
Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Tutorial on testing techniques
A research point of view

Antoine Rollet

INP Bordeaux - Université de Bordeaux - LaBRI (UMR CNRS 5800), France
rollet@labri.fr

http://www.labri.fr/~rollet

A. Rollet - TAROT2016 - Paris (France) - July 2016 1/73

http://www.labri.fr/~rollet

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Context of this presentation

This talk should :

Provide some basics in the domain of testing

Prepare the audience for following presentations

Provide some historical research results on testing

This talk is not :

My personal research resultsa

An exhaustive presentation

Advanced research, more a general view on the topic

aimplying that I am not a specialist of all of the presented topics!

A. Rollet - TAROT2016 - Paris (France) - July 2016 2/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 3/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 4/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Why testing?

Famous bugs (non exhaustive panorama)

Ariane 5.01 (1996)

Patriot missile (1991)

First Pentium r Chip (1994)

Therac 25 (1985-1987)

... (long long list)

Urban legends also (F16 �ghter jet bug)

Wondering what the cost of software bugs? → $ 312 Billions per
year according to Cambridge University (2013).
In fact it depends on how late you �nd it.

A. Rollet - TAROT2016 - Paris (France) - July 2016 5/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Why testing?

Famous bugs (non exhaustive panorama)

Ariane 5.01 (1996)

Patriot missile (1991)

First Pentium r Chip (1994)

Therac 25 (1985-1987)

... (long long list)

Urban legends also (F16 �ghter jet bug)

Wondering what the cost of software bugs? → $ 312 Billions per
year according to Cambridge University (2013).
In fact it depends on how late you �nd it.

A. Rollet - TAROT2016 - Paris (France) - July 2016 5/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Why testing? (2)

Source : IBM Systems Sciences Institute

Consequences :

Product recall (Pentium r Chip, Toyota brake system bug
(2009))

Sometimes loss of human lifes (Therac 25, Patriot), loss of
expensive system (Ariane 5.01)

Space domain : send patches (NASA Curiosity Probe on Mars)

A. Rollet - TAROT2016 - Paris (France) - July 2016 6/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

What is testing?

Dynamic testing

Dynamic testing : the software (IUT)a is executed in order

To ensure a �correct� behaviour

To �nd bugs and defaults (Myers)

(6= Static testing)

→ this presentation will focus mainly on dynamic testing techniques

aImplementation Under Test

but not so simple ...

A. Rollet - TAROT2016 - Paris (France) - July 2016 7/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

What is testing? (2)

A. Rollet - TAROT2016 - Paris (France) - July 2016 8/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Di�culty(ies) of testing

Testing is a di�cult/expensive task

B. Gates :

�50% of the people at Microsoftr are testers, and the programmers
spend 50% of their time testing, thus Microsoft is more of a testing
than a development organization�a

ahttp://www.informationweek.com/story/IWK20020517S0011

=⇒ Important research domain
Ideally a test should be exhaustive, but not possible in
practice...

A simple function

int product(int i, int j);

264 possibilities. Considering one test per micro-second → 583000
years...

A. Rollet - TAROT2016 - Paris (France) - July 2016 9/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Di�culty(ies) of testing

Testing is a di�cult/expensive task

B. Gates :

�50% of the people at Microsoftr are testers, and the programmers
spend 50% of their time testing, thus Microsoft is more of a testing
than a development organization�a

ahttp://www.informationweek.com/story/IWK20020517S0011

=⇒ Important research domain
Ideally a test should be exhaustive, but not possible in
practice...

A simple function

int product(int i, int j);

264 possibilities. Considering one test per micro-second → 583000
years...

A. Rollet - TAROT2016 - Paris (France) - July 2016 9/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Di�culty(ies) of testing (2)

Dijkstra :

�Testing shows the presence, not the absence of bugs �

=⇒ The objective of testing is to increase con�dence in the
system (IUT)

Main problems :

Find a �representative� sample of data (Test Data (TD)),
providing �enough� con�dence
Automatically generate this sample of data
Automatically provide a verdict (oracle problem)

A. Rollet - TAROT2016 - Paris (France) - July 2016 10/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Di�culty(ies) of testing (2)

Dijkstra :

�Testing shows the presence, not the absence of bugs �

=⇒ The objective of testing is to increase con�dence in the
system (IUT)

Main problems :

Find a �representative� sample of data (Test Data (TD)),
providing �enough� con�dence
Automatically generate this sample of data
Automatically provide a verdict (oracle problem)

A. Rollet - TAROT2016 - Paris (France) - July 2016 10/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Testing point of view

Three dimensions of testing (Tretmans)

Level of detail : Unit, Module, Integration ...

Accessibility : White-box, black-box.

Characteristics : Conformance, Robustness, Performance, ...

→ this presentation will focus mainly on (unit) conformance testing

Two (complementary) main approaches of conformance testing :

Functional Testing : TD is generated using the speci�cation of
the System Under Test (SUT).
If speci�cation = Model → Model Based Testing

Structural Testing : TD is generated using the �structure� of
the SUT, generally the Source Code (Code Based Testing)

A. Rollet - TAROT2016 - Paris (France) - July 2016 11/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Testing point of view

Three dimensions of testing (Tretmans)

Level of detail : Unit, Module, Integration ...

Accessibility : White-box, black-box.

Characteristics : Conformance, Robustness, Performance, ...

→ this presentation will focus mainly on (unit) conformance testing

Two (complementary) main approaches of conformance testing :

Functional Testing : TD is generated using the speci�cation of
the System Under Test (SUT).
If speci�cation = Model → Model Based Testing

Structural Testing : TD is generated using the �structure� of
the SUT, generally the Source Code (Code Based Testing)

→ in many books, functional = black-box ; structural = white-box

A. Rollet - TAROT2016 - Paris (France) - July 2016 11/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Testing point of view

Three dimensions of testing (Tretmans)

Level of detail : Unit, Module, Integration ...

Accessibility : White-box, black-box.

Characteristics : Conformance, Robustness, Performance, ...

→ this presentation will focus mainly on (unit) conformance testing

Two (complementary) main approaches of conformance testing :

Functional Testing : TD is generated using the speci�cation of
the System Under Test (SUT).
If speci�cation = Model → Model Based Testing

Structural Testing : TD is generated using the �structure� of
the SUT, generally the Source Code (Code Based Testing)

→ in any case, TD are applied on the IUT and result is compared
to the speci�cation
A. Rollet - TAROT2016 - Paris (France) - July 2016 11/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Some words about integration testing

Integration : combining already tested components.
B Even if each component is working �ne → integration may
reveal new bugs

Main (functional-decomposition based) strategies

Big-bang
→ integrate all components together, then test the whole

Bottom-up
→ from leaves to root of the functional decomposition tree

Top-down
→ from root to leaves of the the functional decomposition tree
→ need to use stubs

Sandwich
→ combining Bottom-up and Top-Down

Other approaches may be used (Call-graph based, Path based)
A. Rollet - TAROT2016 - Paris (France) - July 2016 12/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Another way to classify/point of view

Functional Testing

Checking that the IUT meets the functional requirements. Divided
into four components :
Unit, Integration, System, Acceptance

Non-Functional Testing

Testing the application against non-functional requirements :
Performance, Load, Stress, Security, ...

The previous classi�cation will be used in this presentation

A. Rollet - TAROT2016 - Paris (France) - July 2016 13/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Another way to classify/point of view

Functional Testing

Checking that the IUT meets the functional requirements. Divided
into four components :
Unit, Integration, System, Acceptance

Non-Functional Testing

Testing the application against non-functional requirements :
Performance, Load, Stress, Security, ...

The previous classi�cation will be used in this presentation

A. Rollet - TAROT2016 - Paris (France) - July 2016 13/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

And beyond this classi�cation, in a loose way

Mutation Testing

�Testing the Tester�

Apply tiny mutations on the SUT (usually on the source code)

Check that the test cases �kill the mutants� → mutation score

Di�culty : apply signi�cant mutations; equivalent mutants

(non-)Regression Testing

Verifying that an update of the SUT does not a�ect other parts

Check that older test cases still pass

Usually based on functional test cases

Di�culty : costly, �nd a subset of test cases suited for
regression testing

Remark : sometimes, a distinction is made between regression
and non-regression testing

A. Rollet - TAROT2016 - Paris (France) - July 2016 14/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

And beyond this classi�cation, in a loose way

Mutation Testing

�Testing the Tester�

Apply tiny mutations on the SUT (usually on the source code)

Check that the test cases �kill the mutants� → mutation score

Di�culty : apply signi�cant mutations; equivalent mutants

(non-)Regression Testing

Verifying that an update of the SUT does not a�ect other parts

Check that older test cases still pass

Usually based on functional test cases

Di�culty : costly, �nd a subset of test cases suited for
regression testing

Remark : sometimes, a distinction is made between regression
and non-regression testing

A. Rollet - TAROT2016 - Paris (France) - July 2016 14/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 15/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

References

Part essentially based on :

[BH09] S. Bardin and P. Herrman, �Pruning the Search Space
in Path-based Test Generation�, ICST 09

[Got10] A. Gotlieb, �Constraint-Based testing�, presentation at
Uppsala University, May 2010.

[Rue08] M. Rueher, Software testing courses.

A. Rollet - TAROT2016 - Paris (France) - July 2016 16/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General Principle - Code coverage

Source Code Based Testing

TD is generated using the Source Code of the IUT

Ideally, the best TD would cover all possible executions. But
usually not possible in practice.

The more we cover code, the more con�dent we are, but

The more we cover code, the more TD we need to generate
and apply

Notion of coverage criterion

There exists an ordering between coverage criteria :

all statements < ... < all executions

A. Rollet - TAROT2016 - Paris (France) - July 2016 17/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Control Flow Graph

CFG

Directed Graph representing the possible paths of the program

Built from the source code

A test may be seen as a path in the CFG

Direct link between code coverage and CFG coverage

Easy to obtain, e.g. with gcc :

gcc -fdump-tree-cfg ...

Not an equivalent representation :
→ risk of adding unfeasible paths

A. Rollet - TAROT2016 - Paris (France) - July 2016 18/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Control Flow Graph

CFG

Directed Graph representing the possible paths of the program

Built from the source code

A test may be seen as a path in the CFG

Direct link between code coverage and CFG coverage

Easy to obtain, e.g. with gcc :

gcc -fdump-tree-cfg ...

Not an equivalent representation :
→ risk of adding unfeasible paths

A. Rollet - TAROT2016 - Paris (France) - July 2016 18/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Control Flow Graph : example

// product of two int

int prod(int i, int j) {

int k=0;

if (i == 2)

k = i<<1;

// error here; should be j<<1

else {

while (i>0) {

k = k+j;

i--;

}

}

return k;

}

k=0

k=i<<1

return k

k=k+j
i=i-1

i==2 i!=2

i<=0
i>0

A. Rollet - TAROT2016 - Paris (France) - July 2016 19/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Classical coverage criteria

Coverage criteria hierarchy (not exhaustive) :

All statements (TER1) = All nodes of the CFG

All decisions (TER2) = All branches of the CFG
...

All conditions (BCCC, Branch Condition Combination
Coverage) :
each atomic predicate (i.e. condition) is tested with a true
value and a false value

MCDC (modi�ed condition / decision coverage)
Check �the role� of each condition in the decision
...

All i-paths
(When feasible,) loop j times in each loop (0 ≤ j ≤ i).
All executions = All (feasible) paths → Usually in�nite

Other possible approaches : e.g. Data Flow based
A. Rollet - TAROT2016 - Paris (France) - July 2016 20/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Classical coverage criteria

Coverage criteria hierarchy (not exhaustive) :

All statements (TER1) = All nodes of the CFG

All decisions (TER2) = All branches of the CFG
...

All conditions (BCCC, Branch Condition Combination
Coverage) :
each atomic predicate (i.e. condition) is tested with a true
value and a false value

MCDC (modi�ed condition / decision coverage)
Check �the role� of each condition in the decision
...

All i-paths
(When feasible,) loop j times in each loop (0 ≤ j ≤ i).
All executions = All (feasible) paths → Usually in�nite

Other possible approaches : e.g. Data Flow based
A. Rollet - TAROT2016 - Paris (France) - July 2016 20/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Constraint Based Testing

Constraint-Based Testing (CBT)

CBT is the process of generating test cases against a testing
objective by using constraint solving techniques (Gotlieb)

Principle of Test Generation

Given a location in the program under test, automatically
generate a TD that reaches this location

Transform (part of) the program into a logical formula ϕ, such
that solving ϕ provides a TD

→ Does not solve the oracle problem.

→ Pointers may lead to di�cult problems

A. Rollet - TAROT2016 - Paris (France) - July 2016 21/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Constraint Based Testing

Constraint-Based Testing (CBT)

CBT is the process of generating test cases against a testing
objective by using constraint solving techniques (Gotlieb)

Principle of Test Generation

Given a location in the program under test, automatically
generate a TD that reaches this location

Transform (part of) the program into a logical formula ϕ, such
that solving ϕ provides a TD

→ Does not solve the oracle problem.

→ Pointers may lead to di�cult problems

A. Rollet - TAROT2016 - Paris (France) - July 2016 21/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Path Predicate

Path predicate

Given a path Π of a program, a formula ϕΠ is a path predicate of
Π if for a given set of values V , V |= ϕΠ =⇒ the execution of the
program on V follows Π

→ Find a solution (if any) to ϕΠ in order to activate Π

Need to remember the values of variables along the path
→ need to rename each variable in case of assignment
→ SSA1 form

Remark : Using gcc, SSA form can be easily obtained :

gcc -S -fdump-tree-ssa ...

1(Single Static Assignment)
A. Rollet - TAROT2016 - Paris (France) - July 2016 22/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Path predicate example

1 read (y,z); -> y0, z0 as inputs

2 y = y + 2; -> y1 = y0 + 2

3 x = y + 4; -> x1 = y1 + 4

4 if (x > 2 * z) -> x1 > 2 * z0

or x1 <= 2 * z0 depending on path

5 x = y + 2; -> x2 = y1 + 2

For the path : 1→ 2→ 3→ (4, true)→ 5,
the corresponding predicate is :
y1 = y0 + 2 ∧ x1 = y1 + 4 ∧ x1 > 2 ∗ z0 ∧ x2 = y1 + 2.
Considering the inputs, we have y0 + 6 > 2 ∗ z0

Example of TD : y = 0, z = 0

A. Rollet - TAROT2016 - Paris (France) - July 2016 23/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Path predicate example

1 read (y,z); -> y0, z0 as inputs

2 y = y + 2; -> y1 = y0 + 2

3 x = y + 4; -> x1 = y1 + 4

4 if (x > 2 * z) -> x1 > 2 * z0

or x1 <= 2 * z0 depending on path

5 x = y + 2; -> x2 = y1 + 2

For the path : 1→ 2→ 3→ (4, true)→ 5,
the corresponding predicate is :
y1 = y0 + 2 ∧ x1 = y1 + 4 ∧ x1 > 2 ∗ z0 ∧ x2 = y1 + 2.
Considering the inputs, we have y0 + 6 > 2 ∗ z0

Example of TD : y = 0, z = 0

A. Rollet - TAROT2016 - Paris (France) - July 2016 23/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

if/then ; Φ-expressions, SSA form

if (a>0) -> if (a0 > 0)

i=4; -> i1=4;

else -> else

i=5; -> i2=5;

-> i3=phi(i1,i2);

if (a0 > 0)

i1=4 i2=5

i3=phi(i1,i2);

Φ-expr → decide the value of i3 according to the path used to
reach it

a0 > 0 =⇒ i1 = 4 ∧ i3 = i1

¬(a0 > 0) =⇒ i2 = 5 ∧ i3 = i2

Choice of path (join operator)

join(a0 > 0 ∧ i1 = 4 ∧ i3 = i1,¬(a0 > 0) ∧ i2 = 5 ∧ i3 = i2)

A. Rollet - TAROT2016 - Paris (France) - July 2016 24/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

While; Φ-expressions, SSA form

While : Φ-expr added just before the decision

Initial code

x = 1;

while (x != 10) {

c = x;

x = x + 1;

}

print(x);

SSA code

x1 = 1;

x2 = phi(x1 , x3);

while (x2 != 10) {

c = x2;

x3 = x2 + 1;

}

print(x2);

→ but need to solve a constraint according to the number of loops
desired
→ each loop turn =⇒ new recursive constraints

A. Rollet - TAROT2016 - Paris (France) - July 2016 25/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Symbolic Depth First Search (DFS)

Path Based TD generation

1 Select (another) path Π of the CFG

2 Build the corresponding predicate ϕΠ

3 Solve ϕΠ (if possible); keep an input solution as a TD (if any)

4 Back to (1)

A strategy for the coverage criterion All paths :

The CFG is unwound providing an execution tree

The execution tree is explored using a DFS approach

/ Constraint solving, even on a single path, may be costly
(unwinding, unfeasible paths, ...).

A. Rollet - TAROT2016 - Paris (France) - July 2016 26/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Symbolic Depth First Search (DFS)

Path Based TD generation

1 Select (another) path Π of the CFG

2 Build the corresponding predicate ϕΠ

3 Solve ϕΠ (if possible); keep an input solution as a TD (if any)

4 Back to (1)

A strategy for the coverage criterion All paths :

The CFG is unwound providing an execution tree

The execution tree is explored using a DFS approach

/ Constraint solving, even on a single path, may be costly
(unwinding, unfeasible paths, ...).

A. Rollet - TAROT2016 - Paris (France) - July 2016 26/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Symbolic Depth First Search (DFS)

Path Based TD generation

1 Select (another) path Π of the CFG

2 Build the corresponding predicate ϕΠ

3 Solve ϕΠ (if possible); keep an input solution as a TD (if any)

4 Back to (1)

A strategy for the coverage criterion All paths :

The CFG is unwound providing an execution tree

The execution tree is explored using a DFS approach

/ Constraint solving, even on a single path, may be costly
(unwinding, unfeasible paths, ...).

A. Rollet - TAROT2016 - Paris (France) - July 2016 26/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

A. Rollet - TAROT2016 - Paris (France) - July 2016 27/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

Random choice : e.g. x=3 (concrete)

A. Rollet - TAROT2016 - Paris (France) - July 2016 27/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

Backtrack + resolution : x ≥ 2 ∧ x ≥ 5; possible solution : x = 8

A. Rollet - TAROT2016 - Paris (France) - July 2016 27/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

x=8 (concrete)

A. Rollet - TAROT2016 - Paris (France) - July 2016 27/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 \ x>=1

Backtrack + resolution : x ≥ 2 ∧ x ≥ 5 ∧ x < 1; unfeasible

A. Rollet - TAROT2016 - Paris (France) - July 2016 27/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concolic approach

Idea : accelerate symbolic execution by using concrete execution at
the same time. → Permits to select feasible paths.

x<2 x>=2

x<5 x>=5

x<1 x>=1

Backtrack + resolution : x < 2; etc ...

A. Rollet - TAROT2016 - Paris (France) - July 2016 27/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Some known tools of CBT (non exhaustive ...)

C - C++ :
Cute (University of Illinois, Berkeley)
Crest (Berkeley)
Dart (Bell Labs)
EXE (University of Stanford)
Inka (INRIA, France)
PathCrawler (CEA)

Java, C# :
CATG (NTT Labs, Berkeley)
CPBPV (I3S, Sophia Antipolis, France)
JCute (University of Illinois, Berkeley)
Java Path Finder (NASA)
Pex (Microsoft)
Pet (University of Madrid)

Binaries :
Osmose (CEA)
Sage (Microsoft)
Triton (Bordeaux University, Quarkslab)

A. Rollet - TAROT2016 - Paris (France) - July 2016 28/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 29/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Equivalent classes analysis - Boundary values analysis

Divide the global (multi-dimensional) set of inputs into
equivalent classes
One value of the class tested =⇒ all values of the class tested
Sometimes add tests for the boundaries, often source of bugs
Decreases the number of TD in theory, sometimes not easy in
practice

A. Rollet - TAROT2016 - Paris (France) - July 2016 30/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Combinatory testing - Pairwise testing
When more than 2 params, TD checks only pairs of values,
not all possible combinationsa

Example : 3 boolean variables :

V1 V2 V3
0 0 0
0 0 1 ← redundant, remove test case
0 1 0 ← redundant, remove test case
...

awww.pairwise.org

A. Rollet - TAROT2016 - Paris (France) - July 2016 30/73

www.pairwise.org

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Random testing

Quick feedback for coarse testing
In case of bug on few values, low probability to �nd it
May provide an important number of test cases → oracle?

A. Rollet - TAROT2016 - Paris (France) - July 2016 30/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Generalities

Functional testing

TD is generated using the speci�cation of the SUT

Example of known methods :

Model Based Testing

Powerful technique
Particularly adapted for testing reactive systems,
communication protocols
Not easy to have a (formal) model in practice
/ ← requires an important modelling e�ort (costly, but
generally pro�table)
Requires sometimes a mapping between abstract test cases
and concrete test cases

A. Rollet - TAROT2016 - Paris (France) - July 2016 30/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

What about Model Based Testing?

Model Based Testing

Model Based Testing (MBT) → testing with the ability to detect
faults which do not conform to a model called speci�cation.

Specification
conforms

specifies
Implementation

Under
Test
(IUT)

→ possible automation for test generation, test execution, test
evaluation (verdict)
→ Formal Methods

A. Rollet - TAROT2016 - Paris (France) - July 2016 31/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

What about Model Based Testing? (2)

Test cases are generated from the Model

As usual, TD are applied on the Implementation, and results
are compared with the speci�cation

Problems :

Need to �nd a �good� model of the speci�cation
What does specify mean?
What does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)

Need a conformance relation between the Speci�cation and
the Implementation

A. Rollet - TAROT2016 - Paris (France) - July 2016 32/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

What about Model Based Testing? (2)

Test cases are generated from the Model

As usual, TD are applied on the Implementation, and results
are compared with the speci�cation

Problems :

Need to �nd a �good� model of the speci�cation
What does specify mean?
What does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)

Need a conformance relation between the Speci�cation and
the Implementation

Two historical approaches of MBT of reactive systems :

Finite State Machines

Labeled Transition Systems

A. Rollet - TAROT2016 - Paris (France) - July 2016 32/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

VERIFICATION

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ? TEST

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

Test Generation

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

Test Generation

Test Purpose

A. Rollet - TAROT2016 - Paris (France) - July 2016 33/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (1)

Find a �good� model

Necessity to �nd a formal model adapted to the description of
the speci�cation

Too abstract =⇒ not realistic, no interest

Too detailed =⇒ di�cult to model, too many cases to check

Usually, the choice of the model has an impact on choice of
the testing method (and conversely)?

Many possibilities of models, more or less formal

A. Rollet - TAROT2016 - Paris (France) - July 2016 34/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (2)

Example of Model : Mealy machine (FSM with outputs)
Simple co�ee machine controller giving change, managing 2 coins
Inputs : { co�eeReq?, 25?, 50? } (labelled with �?�)
Outputs : { nop!, 25!, 50!, giveCo�ee! } (labelled with �!�)

0 25

50

25? / nop!

50? / nop!

co�eeReq? / nop!

25? / nop!
50? / 25!

co�eeReq? / nop!

co�eeReq? / giveCo�ee!

25? / 25!
50? / 50!

Possibility to add time (TFSM), data variables (EFSM), or both
(TEFSM)
A. Rollet - TAROT2016 - Paris (France) - July 2016 35/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (2)

Example of Model : Mealy machine (FSM with outputs)
Simple co�ee machine controller giving change, managing 2 coins
Inputs : { co�eeReq?, 25?, 50? } (labelled with �?�)
Outputs : { nop!, 25!, 50!, giveCo�ee! } (labelled with �!�)

0 25

50

25? / nop!

50? / nop!

co�eeReq? / nop!

25? / nop!
50? / 25!

co�eeReq? / nop!

co�eeReq? / giveCo�ee!

25? / 25!
50? / 50!

Possibility to add time (TFSM), data variables (EFSM), or both
(TEFSM)
A. Rollet - TAROT2016 - Paris (France) - July 2016 35/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (2)

Example of Model : Mealy machine (FSM with outputs)
Simple co�ee machine controller giving change, managing 2 coins
Inputs : { co�eeReq?, 25?, 50? } (labelled with �?�)
Outputs : { nop!, 25!, 50!, giveCo�ee! } (labelled with �!�)

0 25

50

25? / nop!

50? / nop!

co�eeReq? / nop!

25? / nop!
50? / 25!

co�eeReq? / nop!

co�eeReq? / giveCo�ee!

25? / 25!
50? / 50!

Possibility to add time (TFSM), data variables (EFSM), or both
(TEFSM)
A. Rollet - TAROT2016 - Paris (France) - July 2016 35/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (2)

Example of Model : Mealy machine (FSM with outputs)
Simple co�ee machine controller giving change, managing 2 coins
Inputs : { co�eeReq?, 25?, 50? } (labelled with �?�)
Outputs : { nop!, 25!, 50!, giveCo�ee! } (labelled with �!�)

0 25

50

25? / nop!

50? / nop!

co�eeReq? / nop!

25? / nop!
50? / 25!

co�eeReq? / nop!

co�eeReq? / giveCo�ee!

25? / 25!
50? / 50!

Possibility to add time (TFSM), data variables (EFSM), or both
(TEFSM)
A. Rollet - TAROT2016 - Paris (France) - July 2016 35/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (3)

Example of Model : (IO)LTS (LTS with inputs and outputs)
A (very very) simpli�ed digicode.
inputs (resp. outputs) labelled with �?� (resp. �!�)

s0

s1

s2

s3

s4 s5 s6

s7

?digit

?reset

τ1

!beep
?digit

?reset

!open !alarm

τ2

τ3

τ4

Possibility to add time (TIOTS, TAIO), data variables (IOSTS)

A. Rollet - TAROT2016 - Paris (France) - July 2016 36/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Modelling the system (3)

Example of Model : (IO)LTS (LTS with inputs and outputs)
A (very very) simpli�ed digicode.
inputs (resp. outputs) labelled with �?� (resp. �!�)

s0

s1

s2

s3

s4 s5 s6

s7

?digit

?reset

τ1

!beep
?digit

?reset

!open !alarm

τ2

τ3

τ4

Possibility to add time (TIOTS, TAIO), data variables (IOSTS)

A. Rollet - TAROT2016 - Paris (France) - July 2016 36/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 37/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

References

Part essentially based on :

[BJK+05] Broy, M.; Jonsson, B.; Katoen, J.-P.; Leucker, M.,
Pretschner, A. (Eds.), �Model-Based Testing of Reactive
Systems�, Springer, LNCS, volume 3472

[BP94] G. v. Bochmann and Alexandre Petrenko, �Protocol
Testing : Review of Methods and Relevance for Software
Testing� In Proceedings of the 1994 ACM SIGSOFT

international symposium on Software testing and analysis,
Seattle, Washington, United States, p 109 - 124, 1994

[Jer04] T. Jéron, �Contribution à la génération automatique de
tests pour les systèmes réactifs,� 2004, habilitation à Diriger
des Recherches - Université de Rennes 1.

A. Rollet - TAROT2016 - Paris (France) - July 2016 38/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!

25?/nop!
50?/25!

cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Deterministic since here δ and λ are functions

A. Rollet - TAROT2016 - Paris (France) - July 2016 39/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!

25?/nop!
50?/25!

cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Usually complete : δ and λ de�ned for any input

A. Rollet - TAROT2016 - Paris (France) - July 2016 39/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!

25?/nop!
50?/25!

cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Equivalent states : two states s and t are equivalent if
∀x ∈ I∗, λ(s, x) = λ(t, x)

A. Rollet - TAROT2016 - Paris (France) - July 2016 39/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Mealy Machine

0 25

50

25?/nop!

50?/nop!

cR?/nop!

25?/nop!
50?/25!

cR?/nop!

cR?/gC!

25?/25!
50?/50!

M = (I,O, S, δ, λ) where

I and O are �nite sets of inputs
and outputs symbols

S is a �nite set of states,

δ : S × I → S is the state
transition function, extend to input
sequences with δ∗ : S × I∗ → S∗

λ : S × I → O is the output
function, extend to output
sequences with λ∗ : S × I∗ → O∗

→ Minimal machine : no pair of distinct equivalent states (possible
to build a minimal machine from a non minimal one)

A. Rollet - TAROT2016 - Paris (France) - July 2016 39/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Conformance testing

Problem description

Speci�cation MS , Mealy machine, known

Implementation MI Mealy machine, unknown, only
inputs/outputs are observable

Aim : Use test sequences to check if MI is equivalent
a to

MS , i.e. MI conforms to MS

aHere �equivalent� means isomorphic

→ generally, MS and MI supposed to be minimal and strongly
connected (usually existence of a reset action)

→ MS and MI have the same number of states (usually not
necessary)

A. Rollet - TAROT2016 - Paris (France) - July 2016 40/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test synthesis

Fault model

Checking equivalence between MI and MS means checking if MI

has no :

Output fault : not the expected output for a given (state,
input)

Transfer fault : not the expected arrival state for a given
(state, input)

Exhaustivity =⇒ any transition should be checked

Elementary test, general algorithm

For any state s and any input i (of the speci�cation)

Go to s

Apply i, verify output o (compare to the speci�cation)

Identify arrival state with a sequence
A. Rollet - TAROT2016 - Paris (France) - July 2016 41/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test synthesis

Fault model

Checking equivalence between MI and MS means checking if MI

has no :

Output fault : not the expected output for a given (state,
input)

Transfer fault : not the expected arrival state for a given
(state, input)

Exhaustivity =⇒ any transition should be checked

Elementary test, general algorithm

For any state s and any input i (of the speci�cation)

Go to s

Apply i, verify output o (compare to the speci�cation)

Identify arrival state with a sequence
A. Rollet - TAROT2016 - Paris (France) - July 2016 41/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Identi�cation sequences

For a given Mealy Machine M = (I,O, S, δ, λ),

Distinguishing Sequence :
∃DS ∈ I∗, ∀s, s′ ∈ S : s 6= s′ ⇒ λ∗(s,DS) 6= λ∗(s′, DS) (DS
method [Gon70])

UIO2 Sequence :
∀s ∈ S, ∃UIOs ∈ I∗,∀s′ ∈ S \ {s}, λ∗(s, UIOs) 6=
λ∗(s′, UIOs) (UIO method [SD88])

W set of xij sequences :
∀si, sj ∈ S,∃xij ∈ I∗, λ∗(si, xij) 6= λ∗(sj , xij) (W
method [Cho78])

→ W set always exists in case of minimal machine, others may not
exist

2Unique Input Output
A. Rollet - TAROT2016 - Paris (France) - July 2016 42/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Identi�cation sequences

For a given Mealy Machine M = (I,O, S, δ, λ),

Distinguishing Sequence :
∃DS ∈ I∗, ∀s, s′ ∈ S : s 6= s′ ⇒ λ∗(s,DS) 6= λ∗(s′, DS) (DS
method [Gon70])

UIO2 Sequence :
∀s ∈ S, ∃UIOs ∈ I∗,∀s′ ∈ S \ {s}, λ∗(s, UIOs) 6=
λ∗(s′, UIOs) (UIO method [SD88])

W set of xij sequences :
∀si, sj ∈ S,∃xij ∈ I∗, λ∗(si, xij) 6= λ∗(sj , xij) (W
method [Cho78])

→ W set always exists in case of minimal machine, others may not
exist

2Unique Input Output
A. Rollet - TAROT2016 - Paris (France) - July 2016 42/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Identi�cation sequences

For a given Mealy Machine M = (I,O, S, δ, λ),

Distinguishing Sequence :
∃DS ∈ I∗, ∀s, s′ ∈ S : s 6= s′ ⇒ λ∗(s,DS) 6= λ∗(s′, DS) (DS
method [Gon70])

UIO2 Sequence :
∀s ∈ S, ∃UIOs ∈ I∗,∀s′ ∈ S \ {s}, λ∗(s, UIOs) 6=
λ∗(s′, UIOs) (UIO method [SD88])

W set of xij sequences :
∀si, sj ∈ S,∃xij ∈ I∗, λ∗(si, xij) 6= λ∗(sj , xij) (W
method [Cho78])

→ W set always exists in case of minimal machine, others may not
exist

2Unique Input Output
A. Rollet - TAROT2016 - Paris (France) - July 2016 42/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Identi�cation sequences

For a given Mealy Machine M = (I,O, S, δ, λ),

Distinguishing Sequence :
∃DS ∈ I∗, ∀s, s′ ∈ S : s 6= s′ ⇒ λ∗(s,DS) 6= λ∗(s′, DS) (DS
method [Gon70])

UIO2 Sequence :
∀s ∈ S, ∃UIOs ∈ I∗,∀s′ ∈ S \ {s}, λ∗(s, UIOs) 6=
λ∗(s′, UIOs) (UIO method [SD88])

W set of xij sequences :
∀si, sj ∈ S,∃xij ∈ I∗, λ∗(si, xij) 6= λ∗(sj , xij) (W
method [Cho78])

→ W set always exists in case of minimal machine, others may not
exist

2Unique Input Output
A. Rollet - TAROT2016 - Paris (France) - July 2016 42/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test generation (1)

Aim : reduce the length of the test case

TT [NT81]
Find a minimal sequence running through all transitions
→ Chinese Postman problem :

Transform the graph into a symmetric one in a minimal way
Find an Eulerian circuit

UIO [SD88]

Find a UIO sequence for each state

Considering the transitions si
i/o→ sj

UIOsj→ sk, �nd a minimal
circuit running once through these transitions
→ Rural Chinese Postman problem

A. Rollet - TAROT2016 - Paris (France) - July 2016 43/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test generation (1)

Aim : reduce the length of the test case

TT [NT81]
Find a minimal sequence running through all transitions
→ Chinese Postman problem :

Transform the graph into a symmetric one in a minimal way
Find an Eulerian circuit

UIO [SD88]

Find a UIO sequence for each state

Considering the transitions si
i/o→ sj

UIOsj→ sk, �nd a minimal
circuit running once through these transitions
→ Rural Chinese Postman problem

A. Rollet - TAROT2016 - Paris (France) - July 2016 43/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test generation (2)

DS [Gon70]
Could be seen as a special case of the UIO method, with the
same UIO for each state

W [Cho78] 3

Find a Transition Cover Set P : set of input sequences s.t. for
each state s ∈ S and each input a ∈ I, there exists an input
sequence in P starting from the initial state and ending with
the transition that applies a to s.
Find a Characterising Set W : set of input sequences s.t.
∀si, sj ∈ S,∃xij ∈W,λ∗(si, xij) 6= λ∗(sj , xij)
Noting X · Y the concatenation of all elements of X with all
elements of Y , generate {reset} · P ·W

Wp, UIOp, UIOv, DS without resets, Adaptative DS, HSI,
...

Possibility to be more e�cient by using Adaptative Sequences
3case where MI and MS have the same number of states

A. Rollet - TAROT2016 - Paris (France) - July 2016 44/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test generation (2)

DS [Gon70]
Could be seen as a special case of the UIO method, with the
same UIO for each state

W [Cho78] 3

Find a Transition Cover Set P : set of input sequences s.t. for
each state s ∈ S and each input a ∈ I, there exists an input
sequence in P starting from the initial state and ending with
the transition that applies a to s.
Find a Characterising Set W : set of input sequences s.t.
∀si, sj ∈ S,∃xij ∈W,λ∗(si, xij) 6= λ∗(sj , xij)
Noting X · Y the concatenation of all elements of X with all
elements of Y , generate {reset} · P ·W

Wp, UIOp, UIOv, DS without resets, Adaptative DS, HSI,
...

Possibility to be more e�cient by using Adaptative Sequences
3case where MI and MS have the same number of states

A. Rollet - TAROT2016 - Paris (France) - July 2016 44/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test generation (2)

DS [Gon70]
Could be seen as a special case of the UIO method, with the
same UIO for each state

W [Cho78] 3

Find a Transition Cover Set P : set of input sequences s.t. for
each state s ∈ S and each input a ∈ I, there exists an input
sequence in P starting from the initial state and ending with
the transition that applies a to s.
Find a Characterising Set W : set of input sequences s.t.
∀si, sj ∈ S,∃xij ∈W,λ∗(si, xij) 6= λ∗(sj , xij)
Noting X · Y the concatenation of all elements of X with all
elements of Y , generate {reset} · P ·W

Wp, UIOp, UIOv, DS without resets, Adaptative DS, HSI,
...

Possibility to be more e�cient by using Adaptative Sequences
3case where MI and MS have the same number of states

A. Rollet - TAROT2016 - Paris (France) - July 2016 44/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test generation (2)

DS [Gon70]
Could be seen as a special case of the UIO method, with the
same UIO for each state

W [Cho78] 3

Find a Transition Cover Set P : set of input sequences s.t. for
each state s ∈ S and each input a ∈ I, there exists an input
sequence in P starting from the initial state and ending with
the transition that applies a to s.
Find a Characterising Set W : set of input sequences s.t.
∀si, sj ∈ S,∃xij ∈W,λ∗(si, xij) 6= λ∗(sj , xij)
Noting X · Y the concatenation of all elements of X with all
elements of Y , generate {reset} · P ·W

Wp, UIOp, UIOv, DS without resets, Adaptative DS, HSI,
...

Possibility to be more e�cient by using Adaptative Sequences
3case where MI and MS have the same number of states

A. Rollet - TAROT2016 - Paris (France) - July 2016 44/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 45/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

References

Part essentially based on :

[Tre96] J. Tretmans, �Test generation with inputs, outputs,
and repetitive quiescence,� Software�Concepts and Tools,
vol. 17, pp. 103�120, 1996.

[JJ04] C. Jard and T. Jéron, �Tgv: theory, principles and
algorithms, a tool for the automatic synthesis of conformance
test cases for non-deterministic reactive systems,� Software
Tools for Technology Transfer (STTT), 10 2004.

[Jer04] T. Jéron, �Contribution à la génération automatique de
tests pour les systèmes réactifs,� 2004, habilitation à Diriger
des Recherches - Université de Rennes 1.

[Jer12] T. Jéron, Model Based Testing courses.

A. Rollet - TAROT2016 - Paris (France) - July 2016 46/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Input Output Labelled Transition System (IOLTS)

s0

s1

s2

s3

s4 s5 s6

s7

?digit

?reset

τ1

!beep
?digit

?reset

!open !alarm

τ2

τ3

τ4

M = (QM , AM ,−→M , q
M
0) with :

QM set of states

qM0 ∈ QM initial state

AM action alphabet,

AM
I input alphabet (with ?)

AM
O output alphabet (with !)

IM internal actions (τk)

−→M⊆ QM ×AM ×QM
transition relation

AMV IS = AMI ∪AMO set of visible actions

A. Rollet - TAROT2016 - Paris (France) - July 2016 47/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Input Output Labelled Transition System (IOLTS)

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

M = (Q,A,−→, q0) with :
Q set of states

q0 ∈ Q initial state

A action alphabet,

AI input alphabet (with ?)
AO output alphabet (with !)
I internal actions (τk)

−→⊆ Q×A×Q
transition relation

AV IS = AI ∪AO set of visible actions

A. Rollet - TAROT2016 - Paris (France) - July 2016 47/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Runs / Traces

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Runs: alternate sequences of states and
actions �reable btw those states

s0
?d→ s1

τ1→ s2
?d→ s3

!o→ s4 ∈ Runs(M)

Traces: projections of Runs
on visible actions:
Traces(M) = {ε, ?d, ?r, ?d.?r, ?r.?d, ?d.!b, ...}

P after σ: set of states reachable from P
after observation σ:
{s2} after ?d.!o = {s0, s4}
{s0} after ?d, !a = ∅
M after σ , {q0} after σ

A. Rollet - TAROT2016 - Paris (France) - July 2016 48/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Non-determinism

M is deterministic if it has no internal action,
and ∀q, q′, q′′ ∈ Q,∀a ∈ AV IS , (q

a−→ q′ ∧ q a−→ q′′)⇒ q′ = q′′

s1
s2

s3

?x
!a

!a

s1 s2

s3 s4

τ

!a
!b

Not to be confused with uncontrolled choice

s1
s2

s3

?x
!a

!b

Determinization: det(M) = (2Q, AV IS ,−→det, q0 after ε) with
P

a−→det P
′ ⇔ P, P ′ ∈ 2Q, a ∈ AV IS and P ′ = P after a.

Traces(M) = Traces(det(M))

A. Rollet - TAROT2016 - Paris (France) - July 2016 49/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Non-determinism

M is deterministic if it has no internal action,
and ∀q, q′, q′′ ∈ Q,∀a ∈ AV IS , (q

a−→ q′ ∧ q a−→ q′′)⇒ q′ = q′′

s1
s2

s3

?x
!a

!a

s1 s2

s3 s4

τ

!a
!b

Not to be confused with uncontrolled choice

s1
s2

s3

?x
!a

!b

Determinization: det(M) = (2Q, AV IS ,−→det, q0 after ε) with
P

a−→det P
′ ⇔ P, P ′ ∈ 2Q, a ∈ AV IS and P ′ = P after a.

Traces(M) = Traces(det(M))

A. Rollet - TAROT2016 - Paris (France) - July 2016 49/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspeci�ed in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : systems waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :

∃τ1, ...τn : q
τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - TAROT2016 - Paris (France) - July 2016 50/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspeci�ed in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : systems waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :

∃τ1, ...τn : q
τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - TAROT2016 - Paris (France) - July 2016 50/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspeci�ed in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : system waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :

∃τ1, ...τn : q
τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - TAROT2016 - Paris (France) - July 2016 50/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspeci�ed in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : system waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :

∃τ1, ...τn : q
τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - TAROT2016 - Paris (France) - July 2016 50/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspeci�ed in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : system waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :

∃τ1, ...τn : q
τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - TAROT2016 - Paris (France) - July 2016 50/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Suspension automaton

Quiescence : special output δ

Suspension automaton ∆(M)

∆(M) = Speci�cation M + δ-transitions
on quiescent states

Suspension traces

STraces(M) , Traces(∆(M)) =
Traces(det(∆(M)))

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

!δ

τ1

!b
?d

?r

!o !a

τ2

τ3

!δ

τ4

!δ

!δ

A. Rollet - TAROT2016 - Paris (France) - July 2016 51/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Testing framework

Speci�cation : ioLTS S = (QS, AS,−→S, s
S
0)

Implementation : ioLTS IUT = (QIUT, AIUT,−→IUT, s
IUT
0)

Unknown implementation, except for its interface,
identical to S's
Hyp.: IUT is input-complete : In any state, IUT
accepts any input, possibly after internal actions.

A. Rollet - TAROT2016 - Paris (France) - July 2016 52/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Conformance relation

The conformance relation de�nes the set of implementations IUT
conforming to S.

Conformance

IUT ioco S ,
∀σ ∈ STraces(S),
Out(∆(IUT) after σ) ⊆ Out(∆(S) after σ)

with Out(P) , Γ(P) ∩AδO a: set of outputs ∧ quiescences in P.

a AδO is equivalent notation for AO since δ is an output of ∆(S) and
∆(IUT)

Intuition : IUT conforms to S i� after any suspension trace of S
and IUT , all outputs and quiescences of IUT are speci�ed by S.

A. Rollet - TAROT2016 - Paris (France) - July 2016 53/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

ioco: example

s0

s1

s2 s3

?a

!δ

!x !y

!z

!δ

speci�cation ∆(S)

s0

s1

s2

?a

!δ

!x

!z

I1: Implem. choice
s0

s1

s2 s3
s4

?a

!δ

!x !y
!z

!z

!δ

!δ

I3: Unspec. output

s0

s1

s2 s3

s4

s5

?a

!δ

?b

!x !y

!z

!δ !z
!δ

I2: Implem. of

a partial spec.
s0

s1

s2 s3

s4
?a

!δ

?a

!x !y

!z

!δ

!δ

I4 : Unspec. quiescence

A. Rollet - TAROT2016 - Paris (France) - July 2016 54/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .

A. Rollet - TAROT2016 - Paris (France) - July 2016 55/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .
From det(∆(S))) :

Invert inputs and outputs (tester point of view)

All non-speci�ed outputs lead to Fail.

A. Rollet - TAROT2016 - Paris (France) - July 2016 55/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .

q0

q1

q2 q3

q4

?d

?r

!δ

!b

?d

?r

!o

!a

!δ

!δ

A. Rollet - TAROT2016 - Paris (France) - July 2016 55/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .

q0

q1

q2 q3

q4

!d

!r

?δ

?b

!d

!r

?o

?a

?δ

?δ

A. Rollet - TAROT2016 - Paris (France) - July 2016 55/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0)

→ the most general ioLTS detecting non-conformance of
implementation IUT .

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

A. Rollet - TAROT2016 - Paris (France) - July 2016 55/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test cases

A test case is a deterministic ioLTS
(QTC, ATC,−→TC, t

TC
0), equipped with

verdict states: Pass, Fail and Inconc s.t.

TC follows the tester point of view
(input / output inversion)

TC is controllable, i.e. never have to
choose btw. several outputs or btw.
inputs and outputs :

All states with an input, are
input-complete, except verdict states.

t0

t1

t2

t3

t4

Pass

Inconc

Fail

?δ
?othw

!d

!d

?o

?a

?othw

?δ

?othw

Test execution = parallel composition TC‖∆(IUT) synchronizing
on common visible actions

A. Rollet - TAROT2016 - Paris (France) - July 2016 56/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test cases

A test case is a deterministic ioLTS
(QTC, ATC,−→TC, t

TC
0), equipped with

verdict states: Pass, Fail and Inconc s.t.

TC follows the tester point of view
(input / output inversion)

TC is controllable, i.e. never have to
choose btw. several outputs or btw.
inputs and outputs :

All states with an input, are
input-complete, except verdict states.

t0

t1

t2

t3

t4

Pass

Inconc

Fail

?δ
?othw

!d

!d

?o

?a

?othw

?δ

?othw

Test execution = parallel composition TC‖∆(IUT) synchronizing
on common visible actions

A. Rollet - TAROT2016 - Paris (France) - July 2016 56/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Properties of test suites

TC fails IUT i� an execution of TC‖∆(IUT) reaches Fail

Expresses a possibility for rejection.

→ a single test case may lead to several di�erent verdicts

Soundness, Exhaustiveness, Completeness

A set of test cases TS is

Sound ,
∀IUT : (IUT ioco S =⇒ ∀TC ∈ TS : ¬(TC fails IUT)),
i.e. only non-conformant IUT may be rejected by a TC ∈ TS.
Exhaustive ,
∀IUT : (¬(IUT ioco S) =⇒ ∃TC ∈ TS : TC fails IUT),
i.e. any non-conformant IUT may be rejected by a TC ∈ TS.
Complete = Sound and Exhaustive

A. Rollet - TAROT2016 - Paris (France) - July 2016 57/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Properties of test suites

TC fails IUT i� an execution of TC‖∆(IUT) reaches Fail

Expresses a possibility for rejection.

→ a single test case may lead to several di�erent verdicts

Soundness, Exhaustiveness, Completeness

A set of test cases TS is

Sound ,
∀IUT : (IUT ioco S =⇒ ∀TC ∈ TS : ¬(TC fails IUT)),
i.e. only non-conformant IUT may be rejected by a TC ∈ TS.
Exhaustive ,
∀IUT : (¬(IUT ioco S) =⇒ ∃TC ∈ TS : TC fails IUT),
i.e. any non-conformant IUT may be rejected by a TC ∈ TS.
Complete = Sound and Exhaustive

A. Rollet - TAROT2016 - Paris (France) - July 2016 57/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test selection

Objective : Find an algorithm taking as input a �nite state ioLTS
S, and satisfying the following properties:

Produces only sound test suites

Is limit-exhaustive i.e. the in�nite suite of test cases that can
be produced is exhaustive

Two techniques :

1 Non-deterministic selection (TorX)

2 Selection guided by a test purpose (TGV)

A. Rollet - TAROT2016 - Paris (France) - July 2016 58/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Non-deterministic selection

Algorithm: partial unfolding of Can(S)

Start in qc0. After any trace σ in Can(S)

If Can(S) after σ ⊆ Fail, emit a Fail verdict

Otherwise make a choice between

Produce a Pass verdict and stop,
Consider all inputs of Can(S) after σ and continue.
Choose one output in those of Can(S) after σ and continue.

Properties

TS = all possible Test cases generated with this algorithm :
TS is sound and limit-exhaustive

A. Rollet - TAROT2016 - Paris (France) - July 2016 59/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Non-deterministic selection

Algorithm: partial unfolding of Can(S)

Start in qc0. After any trace σ in Can(S)

If Can(S) after σ ⊆ Fail, emit a Fail verdict

Otherwise make a choice between

Produce a Pass verdict and stop,
Consider all inputs of Can(S) after σ and continue.
Choose one output in those of Can(S) after σ and continue.

Properties

TS = all possible Test cases generated with this algorithm :
TS is sound and limit-exhaustive

A. Rollet - TAROT2016 - Paris (France) - July 2016 59/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Example

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

q0

q0

q0

q1

q4

Fail

Fail

Fail

Pass

!r

?δ

?a, ?b, ?o

!d

?b

?a, ?o, ?δ

?δ

?a, ?o, ?b

Can(S) TC1

A. Rollet - TAROT2016 - Paris (France) - July 2016 60/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test Purpose generation

Previous algorithm : maybe quite long if we intend to focus on a
speci�c behavior...

Main characteristics of Test Purpose Generation:

Test selection by test purposes describing a set of behaviors to
be tested, targeted by a test case

A. Rollet - TAROT2016 - Paris (France) - July 2016 61/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Test Purpose de�nition

Test Purpose

Deterministic and complete ioLTS TP = (QTP, ATP,−→TP, q
TP
0)

equipped with two sets AcceptTP and RefuseTP of trap states

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

p0

p1

p2
Accept

p3
Refuse

?r

∗

!o
?r

∗

∗∗

Can(S) TP

A. Rollet - TAROT2016 - Paris (France) - July 2016 62/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Selection principle

A. Rollet - TAROT2016 - Paris (France) - July 2016 63/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Synchronous Product : de�nition

De�nition of Synchronous Product

The Synchronous Product of two ioLTS
M1 = (QM1, A,−→M1, q

M1
0), and M2 = (QM2, A,−→M2, q

M2
0) is the

ioLTS M1 ×M2 = (QM1 ×QM2, A,−→, qM1
0 × qM2

0) where −→ is
de�ned by :

(qM1, qM2)
a−→ (q′M1, q

′
M2)⇔ (qM1

a−→M1 q
′
M1) ∧ (qM2

a−→M2 q
′
M2)

A. Rollet - TAROT2016 - Paris (France) - July 2016 64/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

The Synchronous Product Can(S)× TP

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

p0

p1

p2
Accept

p3
Refuse

?r

∗

!o
?r

∗

∗∗

q0,p0

q0,p1 q1,p0

q0,p3 q1,p1 q4,p0 q2,p0

q1,p3 q2,p1 q4,p1 q3,p0

q4,p3 q2,p3 q0,p2 q3,p1

q3,p3 q1,p2

Fail

!r

?δ

!d

!r

?δ
!d

?b !d
!r

!d

?δ, !r
!r

!d
?b

?δ ?a

?o

?b !d

!r

?o ?a
?δ

?δ

?δ
?a

?o

!d

?δ
!r ?δ

?δ
?othw

A. Rollet - TAROT2016 - Paris (France) - July 2016 65/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Complete Test Graph (CTG)

Co-reachability analysis :

Keep the �rst Accept state
in a path → Pass

If q ∈ coreach(Pass) keep q

If q ∈ {Fail} keep q
If q 6∈ coreach(Pass) input
(tester point of view) is
successor of a state
q′ ∈ coreach(Pass) then
Inconc

q0, p0

q0, p1 q1, p0

q1, p1 Inconc q2, p0

q2, p1 Inconc Inconc

Pass Inconc

Fail

!r

?δ

!d

?δ
!d

?b !d
!r

!d
?b

?a

?o

?o ?a

?othw

A. Rollet - TAROT2016 - Paris (France) - July 2016 66/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Ensuring controlabillity of test cases

q0, p0

q0, p1

q0, p1

q1, p1

q2, p1

Pass Inconc

Fail

!r

?δ

!d

!d

?o ?a

?othw

?othw

Example of Test Case

q0, p0

q0, p1 q1, p0

q1, p1 Inconc q2, p0

q2, p1 Inconc Inconc

Pass Inconc

Fail

!r

?δ

!d

?δ
!d

?b !d
!r

!d
?b

?a

?o

?o ?a

?othw

The test suite composed of the set of test cases that the algorithm
can produce is sound and limit-exhaustive.

A. Rollet - TAROT2016 - Paris (France) - July 2016 67/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

If we summarize MBT...

Two �historical� approaches of MBT : based on ioLTS and
Mealy Machines theory

Today, many other approaches exist, with various describing
formats
(e.g. extensions of FSM and LTS, UML, SysML, Markov
chains, Simulink, Lustre, ...)

Many tools are available.
→ A (non-exhaustive, but yet interesting) list may be found
here :
http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html

A. Rollet - TAROT2016 - Paris (France) - July 2016 68/73

http://mit.bme.hu/~micskeiz/pages/modelbased_testing.html

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Outline

1 Generalities on testing

2 Source Code Based Testing (SCBT)

3 Functional testing - Model Based Testing
"Historical" approaches of MBT : based on Mealy Machines
"Historical" approaches of MBT : based on Labelled
Transition Systems

4 Conclusion

A. Rollet - TAROT2016 - Paris (France) - July 2016 69/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concluding remarks

Very active domain

Many issues, both theoretical and practical

Still a lot to do

Huge industrial needs

Perspectives

Many !

See the following presentations of this Summer School !

A. Rollet - TAROT2016 - Paris (France) - July 2016 70/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Concluding remarks

Very active domain

Many issues, both theoretical and practical

Still a lot to do

Huge industrial needs

Perspectives

Many !

See the following presentations of this Summer School !

A. Rollet - TAROT2016 - Paris (France) - July 2016 70/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Thank you for your attention

rollet@labri.fr

A. Rollet - TAROT2016 - Paris (France) - July 2016 71/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Other References (CBT)

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. �Dart: directed automated random testing�, SIGPLAN
Not., 40(6):213�223, 2005.

[SMA05] K. Sen, D. Marinov, and G. Agha. �Cute: a concolic unit testing engine for c�, In Proceedings of
the 10th European software engineering conference , ESEC/FSE-13, pages 263�272. ACM, 2005.

[Got09] A. Gotlieb. �Euclide: A constraint-based testing platform for critical c programs�, In 2th IEEE
International Conference on Software Testing, Validation and Veri�cation (ICST'09), Denver,
CO, page 10p, 04 2009.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. �Counterexample-guided abstraction
re�nement�, In E. Emerson and A. Sistla, editors, Computer Aided Veri�cation, volume 1855 of
Lecture Notes in Computer Science, pages 154�169. Springer, Heidelberg, 2000.

[WMMR05] N .Williams, B. Marre, P. Mouy, and M. Roger. �Pathcrawler: Automatic generation of path
tests by combining static and dynamic analysis�, In EDCC, volume 3463 of Lecture Notes in
Computer Science, pages 281�292. Springer, 2005.

[BH08] S. Bardin and P. Herrmann. �Structural testing of executables.� In International Conference on
Software Testing, Veri�cation, and Validation, Los Alamitos, CA, USA, pages 22�31. IEEE
Computer Society, 2008.

A. Rollet - TAROT2016 - Paris (France) - July 2016 72/73

Generalities on testing Source Code Based Testing (SCBT) Functional testing - Model Based Testing Conclusion

Other References (MBT)

[LY96] D. Lee and M. Yannakakis.�Principles and methods of testing �nite state machines - a survey�,
Proc. of the IEEE, 84:1090�1123, 8 1996.

[Pet00b] A. Petrenko.�Fault model-driven test derivation from �nite state models: Annotated
bibliography�, In Proceedings of the 4th Summer School on Modeling and Veri�cation of Parallel
Processes, MOVEP '00, pages 196�205. Springer-Verlag, 2000.

[NT81] S. Naito and M. Tsunoyama. �Fault Detection for Sequential Machines by Transition-Tours�,
Proceedings of Fault Tolerant Computer Systems, pages 238�243, 1981.

[Gon70] G. Gonenc.�A method for the design of fault detection experiment�, IEEE transactions on
Computers, C-19:551�558, 1970.

[SD88] K. Sabnani and A. Dahbura. �A protocol test generation procedure�, Computer Networks and
ISDN Systems, 15:285�297, 1988.

[Cho78] T.S. Chow. �Testing software design modeled by �nite-state machines�, IEEE Transactions on
Software Engineering, SE-4(3):178�187, 1978.

[VCI89] S. Vuong, W. Chan, and M. Ito. �The UIOv-Method for Protocol Test Sequence Generation�, In
2nd IWPTS International Workshop on Protocol Test Systems, Berlin, 1989.

[FBK+91] S. Fujiwara, G. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. �Test selection based on
�nite-state models�, IEEE Transactions on Software Engineering, 17(6):591�603, June 1991.

[CA92] W. Chung and P. Amer. �Improved on UIO Sequence Generation and Partial UIO Sequences�, In
Protocol Speci�cation, Testing, and Veri�cation, XII, Lake Buena Vista, Florida, USA.
North-Holland, June 1992.

[BT00] E. Brinksma and J. Tretmans. �Testing Transition Systems: An Annotated Bibliography�.
Summer School MOVEP'2k � Modelling and Veri�cation of Parallel Processes, p. 44�50,
Nantes, 2000.

A. Rollet - TAROT2016 - Paris (France) - July 2016 73/73

	Generalities on testing
	Source Code Based Testing (SCBT)
	Functional testing - Model Based Testing
	"Historical" approaches of MBT : based on Mealy Machines
	"Historical" approaches of MBT : based on Labelled Transition Systems

	Conclusion

