�50% of the people at Microsoftr are testers, and the programmers
spend 50% of their time testing, thus Microsoft is more of a testing
than a development organization�a

ahttp://www.informationweek.com/story/IWK20020517S0011

=⇒ Important research domain
Ideally a test should be exhaustive, but not possible in
practice...

A simple function

int product(int i, int j);

264 possibilities. Considering one test per micro-second → 583000
years...
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Di�culty(ies) of testing (2)

Dijkstra :

�Testing shows the presence, not the absence of bugs �

=⇒ The objective of testing is to increase con�dence in the
system (IUT)

Main problems :

Find a �representative� sample of data (Test Data (TD)),
providing �enough� con�dence
Automatically generate this sample of data
Automatically provide a verdict (oracle problem)
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Testing point of view

Three dimensions of testing (Tretmans)

Level of detail : Unit, Module, Integration ...

Accessibility : White-box, black-box.

Characteristics : Conformance, Robustness, Performance, ...

→ this presentation will focus mainly on (unit) conformance testing

Two (complementary) main approaches of conformance testing :

Functional Testing : TD is generated using the speci�cation of
the System Under Test (SUT).
If speci�cation = Model → Model Based Testing

Structural Testing : TD is generated using the �structure� of
the SUT, generally the Source Code (Code Based Testing)
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Testing point of view

Three dimensions of testing (Tretmans)

Level of detail : Unit, Module, Integration ...

Accessibility : White-box, black-box.

Characteristics : Conformance, Robustness, Performance, ...

→ this presentation will focus mainly on (unit) conformance testing

Two (complementary) main approaches of conformance testing :

Functional Testing : TD is generated using the speci�cation of
the System Under Test (SUT).
If speci�cation = Model → Model Based Testing

Structural Testing : TD is generated using the �structure� of
the SUT, generally the Source Code (Code Based Testing)

→ in any case, TD are applied on the IUT and result is compared
to the speci�cation
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Some words about integration testing

Integration : combining already tested components.
B Even if each component is working �ne → integration may
reveal new bugs

Main (functional-decomposition based) strategies

Big-bang
→ integrate all components together, then test the whole

Bottom-up
→ from leaves to root of the functional decomposition tree

Top-down
→ from root to leaves of the the functional decomposition tree
→ need to use stubs

Sandwich
→ combining Bottom-up and Top-Down

Other approaches may be used (Call-graph based, Path based)
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Another way to classify/point of view

Functional Testing

Checking that the IUT meets the functional requirements. Divided
into four components :
Unit, Integration, System, Acceptance

Non-Functional Testing

Testing the application against non-functional requirements :
Performance, Load, Stress, Security, ...

The previous classi�cation will be used in this presentation
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And beyond this classi�cation, in a loose way

Mutation Testing

�Testing the Tester�

Apply tiny mutations on the SUT (usually on the source code)

Check that the test cases �kill the mutants� → mutation score

Di�culty : apply signi�cant mutations; equivalent mutants

(non-)Regression Testing

Verifying that an update of the SUT does not a�ect other parts

Check that older test cases still pass

Usually based on functional test cases

Di�culty : costly, �nd a subset of test cases suited for
regression testing

Remark : sometimes, a distinction is made between regression
and non-regression testing
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General Principle - Code coverage

Source Code Based Testing

TD is generated using the Source Code of the IUT

Ideally, the best TD would cover all possible executions. But
usually not possible in practice.

The more we cover code, the more con�dent we are, but

The more we cover code, the more TD we need to generate
and apply

Notion of coverage criterion

There exists an ordering between coverage criteria :

all statements < ... < all executions
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Control Flow Graph

CFG

Directed Graph representing the possible paths of the program

Built from the source code

A test may be seen as a path in the CFG

Direct link between code coverage and CFG coverage

Easy to obtain, e.g. with gcc :

gcc -fdump-tree-cfg ...

Not an equivalent representation :
→ risk of adding unfeasible paths
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Control Flow Graph : example

// product of two int

int prod(int i, int j) {

int k=0;

if (i == 2)

k = i<<1;

// error here; should be j<<1

else {

while (i>0) {

k = k+j;

i--;

}

}

return k;

}

k=0

k=i<<1

return k

k=k+j
i=i-1

i==2 i!=2

i<=0
i>0

A. Rollet - TAROT2016 - Paris (France) - July 2016 19/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Classical coverage criteria

Coverage criteria hierarchy (not exhaustive) :

All statements (TER1) = All nodes of the CFG

All decisions (TER2) = All branches of the CFG
...

All conditions (BCCC, Branch Condition Combination
Coverage) :
each atomic predicate (i.e. condition) is tested with a true
value and a false value

MCDC (modi�ed condition / decision coverage)
Check �the role� of each condition in the decision
...

All i-paths
(When feasible,) loop j times in each loop (0 ≤ j ≤ i).
All executions = All (feasible) paths → Usually in�nite

Other possible approaches : e.g. Data Flow based
A. Rollet - TAROT2016 - Paris (France) - July 2016 20/73
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Constraint Based Testing

Constraint-Based Testing (CBT)

CBT is the process of generating test cases against a testing
objective by using constraint solving techniques (Gotlieb)

Principle of Test Generation

Given a location in the program under test, automatically
generate a TD that reaches this location

Transform (part of) the program into a logical formula ϕ, such
that solving ϕ provides a TD

→ Does not solve the oracle problem.

→ Pointers may lead to di�cult problems
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Path Predicate

Path predicate

Given a path Π of a program, a formula ϕΠ is a path predicate of
Π if for a given set of values V , V |= ϕΠ =⇒ the execution of the
program on V follows Π

→ Find a solution (if any) to ϕΠ in order to activate Π

Need to remember the values of variables along the path
→ need to rename each variable in case of assignment
→ SSA1 form

Remark : Using gcc, SSA form can be easily obtained :

gcc -S -fdump-tree-ssa ...

1(Single Static Assignment)
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Path predicate example

1 read (y,z); -> y0, z0 as inputs

2 y = y + 2; -> y1 = y0 + 2

3 x = y + 4; -> x1 = y1 + 4

4 if (x > 2 * z) -> x1 > 2 * z0

or x1 <= 2 * z0 depending on path

5 x = y + 2; -> x2 = y1 + 2

For the path : 1→ 2→ 3→ (4, true)→ 5,
the corresponding predicate is :
y1 = y0 + 2 ∧ x1 = y1 + 4 ∧ x1 > 2 ∗ z0 ∧ x2 = y1 + 2.
Considering the inputs, we have y0 + 6 > 2 ∗ z0

Example of TD : y = 0, z = 0

A. Rollet - TAROT2016 - Paris (France) - July 2016 23/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Path predicate example

1 read (y,z); -> y0, z0 as inputs

2 y = y + 2; -> y1 = y0 + 2

3 x = y + 4; -> x1 = y1 + 4

4 if (x > 2 * z) -> x1 > 2 * z0

or x1 <= 2 * z0 depending on path

5 x = y + 2; -> x2 = y1 + 2

For the path : 1→ 2→ 3→ (4, true)→ 5,
the corresponding predicate is :
y1 = y0 + 2 ∧ x1 = y1 + 4 ∧ x1 > 2 ∗ z0 ∧ x2 = y1 + 2.
Considering the inputs, we have y0 + 6 > 2 ∗ z0

Example of TD : y = 0, z = 0

A. Rollet - TAROT2016 - Paris (France) - July 2016 23/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

if/then ; Φ-expressions, SSA form

if (a>0) -> if (a0 > 0)

i=4; -> i1=4;

else -> else

i=5; -> i2=5;

-> i3=phi(i1,i2);

if (a0 > 0)

i1=4 i2=5

i3=phi(i1,i2);

Φ-expr → decide the value of i3 according to the path used to
reach it

a0 > 0 =⇒ i1 = 4 ∧ i3 = i1

¬(a0 > 0) =⇒ i2 = 5 ∧ i3 = i2

Choice of path (join operator)

join(a0 > 0 ∧ i1 = 4 ∧ i3 = i1,¬(a0 > 0) ∧ i2 = 5 ∧ i3 = i2)
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While; Φ-expressions, SSA form

While : Φ-expr added just before the decision

Initial code

x = 1;

while ( x != 10 ) {

c = x;

x = x + 1;

}

print(x);

SSA code

x1 = 1;

x2 = phi(x1 , x3);

while (x2 != 10) {

c = x2;

x3 = x2 + 1;

}

print(x2);

→ but need to solve a constraint according to the number of loops
desired
→ each loop turn =⇒ new recursive constraints

A. Rollet - TAROT2016 - Paris (France) - July 2016 25/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Symbolic Depth First Search (DFS)

Path Based TD generation

1 Select (another) path Π of the CFG

2 Build the corresponding predicate ϕΠ

3 Solve ϕΠ (if possible); keep an input solution as a TD (if any)

4 Back to (1)

A strategy for the coverage criterion All paths :

The CFG is unwound providing an execution tree

The execution tree is explored using a DFS approach

/ Constraint solving, even on a single path, may be costly
(unwinding, unfeasible paths, ...).
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Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1
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Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

Random choice : e.g. x=3 (concrete)
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Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

Backtrack + resolution : x ≥ 2 ∧ x ≥ 5; possible solution : x = 8
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Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 \ x>=1

Backtrack + resolution : x ≥ 2 ∧ x ≥ 5 ∧ x < 1; unfeasible
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Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

Backtrack + resolution : x < 2; etc ...
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Some known tools of CBT (non exhaustive ...)

C - C++ :
Cute (University of Illinois, Berkeley)
Crest (Berkeley)
Dart (Bell Labs)
EXE (University of Stanford)
Inka (INRIA, France)
PathCrawler (CEA)

Java, C# :
CATG (NTT Labs, Berkeley)
CPBPV (I3S, Sophia Antipolis, France)
JCute (University of Illinois, Berkeley)
Java Path Finder (NASA)
Pex (Microsoft)
Pet (University of Madrid)

Binaries :
Osmose (CEA)
Sage (Microsoft)
Triton (Bordeaux University, Quarkslab)
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Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Equivalent classes analysis - Boundary values analysis

Divide the global (multi-dimensional) set of inputs into
equivalent classes
One value of the class tested =⇒ all values of the class tested
Sometimes add tests for the boundaries, often source of bugs
Decreases the number of TD in theory, sometimes not easy in
practice
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Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Combinatory testing - Pairwise testing
When more than 2 params, TD checks only pairs of values,
not all possible combinationsa

Example : 3 boolean variables :

V1 V2 V3
0 0 0
0 0 1 ← redundant, remove test case
0 1 0 ← redundant, remove test case
...

awww.pairwise.org
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Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Random testing

Quick feedback for coarse testing
In case of bug on few values, low probability to �nd it
May provide an important number of test cases → oracle?
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Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Model Based Testing

Powerful technique
Particularly adapted for testing reactive systems,
communication protocols
Not easy to have a (formal) model in practice
/ ← requires an important modelling e�ort (costly, but
generally pro�table)
Requires sometimes a mapping between abstract test cases
and concrete test cases
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What about Model Based Testing?

Model Based Testing

Model Based Testing (MBT) → testing with the ability to detect
faults which do not conform to a model called speci�cation.

Specification
conforms

specifies
Implementation

Under
Test
(IUT)

→ possible automation for test generation, test execution, test
evaluation (verdict)
→ Formal Methods
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What about Model Based Testing? (2)

Test cases are generated from the Model

As usual, TD are applied on the Implementation, and results
are compared with the speci�cation

Problems :

Need to �nd a �good� model of the speci�cation
What does specify mean?
What does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)

Need a conformance relation between the Speci�cation and
the Implementation
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What about Model Based Testing? (2)

Test cases are generated from the Model

As usual, TD are applied on the Implementation, and results
are compared with the speci�cation

Problems :

Need to �nd a �good� model of the speci�cation
What does specify mean?
What does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)

Need a conformance relation between the Speci�cation and
the Implementation

Two historical approaches of MBT of reactive systems :

Finite State Machines

Labeled Transition Systems
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General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?
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Implementation I

I conf S ?

VERIFICATION

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ? TEST

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

Test Generation

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

Test Generation

Test Purpose
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Modelling the system (1)

Find a �good� model

Necessity to �nd a formal model adapted to the description of
the speci�cation

Too abstract =⇒ not realistic, no interest

Too detailed =⇒ di�cult to model, too many cases to check

Usually, the choice of the model has an impact on choice of
the testing method (and conversely)?

Many possibilities of models, more or less formal
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Modelling the system (2)

Example of Model : Mealy machine (FSM with outputs)
Simple co�ee machine controller giving change, managing 2 coins
Inputs : { co�eeReq?, 25?, 50? } (labelled with �?�)
Outputs : { nop!, 25!, 50!, giveCo�ee! } (labelled with �!�)

0 25

50

25? / nop!

50? / nop!

co�eeReq? / nop!

25? / nop!
50? / 25!

co�eeReq? / nop!

co�eeReq? / giveCo�ee!

25? / 25!
50? / 50!

Possibility to add time (TFSM), data variables (EFSM), or both
(TEFSM)
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Modelling the system (3)

Example of Model : (IO)LTS (LTS with inputs and outputs)
A (very very) simpli�ed digicode.
inputs (resp. outputs) labelled with �?� (resp. �!�)

s0

s1

s2

s3

s4 s5 s6

s7

?digit

?reset

τ1

!beep
?digit

?reset

!open !alarm

τ2

τ3

τ4

Possibility to add time (TIOTS, TAIO), data variables (IOSTS)
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Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion
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Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!

25?/nop!
50?/25!

cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Deterministic since here δ and λ are functions
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Mealy Machine

0 25

50

25?/nop!

50?/nop!
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cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Usually complete : δ and λ de�ned for any input
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Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!
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cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Equivalent states : two states s and t are equivalent if
∀x ∈ I∗, λ(s, x) = λ(t, x)
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Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!

25?/nop!
50?/25!

cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Minimal machine : no pair of distinct equivalent states (possible
to build a minimal machine from a non minimal one)
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Conformance testing

Problem description

Speci�cation MS , Mealy machine, known

Implementation MI Mealy machine, unknown, only
inputs/outputs are observable

Aim : Use test sequences to check if MI is equivalent
a to

MS , i.e. MI conforms to MS

aHere �equivalent� means isomorphic

→ generally, MS and MI supposed to be minimal and strongly
connected (usually existence of a reset action)

→ MS and MI have the same number of states (usually not
necessary)

A. Rollet - TAROT2016 - Paris (France) - July 2016 40/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test synthesis

Fault model

Checking equivalence between MI and MS means checking if MI

has no :

Output fault : not the expected output for a given (state,
input)

Transfer fault : not the expected arrival state for a given
(state, input)

Exhaustivity =⇒ any transition should be checked

Elementary test, general algorithm

For any state s and any input i (of the speci�cation)

Go to s

Apply i, verify output o (compare to the speci�cation)

Identify arrival state with a sequence
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Identi�cation sequences

For a given Mealy Machine M = (I,O, S, δ, λ),

Distinguishing Sequence :
∃DS ∈ I∗, ∀s, s′ ∈ S : s 6= s′ ⇒ λ∗(s,DS) 6= λ∗(s′, DS) (DS
method [Gon70])

UIO2 Sequence :
∀s ∈ S, ∃UIOs ∈ I∗,∀s′ ∈ S \ {s}, λ∗(s, UIOs) 6=
λ∗(s′, UIOs) (UIO method [SD88])

W set of xij sequences :
∀si, sj ∈ S,∃xij ∈ I∗, λ∗(si, xij) 6= λ∗(sj , xij) (W
method [Cho78])

→ W set always exists in case of minimal machine, others may not
exist

2Unique Input Output
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Test generation (1)

Aim : reduce the length of the test case

TT [NT81]
Find a minimal sequence running through all transitions
→ Chinese Postman problem :

Transform the graph into a symmetric one in a minimal way
Find an Eulerian circuit

UIO [SD88]

Find a UIO sequence for each state

Considering the transitions si
i/o→ sj

UIOsj→ sk, �nd a minimal
circuit running once through these transitions
→ Rural Chinese Postman problem
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Test generation (2)

DS [Gon70]
Could be seen as a special case of the UIO method, with the
same UIO for each state

W [Cho78] 3

Find a Transition Cover Set P : set of input sequences s.t. for
each state s ∈ S and each input a ∈ I, there exists an input
sequence in P starting from the initial state and ending with
the transition that applies a to s.
Find a Characterising Set W : set of input sequences s.t.
∀si, sj ∈ S,∃xij ∈W,λ∗(si, xij) 6= λ∗(sj , xij)
Noting X · Y the concatenation of all elements of X with all
elements of Y , generate {reset} · P ·W

Wp, UIOp, UIOv, DS without resets, Adaptative DS, HSI,
...

Possibility to be more e�cient by using Adaptative Sequences
3case where MI and MS have the same number of states
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Input Output Labelled Transition System (IOLTS)

s0

s1

s2

s3

s4 s5 s6

s7

?digit

?reset

τ1

!beep
?digit

?reset

!open !alarm

τ2

τ3

τ4

M = (QM , AM ,−→M , q
M
0 ) with :

QM set of states

qM0 ∈ QM initial state

AM action alphabet,

AM
I input alphabet (with ?)

AM
O output alphabet (with !)

IM internal actions (τk)

−→M⊆ QM ×AM ×QM
transition relation

AMV IS = AMI ∪AMO set of visible actions

A. Rollet - TAROT2016 - Paris (France) - July 2016 47/73



Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Input Output Labelled Transition System (IOLTS)

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

M = (Q,A,−→, q0) with :
Q set of states

q0 ∈ Q initial state

A action alphabet,

AI input alphabet (with ?)
AO output alphabet (with !)
I internal actions (τk)

−→⊆ Q×A×Q
transition relation

AV IS = AI ∪AO set of visible actions
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Runs / Traces

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Runs: alternate sequences of states and
actions �reable btw those states

s0
?d→ s1

τ1→ s2
?d→ s3

!o→ s4 ∈ Runs(M)

Traces: projections of Runs
on visible actions:
Traces(M) = {ε, ?d, ?r, ?d.?r, ?r.?d, ?d.!b, ...}

P after σ: set of states reachable from P
after observation σ:
{s2} after ?d.!o = {s0, s4}
{s0} after ?d, !a = ∅
M after σ , {q0} after σ
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Non-determinism

M is deterministic if it has no internal action,
and ∀q, q′, q′′ ∈ Q,∀a ∈ AV IS , (q

a−→ q′ ∧ q a−→ q′′)⇒ q′ = q′′

s1
s2

s3

?x
!a

!a

s1 s2

s3 s4

τ

!a
!b

Not to be confused with uncontrolled choice

s1
s2

s3

?x
!a

!b

Determinization: det(M) = (2Q, AV IS ,−→det, q0 after ε) with
P

a−→det P
′ ⇔ P, P ′ ∈ 2Q, a ∈ AV IS and P ′ = P after a.

Traces(M) = Traces(det(M))
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Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspeci�ed in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : systems waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :

∃τ1, ...τn : q
τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)
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Suspension automaton

Quiescence : special output δ

Suspension automaton ∆(M)

∆(M) = Speci�cation M + δ-transitions
on quiescent states

Suspension traces

STraces(M) , Traces(∆(M)) =
Traces(det(∆(M)))

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

!δ

τ1

!b
?d

?r

!o !a

τ2

τ3

!δ

τ4

!δ

!δ
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Testing framework

Speci�cation : ioLTS S = (QS, AS,−→S, s
S
0)

Implementation : ioLTS IUT = (QIUT, AIUT,−→IUT, s
IUT
0 )

Unknown implementation, except for its interface,
identical to S's
Hyp.: IUT is input-complete : In any state, IUT
accepts any input, possibly after internal actions.
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Conformance relation

The conformance relation de�nes the set of implementations IUT
conforming to S.

Conformance

IUT ioco S ,
∀σ ∈ STraces(S),
Out(∆(IUT ) after σ) ⊆ Out(∆(S) after σ)

with Out(P ) , Γ(P ) ∩AδO a: set of outputs ∧ quiescences in P.

a AδO is equivalent notation for AO since δ is an output of ∆(S) and
∆(IUT )

Intuition : IUT conforms to S i� after any suspension trace of S
and IUT , all outputs and quiescences of IUT are speci�ed by S.
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ioco: example

s0

s1

s2 s3

?a

!δ

!x !y

!z

!δ

speci�cation ∆(S)

s0

s1

s2

?a

!δ

!x

!z

I1: Implem. choice
s0

s1

s2 s3
s4

?a

!δ

!x !y
!z

!z

!δ

!δ

I3: Unspec. output

s0

s1

s2 s3

s4

s5

?a

!δ

?b

!x !y

!z

!δ !z
!δ

I2: Implem. of

a partial spec.
s0

s1

s2 s3

s4
?a

!δ

?a

!x !y

!z

!δ

!δ

I4 : Unspec. quiescence
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Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .
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Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .
From det(∆(S))) :

Invert inputs and outputs (tester point of view)

All non-speci�ed outputs lead to Fail.
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Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o
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Test cases

A test case is a deterministic ioLTS
(QTC, ATC,−→TC, t

TC
0 ), equipped with

verdict states: Pass, Fail and Inconc s.t.

TC follows the tester point of view
(input / output inversion)

TC is controllable, i.e. never have to
choose btw. several outputs or btw.
inputs and outputs :

All states with an input, are
input-complete, except verdict states.

t0

t1

t2

t3

t4

Pass

Inconc

Fail

?δ
?othw

!d

!d

?o

?a

?othw

?δ

?othw

Test execution = parallel composition TC‖∆(IUT ) synchronizing
on common visible actions
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Properties of test suites

TC fails IUT i� an execution of TC‖∆(IUT ) reaches Fail

Expresses a possibility for rejection.

→ a single test case may lead to several di�erent verdicts

Soundness, Exhaustiveness, Completeness

A set of test cases TS is

Sound ,
∀IUT : (IUT ioco S =⇒ ∀TC ∈ TS : ¬(TC fails IUT )),
i.e. only non-conformant IUT may be rejected by a TC ∈ TS.
Exhaustive ,
∀IUT : (¬(IUT ioco S) =⇒ ∃TC ∈ TS : TC fails IUT ),
i.e. any non-conformant IUT may be rejected by a TC ∈ TS.
Complete = Sound and Exhaustive
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Test selection

Objective : Find an algorithm taking as input a �nite state ioLTS
S, and satisfying the following properties:

Produces only sound test suites

Is limit-exhaustive i.e. the in�nite suite of test cases that can
be produced is exhaustive

Two techniques :

1 Non-deterministic selection (TorX)

2 Selection guided by a test purpose (TGV)
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Non-deterministic selection

Algorithm: partial unfolding of Can(S)

Start in qc0. After any trace σ in Can(S)

If Can(S) after σ ⊆ Fail, emit a Fail verdict

Otherwise make a choice between

Produce a Pass verdict and stop,
Consider all inputs of Can(S) after σ and continue.
Choose one output in those of Can(S) after σ and continue.

Properties

TS = all possible Test cases generated with this algorithm :
TS is sound and limit-exhaustive
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Example

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

q0

q0

q0

q1

q4

Fail

Fail

Fail

Pass

!r

?δ

?a, ?b, ?o

!d

?b

?a, ?o, ?δ

?δ

?a, ?o, ?b

Can(S) TC1
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Test Purpose generation

Previous algorithm : maybe quite long if we intend to focus on a
speci�c behavior...

Main characteristics of Test Purpose Generation:

Test selection by test purposes describing a set of behaviors to
be tested, targeted by a test case
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Test Purpose de�nition

Test Purpose

Deterministic and complete ioLTS TP = (QTP, ATP,−→TP, q
TP
0 )

equipped with two sets AcceptTP and RefuseTP of trap states

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

p0

p1

p2
Accept

p3
Refuse

?r

∗

!o
?r

∗

∗∗

Can(S) TP
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Selection principle
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Synchronous Product : de�nition

De�nition of Synchronous Product

The Synchronous Product of two ioLTS
M1 = (QM1, A,−→M1, q

M1
0 ), and M2 = (QM2, A,−→M2, q

M2
0 ) is the

ioLTS M1 ×M2 = (QM1 ×QM2, A,−→, qM1
0 × qM2

0 ) where −→ is
de�ned by :

(qM1, qM2)
a−→ (q′M1, q

′
M2)⇔ (qM1

a−→M1 q
′
M1) ∧ (qM2

a−→M2 q
′
M2)
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The Synchronous Product Can(S)× TP

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

p0

p1

p2
Accept

p3
Refuse

?r

∗

!o
?r

∗

∗∗

q0,p0

q0,p1 q1,p0

q0,p3 q1,p1 q4,p0 q2,p0

q1,p3 q2,p1 q4,p1 q3,p0

q4,p3 q2,p3 q0,p2 q3,p1

q3,p3 q1,p2

Fail

!r

?δ

!d

!r

?δ
!d

?b !d
!r

!d

?δ, !r
!r

!d
?b

?δ ?a

?o

?b !d

!r

?o ?a
?δ

?δ

?δ
?a

?o

!d

?δ
!r ?δ

?δ
?othw
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Complete Test Graph (CTG)

Co-reachability analysis :

Keep the �rst Accept state
in a path → Pass

If q ∈ coreach(Pass) keep q

If q ∈ {Fail} keep q
If q 6∈ coreach(Pass) input
(tester point of view) is
successor of a state
q′ ∈ coreach(Pass) then
Inconc

q0, p0

q0, p1 q1, p0

q1, p1 Inconc q2, p0

q2, p1 Inconc Inconc

Pass Inconc

Fail

!r

?δ

!d

?δ
!d

?b !d
!r

!d
?b

?a

?o

?o ?a

?othw
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Ensuring controlabillity of test cases

q0, p0

q0, p1

q0, p1

q1, p1

q2, p1

Pass Inconc

Fail

!r

?δ

!d

!d

?o ?a

?othw

?othw

Example of Test Case

q0, p0

q0, p1 q1, p0

q1, p1 Inconc q2, p0

q2, p1 Inconc Inconc

Pass Inconc

Fail

!r

?δ

!d

?δ
!d

?b !d
!r

!d
?b

?a

?o

?o ?a

?othw

The test suite composed of the set of test cases that the algorithm
can produce is sound and limit-exhaustive.
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If we summarize MBT...

Two �historical� approaches of MBT : based on ioLTS and
Mealy Machines theory

Today, many other approaches exist, with various describing
formats
(e.g. extensions of FSM and LTS, UML, SysML, Markov
chains, Simulink, Lustre, ...)

Many tools are available.
→ A (non-exhaustive, but yet interesting) list may be found
here :
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html
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Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion
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Concluding remarks

Very active domain

Many issues, both theoretical and practical

Still a lot to do

Huge industrial needs

Perspectives

Many !

See the following presentations of this Summer School !
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Thank you for your attention

rollet@labri.fr
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