
FSM-based test derivation methods:
From TAROT-1 to TAROT-12

Nina Yevtushenko, Tomsk State University, Russia

nyevtush@gmail.com

mailto:nyevtush@%D0%BF%D1%8C%D1%84%D1%88%D0%B4.com

12th TAROT Summer School

TAROT (Training And Research On Testing) is a

Marie Curie Research Training Network (MCRTN).

It focuses on the protocols, services and systems testing,

that is an essential but empirical and neglected domain of

validation and Quality of Service (QoS).

Then the TAROT network aims to strengthen and

develop the collaboration among major European testing

communities.

Moreover TAROT will promote testing in education, research,

software engineering and industry.

In order to achieve this objective, the participants will provide

 training courses, including Ph.D. programs and summer schools.

In addition, workshops will be organized,

thanks to which the TAROT network will communicate its results,

and maybe find other partners.

Ana Cavalli, coordinator of TAROT

2

TAROT 1

http://europa.eu.int/comm/research/fp6/mariecurie-actions/home_en.html
mailto:ana.cavalli@int-evry.fr
mailto:ana.cavalli@int-evry.fr

TAROT 2005

12th TAROT Summer School

TAROT -1 has been held in Paris in 2005

Was an event of big success

Participants agreed to have the annual

Summer TAROT School

It is the 12th Summer TAROT School now

At each Summer school a lot of attention has

been paid to test derivation based on transition

models and this School inherits this tradition

3

Outline
- FSM based test derivation: Why FSMs?
- Test models for FSMs
- White box
- Black box: W-methods and its derivatives
- Grey box
- Deriving tests for complete deterministic FSMs
- Initialized FSMs: W-method and its derivatives
- Non-initialized FSMs: Checking sequences
- Partial and nondeterministic FSMs: Reducing the complexity

of test derivation
- Adaptive testing
- Using appropriate projections
- Extended and Timed FSMs
- Conclusions

12th TAROT Summer School 4

Debugging problem

A fragment of C code

…

{

unsigned char n1, n2, v;

//initialize n1, n2

v = n1 + n2;

return v;

}

Is this code safe?

How to check that v = n1 + n2
is not bigger than 255?

Otherwise, the result will be
wrong

150 + 150 = 300 (mod256) = 44

12th TAROT Summer School 5

Conformance testing

int f(int *a, int size_a)

{

int i, m;

i = 0;

m = a[0];

while(i < size_a)

{

if(m < a[i]) m = a[i];

i++;

}

return m;

}

The function returns the
maximal integer in the array
a where size_a is the
dimension of a

How to check that the function

is correctly implemented?

How many arrays should be

checked?

Is it enough to check all the

arrays of dimension 3?

12th TAROT Summer School 6

Hardware testing (shift register)

There is no link

How to check?

It is not enough to apply
all input sequences of
length 3

An input sequence 1***
of length > 3 has to be
used

How to check this fact? Starts at 0000

12th TAROT Summer School 7

Model based test derivation
• Solution: to use transition systems as formal models

for deriving tests

Question: What can be applied and what can be
observed

We assume that

• Inputs can be applied

• Output actions can be observed

• A system moves from state to state under inputs
and produces outputs

• States cannot be observed

12th TAROT Summer School 8

Conformance Testing

Spec

Test Derivation

Test Cases (Test Suite)

Expected = Observed

Apply to

Expected Output Observed Output

Pass

Yes No

Conformance Relation

IUT (Imp)

FAIL

12th TAROT Summer School 9

Finite automata and FSMs: why
FSMs

I/O automata

Advantages

• Can have infinite number of states, inputs
and outputs

• Each transition corresponds to an input or an
output or to a non-observable action, i.e., an
output can be produced to a sequence of
inputs

• A complete test suite is derived from a
complete successor tree

Disadvantages

• Complete tests are infinite while testing time
is finite

• Still there is a problem with distinguishing
sequences when Imps are explicitly
enumerated

• Races between inputs and outputs

FSMs

Disadvantages

• Finite number of states, inputs and outputs

• Each transition corresponds to a pair
input/output

• No non-observable actions

• A complete test is derived with respect to a
given fault model

Advantages

• Finite tests with the guaranteed fault
coverage

• Good background for deriving distinguishing
sequences

• No races between inputs and outputs: next
input is applied after receiving the output to
the previous input

12th TAROT Summer School

In both cases, IUT is input enabled

10

Limiting the number of Imp states

! All faulty Imps within and possibly
much more are detected

Will be detected with

a complete test suite

All possible implementations

12th TAROT Summer School 11

FSM based test derivation

Extract:

– A Formal FSM Specification Spec (requirements) of the System

– Formally describe a set of faulty implementations

 Derive a finite set of finite input sequences (Test Suite) such that after
applying them to IUT we can guarantee that Imp conforms to Spec

– Conforms: has many definitions depending on the Formal
Specification

Spec Imp

I

O

I

O

12th TAROT Summer School 12

Fault model in Conformance Testing

< Spec, Á , FD >

Formal

Specification

Conformance

relation

Fault Domain, i,e.

A complete test suite w.r.t. <Spec, Á , FD> has to detect

each Imp Í FD such that Imp does not conform (i.e., not

equivalent, not reduction, etc) to Spec

All Faulty Implementations

(explicitly or implicitly

described)
Guaranteed Fault Coverage:

12th TAROT Summer School 13

FSM Model in Conformance Testing

< Spec, Á , FD >

FSM Specification

Conformance

relation

Fault Domain, i.g.,

A complete test suite w.r.t. <Spec, Á , FD> has to detect

each FSM Imp Í FD such that Imp does not conform (i.e.,

not equivalent, not reduction, etc) to Spec

FSMs which describe all

possible Imp

e.g., Equivalence (@), Reduction (¢), etc

Guaranteed Fault Coverage:

12th TAROT Summer School 14

12th TAROT Summer School

FSMs (Finite State Machines)

Fault models for initialized

complete deterministic FSMs

Complete test suites

Fault models for non-initialized

complete deterministic FSMs

Checking sequences

15

Finite State Machine (FSM)

S = (S, I, O, hS) is an FSM

- S is a finite nonempty set of

states with the initial state s0

- I and O are finite input and

output alphabets

- hS Ì S ³ I ³ O ³ S is a behavior

relation

2

i/o2

i/o1,o3

1

i/o1

i i i é o1 o2 o3 é
FSM

12th TAROT Summer School

FSM

… s1
sn

16

FSM S = (S, I, O, hS) can be

- deterministic if for each pair (s, i) Í S ³ I there exists at most one
pair (o, s¡) Í O ³ S such that (s, i, o, s¡) Í hS

 otherwise, S is nondeterministic
- complete if for each pair (s, i) Í S ³ I there exists

 (o, s¡) Í O ³ S such that (s, i, o, s¡) Í hS

 otherwise, S is partial

- initialized if there is the initial state s1 otherwise,

 otherwise, S is non-initialized
This one is non-initialized,
complete and deterministic

2

i2/o2

i1/o1, i2/o3

1

i1/o1

12th TAROT Summer School 17

One of FSMs for PAP (Password

Authentification Protocol)

RAR+ - çgoodè login

RAR- - çbadè login

SAA - Ack

SAN ï Nack

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

12th TAROT Summer School 18

Complete deterministic FSMs

Deterministic complete FSM is a 5-tuple (S, I, O, dS, lS)

FSM

…

I O

s1
sn

(s, i, o, s’) is a transition from state s under input i to state s’

with the output o if dS(s, i) = s’ and lS(s, i) = o

! At each state for each input sequence there is a single output sequence

S is a finite set of states with the

initial state s1

I is a finite non-empty set of inputs

O is a finite non-empty set of outputs

transition function dS(s, i)

output function lS(s, i)

12th TAROT Summer School 19

Equivalence relation between initialized
complete deterministic FSMs

FSMs Imp and Spec are
equivalent if their output
responses to each input
sequence coincide

Caution: Number of input
sequences is infinite, while
we can apply only finite
number of input sequences
when testing the
conformance

Equivalent FSMs have the
same set of traces

Spec

…

I O

s1
sn

Imp

…

I O

t1
tm

12th TAROT Summer School 20

Reduced FSM

A complete deterministic FSM is reduced if every two different states are not
equivalent

FSM is reduced

Separating sequences:

g(s1, s2) = x

g(s2, s3) = y

g(s1, s3) = z

s1 s2

x/1

x/0, y/1

s3

z/1
y/0,

z/0

For each deterministic complete FSM there exists a reduced FSM

with the same Input/Output behavior, i.e., a reduced FSM with the

same set of traces

Conclusion: we can consider only reduced specification FSMs

12th TAROT Summer School 21

Test derivation for initialized FSMs

Fault model - <Spec, @ , FD>

Spec is a complete deterministic reduced FSM

FD – fault domain that contains complete deterministic FSMs,
possibly with more states

Þ

- Output faults

- Transfer faults

- Implementation has more states and transitions

! Reliable reset is assumed

12th TAROT Summer School 22

Fault model

< Spec, @ , FD >

Spec – the initialized
specification FSM with n
states

! Usually Spec is a complete
deterministic reduced FSM

FD is the fault domain that
contains each FSM that
describes each possible IUT
that is complete and
deterministic

Equivalent FSMs have the
same set of traces

Spec

…

I O

s1
sn

Imp

…

I O

t1
tm

12th TAROT Summer School 23

Test Suite

A test case is a finite input
sequence of the
specification FSM Spec. A
test suite is a finite set of
test cases

We assume that each
implementation FSM Imp
has a reliable reset r that
takes the Imp from each
state to the initial state

Each test case in the test suite
is headed by r, i.e. is applied
to Imp at the initial state

Specification and implementation
FSMs

Spec

…

I O

s1
sn

Imp

…

I O

t1
tm

12th TAROT Summer School 24

Complete test suite

Fault domain FD - the set of FSMs that describe all
possible faults when implementing the specification:

FD = {Imp1, …, Impn, …}

A test suite TS is complete w.r.t. FD if TS detects each
FSM Imp Í FD that is not equivalent to Spec

! If the fault domain contains each FSM over alphabets
I and O and Spec is complete and deterministic then
there is no complete test suite w.r.t. such fault
domain

12th TAROT Summer School 25

Example
Inverter

FSM Spec with a single state

Complete tests

- Complete test when Imp has a
single state

{01} or {10}

- Complete test when Imp has at
most two states

{01, 10, 00, 11}

! Nothing can be deleted

Conclusion: a complete test
significantly depends on the
number of states of Imp

0/1

1/0

FSM Imp with two states

0/1

1/0

0/1

1/1

12th TAROT Summer School 26

Test architecture

Test Generator

Imp

Spec

comparator

Conformance relation ï the equivalence
12th TAROT Summer School 27

Deriving FSM based tests

Test assumptions

• We can óbuildô a complete deterministic FSM that simulates a faulty

implementation

• There can be faults of three types:

-Transition faults

- Output faults

- New faulty transitions can be added

• When testing we can only apply input sequences and observe output

sequences

! Sometimes states also can be observed but we do not discuss such

testing

12th TAROT Summer School 28

FSM based test models

• White box (explicit enumeration)

• Black box (the IUT structure is unknown:
possibly the upper bound on the number of
the IUT states is available)

• Grey box (the IUT structure is partly available)

12th TAROT Summer School 29

Explicit enumeration (white box

testing)

Explicit enumeration can be
used when the number of
mutants of Spec is not big

Faults are explicitly enumerated

Advantage: Easy to

implement

Disadvantage: Cannot be

applied when the number

of faults (the number of

mutants) is huge

Check whether Spec and Imp
are equivalent

 Spec Æ Imp

If Spec Æ Imp
is not complete then

 derive a distinguishing
sequence (a test case that kills
a faulty implementation Imp)

Methods for deriving
distinguishing sequences for
two deterministic FSMs are
well elaborated

12th TAROT Summer School 30

Distinguishing sequences for two
FSMs

If Spec Æ Imp is not complete

 then derive an input sequence a to reach a state with an

undefined input i

The sequence a is a distinguishing sequence

If Spec has n states while Imp has m states then

 the length of a is at most m + n ï 1 (despite the fact that the

product Spec Æ Imp can have up to mn states)

! Other methods for deriving a distinguishing sequence can be

used

12th TAROT Summer School 31

Black box testing

• An implementation FSM under test is not known

Þ

• Tests are derived based on the specification FSM

Question: What can be guaranteed in this case?

Reply: If nothing is known about the FD then a complete test
suite cannot be derived (Moore, 1956, Gill, 1964)

The set FD should be finite and the weakest assumption is that
the upper bound on the number of states of an
implementation FSM is known

12th TAROT Summer School 32

Most popular test derivation
methods for black box testing

• Transition tour (guaranteed killing output faults)

Transition tour is a set of input sequences that traverse
each transition of the specification FSM

• W-method and its derivatives (guaranteed killing
output and transfer faults)

• Most methods for detecting transfer faults) are
based on W-method (initialized FSMs) and

12th TAROT Summer School 33

One of FSMs for PAP

RAR+ - çgoodè login

RAR- - çbadè login

SAA - Ack

SAN ï Nack

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

12th TAROT Summer School 34

Transition tour for the PAP model

Test suite:

RAR+

RAR-RAR-RAR-

Expected output

reactions:

SAA

SAN SAN SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

12th TAROT Summer School 35

Detecting an output fault

Test suite:

RAR+

RAR-RAR-RAR-

Expected:

SAA

SAN SAN SAN

Observed:

SAA

SAN SAA SAN

close

open

Ack

RAR+/SAA

RAR-/SAA

RAR-/SAN

try2

try3

RAR-/SAN

12th TAROT Summer School 36

Trying to detect a transfer fault

Test suite:

RAR+

RAR-RAR-RAR-

Expected:

SAA

SAN SAN SAN

Observed:

SAA

SAN SAN SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

A transition fault is not necessary detected by a transition

tour!!! 12th TAROT Summer School 37

Black box testing (guaranteed
killing transfer faults)

• Most methods for detecting transfer faults in
initialized complete deterministic FSMs are based on
W-method

• Spec is a complete deterministic reduced FSM with n
states

• The upper bound m on the number of states of an
implementation FSM is known

• The fault models

<S, @, Àn> or <S, @, Àm>, m ² n

12th TAROT Summer School 38

The idea behind

the W-method

W-method

UIO-method

Wp-method

HIS-method

H-method

SPY-method

Time-line for W-method and its derivatives

12th TAROT Summer School 39

Isomorphic FSMs

Two FSMs Spec and

Imp are isomorphic iff

1. There exists one-to-one
Y: T ­ S between states,
Y(t1) = s1

2. The same Y is kept
between transitions

lImp(t, i) = lSpec(Y(t), i)

and

Y(dImp(t, i)) = dSpec(Y(t), i)

Spec and Imp have the same
number of states

Spec

…

I O

s1
sn

Imp

…

I O

t1
tn

Y : ¬® …………... ¬®

12th TAROT Summer School 40

Test suite derivation for detecting
transfer faults (m = n)

Two states sj and sk of the specification FSM are
equivalent if the FSM has the same output response
at states sj and sk to each input sequence

Proposition. Given complete deterministic reduced
specification FSM Spec and a complete deterministic
implementation FSMs with the same number of
states, Spec and Imp are equivalent iff Imp is
isomorphic to Spec

sj
a/b sk

a/b

12th TAROT Summer School 41

How to check if an implementation is
isomorphic to Spec

1. To assure that a given
implementation Imp has n
states

2. To assure that for each
transition of Spec there
exists a corresponding
transition in the FSM Imp

Checking states and transitions
of Imp

Spec

…

I O

s1
sn

Imp

…

I O

t1
tn

Y : ¬® …………... ¬®

! We forget about the infinite set of input sequences and check

finite number of transitions
12th TAROT Summer School 42

Reduced FSM

Given a complete deterministic reduced FSM, for every two different states
there exists a sequence that distinguishes these states (separating
sequence)

 FSM is reduced

Separating sequences:

g(s1, s2) = x

g(s2, s3) = y

g(s1, s3) = z

s1 s2

x/1

x/0, y/1

s3

z/1
y/0,

z/0

For each deterministic complete FSM there exists a reduced FSM

with the same Input/Output behavior, i.e. a reduced FSM with the

same set of traces

Conclusion: we can consider only reduced specification FSMs

12th TAROT Summer School 43

Separating sequences

As we do not directly
observe states of Imp,
we use separating
sequences to draw
some conclusions

States sj and sk of Spec are
separated by input
sequence a if Spec has
different output
responses at sj and sk to
a

If Imp produces different
outputs to a then Imp is
at two different states tj
and tk when is applied

… tja/b1 … … tka/b2 …

Imp

…

I O

t1
tn

12th TAROT Summer School 44

When testing against FSMs …

o 1) can be solved via an application of a transfer sequence

o 2) can be solved via an application of a separating sequence

1) Reaching each FSM state s

2) Distinguishing s from any other FSM state

3) Traversing each transition to check the output and final
state

12th TAROT Summer School 45

W-method (m = n)

1. For each two states sj and sk of the specification

FSM Spec derive a distinguishing sequence gjk
Gather all the sequences into a set W that is

called a distinguishability set

2. For each state sj of the FSM Spec derive an input

sequence that takes the FSM Spec to state sj

from the initial state

Gather all the sequences into a set CS that is

called a state cover set

12th TAROT Summer School 46

W-method (2)

3. Concatenate each sequence of the state cover set V with the

distinguishability set W: TS1 = V.W

4. Concatenate each sequence of the state cover set V with the set

iW for each input i: TS2 = V.I.W

… State cover set V

W

W

i/o

i/o

W

W

! The shortest test suites are

derived when FSM has

a distinguishing sequence

R. Dorofeeva, K. El-Fakih,

S. Maag,R. Cavalli,

N. Yevtushenko, FSM-based

conformance testing methods:

A survey annotated with

experimental evaluation,

Inform. & Softw. Tech., vol. 52,

no. 12, pp. 1286–1297, 2010.
12th TAROT Summer School 47

W-method (3)

4. Concatenate each sequence of the state cover set V
with the set iW for each input i: TS2 = V.I.W

Proposition. If an implementation FSM Imp that passed
TS1 passes also TS2 then one-to-one mapping Y
satisfies the property:

lImp(t, i) = lSpec(Y(t), i) & Y(dImp(t, i)) = dSpec(Y(t), i)

i.e., FSM Imp is isomorphic, and thus, is equivalent to
Spec

12th TAROT Summer School 48

W-method (4)
Test suite returned by W-method

All the sequences that are prefixes of other

sequences can be deleted from a complete test suite

without loss of its completeness

… State cover set V

W

W

i/o

i/o

W

W

12th TAROT Summer School 49

W-method (5)

When a state cover V is prefix closed, while the
distinguishability set W is suffix closed, the set

V.I.W

is a complete test suite for the case when the
IUT has not more states than the specification

12th TAROT Summer School 50

Example

FSM with three states State identification FSM with three states

1 2

3

i1/0

i2/1

i1/0

i2/0

i1/0

i2/1

i1/1

i2/0

Output to i1i1

1: 00

2: 01

3:10

t1

t2

t3

i1/o

i1/o

i1/1

i1/1

12th TAROT Summer School 51

Example (2)

Spec Complete test suite

1 2

3

i1/0

i2/1

i1/0

i2/0

i1/0

i2/1

i1/1

i2/0

t1

t2 t2

t3 t1

t1 t1

i2/1 i1/o

i1/o i2/o

i1/1 i1/1

i1i1/01

i1i1/00

i1i1/01 i1i1/00

12th TAROT Summer School 52

Experimental results for W-
method

State

num.

Input

num.

Output

num.

Trans.

num.

Average

length

30 6 6 180 2545

30 10 10 300 3393

50 6 6 300 5203

50 10 10 500 6773

100 10 10 1000 17204

12th TAROT Summer School 53

Experimental results (conclusion)

Theoretically:

Length is O(kn3) where

k – number of inputs

n - number of states

Experiments show:

- tests are much shorter than corresponding theoretical upper
bounds

- test suites are fast generated (compared with explicit
enumeration)

STILL LONG ENOUGH

12th TAROT Summer School 54

Studying W-method

Conclusions:

1. The set V.I is
presented in each
complete test suite

(each transition at each
state must be traversed)

2. The length of a
complete test suite
significantly depends how
states are identified, i.e.,
on the choice of state
identifiers

Core set

… State cover set V

W

i/o

i/o

W

12th TAROT Summer School 55

Modifications of W-method

1. DS-method

2. UIO-method

3. Wp-method

4. UIOv-method

5. HSI-method

Depending how a set of
separating sequences is
defined

! H-method allows to identify states with separating sequences derived on-the-fly

! SPY method allows to check transitions after different transfer sequences

of a state cover set
12th TAROT Summer School 56

H- and SPY-methods

• H-method

Allows to use different
state identifiers when
checking different
transitions

Conclusion: State
identifiers can be derived
on the fly

• SPY-method

Allows to use different
input sequence when
reaching a state where a
transition is checked

Conclusion: Transfer
sequences can be derived
on the fly

12th TAROT Summer School

! Still there are no necessary and sufficient conditions for a test suite to be complete

57

Using different state identifiers in H-
method

W2 = {y}, W3 = {x} but H2 = {x, y}, H3 = {x, y}

s1

s3 s2

s2 s4

x y

x y

x y

y

y

y

… …

…

s1

s3 s2

s2 s4

x y

x y

y

y

y

y

… …

…

x

12th TAROT Summer School 58

H-method (illustration)

s
1

s
3

s
2

s
4

y/0

x/0x/1
y/0

x/1

x/1

y/0

y/1

s1

s3 s2

s2 s4

x y

x y

x y

y

y

y

… …

…

s1

s3 s2

s2 s4

x y

x y

y

y

y

y

… …

…

L = 41 L = 25

Spec HIS-method H-method

12th TAROT Summer School 59

SPY-method (illustration)

HSI-method SPY-method

s1

s3 s2

s2 s4

x y

x y

x y

y

y

y

… …

…

s1

s3 s2

s2 s4

x1 y

x y

y

y

y

y

… …

…

L = 41 L = 26

x2

s3

12th TAROT Summer School 60

Experimental results

State

num.

Input

num.

Output

num.
Trans.

num.
Wp H,

SPY

30 6 6 180 1626 1105

30 10 10 300 2175 1568

50 6 6 300 3261 2142

50 10 10 500 4305 2852

100 10 10 1000 10503 6880

12th TAROT Summer School 61

Conclusions

1. As it is known, the DS-method returns shortest test
suites

But: less than 10% of specifications possess a DS

2. H- and SPY- methods return tests that are comparable
with those returned by DS-method

And: can be applied to any reduced (partial or complete)
specification

3. The test quality is very good

4. Test suites returned by all above methods are still too
long for real systems: the abstraction level should be
carefully chosen

12th TAROT Summer School 62

Experimental results (2)

A number of protocols have been considered

• SCP

• POP3

• Time

• TCP

• …

Java implementation of each protocol has been developed and the mjava tool
has been used for the mutant derivation

All the tests returned by HIS method detect 100 % of implementation faults
injected by the mjava tool

The ratio between test suite length returned by different methods is almost
the same as for randomly generated FSMs

 12th TAROT Summer School 63

Faults can increase the number of
states of an implementation FSM

Faulty implementation can have more states than the
specification

m – number of states of Imp

n – number of states of Spec

m > n

• Fault model <S, @, Àm>

A single transfer fault in the specification EFSM of a
Simple Connection Protocol (SCP) can transform the
corresponding FSM into an FSM with more states

12th TAROT Summer School 64

W - method and its modifications

1. State cover set V is augmented with all input
sequences of length m – n

2. State idenitifiers are applied according to a
given method

! The length of a test suite becomes exponential
w.r.t. the number of Spec inputs

!! Experiments show almost the same
relationship between length of test suites
returned by different modifications of W -
method

 12th TAROT Summer School 65

Publications
1. Chow, T.S. 1978. Test design modeled by finite-state machines. IEEE Transactions on

Software Engineering, 4(3): 178--187.

2. Lee D. and Yannakakis, M. 1996. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8): 1090--1123.

3. Lai, R., 2002. A survey of communication protocol testing. The Journal of Systems
and Software. 62:21--46.

4. M.Dorofeeva, K.El-Fakih, S.Maag, A.Cavalli, N.Yevtushenko. FSM-based conformance
testing methods: A survey annotated with experimental evaluation. Information and
Software Technology, 2010, 52, (12), pp. 1286-1297.

5. A. Simao, A. Petrenko, N. Yevtushenko. Generating reduced tests for FSMs with extra
states // LNCS 5826, P. 129—145.

6. M. Forostyanova. Tree automata based test derivation method for
telecommunication protocol implementations. Trudy ISP RAS, 2014, N 6.

7. A. Ermakov, N. Yevtushenko. Increasing the fault coverage of tests derived against
Extended Finite State Machines. Proceedings of Seventh Workshop
Program Semantics, Specification and Verification: Theory and Applications, 2016

12th TAROT Summer School 66

Minimizing FSM-based tests for
conformance testing

The test quality is very good

BUT

Test suites returned by all above methods are too
long

Question: how to shorten test suites, preserve
some fault coverage without explicit
enumeration of faulty FSMs

Solution: to consider user-driven faults

12th TAROT Summer School 67

How to reduce the length of a test
suite

Solution: To partition the set of transitions of the
specification FSM into clusters and check only
transitions of one cluster at each step

Incremental testing or testing user-driven faults

Experimental results are very promising especially for
the case when faults can increase the number of
states of the specification

12th TAROT Summer School 68

Incremental testing or user-driven
faults

Only some transitions
should be checked

An implementation is
assumed to be known
up to the transitions
that should be checked

 S1 S2

S3 S4

y/1
y/0

x/0

y/1
y/0

x/1

S1 S2

S3 S4

y/1
y/0

x/0

y y/0

x/1

?
?

x/1
x/1

y
y/1

Other transitions are not changed

12th TAROT Summer School 69

Fault model for incremental testing

Fault model - <Spec, @, Sub(MM)>

Spec is a complete deterministic specification FSM

MM is a mutation (nondeterministic FSM) where
unmodified transitions are as in the specification
while

 modified transitions are chaos transitions

! A bit more tricky when m > n but this is enough for
today lecture

12th TAROT Summer School 70

Fault domain for incremental testing
(2)

Initial Specin Possible implementations

t1 t2

x/1

x

?
Initial Impin

s1 s2

x/1

x/0

s1 s2

x/1

x/0

Modified Spec

t1 t2

x/1

x/0

t1 t2

x/1

x/1

t1 t2

x/1

x/0

t1 t2

x/1

x/1

12th TAROT Summer School 71

Complete test suite

Incremental complete test suite has to detect each
nonconforming implementation where all unmodifed
specification transitions are known

®

The fault domain has the finite number of FSMs

FD = {Imp1, …, Impk}

Number of mutant FSMs = (n·p)t

n – number of states, p – number of outputs, t – number of modified
transitions

12th TAROT Summer School 72

When is it enough to check only
modified transitions?

1. When the final state of each modified
transition has a state identifier in the
unmodifed part of the modified Spec

2. When each modifed transition is reachable
through unmodified transitions in the
modifed Spec

! Solution: to derive partitions in order to satisfy
the above properties

12th TAROT Summer School 73

Final state of each modified transition has a
state identifier in the unmodifed part

Example: add two new

transitions

Only modifed transitions
are tested

…

i/o

I/o

W

SI

SI
SI

yy is a DS in the unmodifed part

TS = {r.x.x.yy, r.xx.x.yy}

Compare: HSI_length = 25

If the whole Imp is tested

y/0

S1 S2

S3 S4

y/0
y/0

x/0
y/1

x/1

x/0

x/0

12th TAROT Summer School 74

All states are reachable through
unmodified transitions

Example

Only modified transitions
are tested

…

W

I/o

I/o

SI

SI

SI

SI

State s3 has no state identifier in

the unmodified part but each state is

reachable through unmodified transitions

yy is a DS

S1 S2

S3 S4

y/0
y/0

x/0
y/1

y/0

x/1

x/0

x/1

Compare: length = 15

HSI_length = 25

12th TAROT Summer School 75

General procedure

1. For each state that is reachable via unmodified transitions
identify the state and check only modified transitions from
this state

2. For each state that has a state identifier in the unmodified
part identify the state (if reachable via modified transitions)
and check modified transitions

3. For all other states, identify the state and check each
outgoing transition

4. Delete sequences that do not traverse modified transitions

Step 3 can be improved

12th TAROT Summer School 76

Experimental results

s i HSI

length

0-5%

modif

5-10%

modif
10-15%

modif

15-20%

modif

20 10 2992 93 337 490 785

20 20 5818 148 477 999 1513

30 10 5333 135 518 957 1450

35 10 6588 148 539 1013 1537

40 5 3737 89 345 636 887

12th TAROT Summer School 77

Experimental results (2)

Ratio H = HSI_length/IncrTest_length

0-5 %

modif

5-10 %

modif

10-15 %

modif

15-20 %

modif

36.0 11.3 6.1 4.0

The ratio slightly increases when

the number of transitions increases

12th TAROT Summer School 78

Implementation can have more states
than the specification

A faulty implementation can have more states
than the specification

m – number of states of Imp

n – number of states of Spec

m > n

 12th TAROT Summer School 79

State cover of Imp

Question: As a modified Imp inherits some
transitions from the Spec, possibly there exists
a shorter set than V. Pref(Im-n) that is a state
cover set of each possible Imp?

Reply: Yes, a state cover set V.Pref(Im-n) can be
reduced

12th TAROT Summer School 80

Experimental results

n

(Spec)

m

(Imp)

Input_

num

Modif

%

Incr_

length

HSI_

length

20 21 4 30 343 3773

20 22 4 20 339 17238

40 41 8 30 1014 ?

40 42 8 30 1060 ?

12th TAROT Summer School 81

Conclusions

Incremental test derivation methods return
much shorter test suites

Future work (for example):

Based on incremental testing methods

to derive a test suite that detects single and
double output/transition faults of Spec

12th TAROT Summer School 82

Publications

1. K. El-Fakih, N. Yevtushenko, and G. v. Bochmann.
FSM-based incremental conformance testing
methods , IEEE Transactions on Software
Engineering, 204, 30(7), 425-436.

2. K. El-Fakih, M. Dorofeeva, N. Yevtushenko, G.v.
Bochmann. FSM based testing from user defined
faults adapted to incremental and mutation testing.
Programming and Computer Software, 2012, Vol. 38,
Issue 4, pp. 201 - 209

12th TAROT Summer School 83

12th TAROT Summer School

Testing non-initialized FSMs

No reliable reset

or

The reset is very expensive

84

Finite State Machine (FSM)

S = (S, I, O, hS) is an FSM

- S is a finite nonempty set of

states with the initial state s0

- I and O are finite input and

output alphabets

- hS Ì S ³ I ³ O ³ S is a behavior

relation

2

i/o2

i/o1,o3

1

i/o1

i i i é o1 o2 o3 é
FSM

85 12th TAROT Summer School

FSM

… s1
sn

Two complete non-initialized FSMs are

equivalent if for each state of one machine there

is an equivalent state in another machine

85

Checking sequences [Hennie64]

• Non-initialized FSMs

• The fault model <Spec, @, Àn> where Spec is a
reduced strongly connected complete deterministic
FSM that has a distinguishing sequence

An input sequence a is a checking sequence if for each
FSM Imp with at most n states that is not equivalent
to Spec, Spec and Imp have different output
responses to a

! a separates (distinguishes) Spec from any non-
equivalent FSM with at most n states

12th TAROT Summer School 86

Checking sequences (2)

• The method for deriving a checking sequence
is the same: to reach each state and to
traverse each transition; states are identified
using a distinguishing sequence

! It is much harder to reach a state without a
reliable reset

! The length of a distinguishing (separating)
sequence (if it exists) is exponential w.r.t the
number of states of the specification FSM

 12th TAROT Summer School 87

How to decrease the complexity?

Providing effective heuristics

Research groups of A. Zakrevskiy, H.

Yenigün, R. Brayton, A. Cavalli

Switching from preset to adaptive

test derivation strategy

Research groups of M. Yannakakis, R.

Hierons , H. Yenigün, A. Simão, A.

Petrenko, N. Yevtushenko,

12th TAROT Summer School 88

Adaptive testing for FSMs

Next input depends on the responses to previous
inputs

i
TS

s0 sn …

FSM X o

o

Next input depends on the output to previous inputs

The length of adaptive checking sequence is less than the length of

preset sequences

Conclusion: adaptive checking sequences are shorter than preset

Publications

1. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and verification.
IEEE Trans. on Computers, 43(3), pp. 306-320 (1994)

2. Petrenko, A., Simão, A: Checking Sequence Generation Using State Distinguishing
Subsequences. The Computer Journal, 2015 (published online, 2014).

3. Ermakov, A.: Deriving checking sequences for nondeterministic FSMs, In Proc. of the Institute
for System Programming of RAS, Vol. 26, pp. 111-124 (2014) (in Russian)

4. Yevtushenko, N., Kushik, N: Decreasing the length of adaptive distinguishing experiments for
nondeterministic merging-free finite state machines. In Proc. of IEEE East-West Design & Test
Symposium, pp.338 – 341 (2015)

5. U. C. Türker, T. Ünlüyurt, H. Yenigün: Effective algorithms for constructing minimum cost
adaptive distinguishing sequences. Information and Software Technology 74, pp. 69-85
(2016)

6. H. Yenigün, N. Yevtushenko, N. Kushik: Some Classes of Finite State Machines with Polynomial
Length of Distinguishing Test Cases. In Proceedings of 31th ACM Symposium on Applied
Computing (SAC 2016), track: Software Verification and Testing (SVT 2016). Pisa, Italy, Apr 3-
8, 2016, pp. 1680 – 1685.

12th TAROT Summer School 90

Conclusions

• FSMs are useful for deriving high quality test
suites; however, as FSM specifications have
many states, tests are too long

• The problem is how to extract FSM from an
informal specification

• Usually an extracted FSM is partial and non-
deterministic

12th TAROT Summer School 91

Non-classical FSMs

Unfortunately, FSMs extracted from real systems
are not complete and deterministic

• Partial deterministic

• Complete non-deterministic

• Partial non-deterministic

• Non-observable

How to derive tests?

12th TAROT Summer School 92

Partial specification

1. Spec can be partially specified;

Imp is a complete FSM

2. To complete Spec adding loops for undefined
transitions with output ‘IGNORE’.

3. Imp conforms to Spec iff Imp is quasi-
equivalent to Spec , i.e., has the same
behavior for defined input sequences

12th TAROT Summer School 93

Quasi-equivalence relation

A complete FSM Imp is
quasi-equivalent to
Spec if their output
responses coincide for
each input sequence
that is defined in the
Spec

A partial Spec and a
complete Imp

s1 s2

y/0
x/1

Spec

Imp

t1 t2
y/0

x/1

t3
x/0

x/1
y/0

y/1

12th TAROT Summer School 94

W-, Wp-, UIOv-methods cannot be
used

W-, Wp, UIOv- methods cannot be generally
used as not each partial FSM has the
distinguishability set W

 s1 s2

x/1

x/0, y/1

s3

z/1
y/0,

z/0

Distinguishability set

does not necessary exist

12th TAROT Summer School

HIS, H, SPY still can be applied,

Moreover, Spec is not required to be reduced

95

Non-deterministic FSMs (NFSMs)

Input/

state

a b

x a / 0,1,2,3 a / 1,2

y b / 1,2 a / 0

b /3

States: { a, b }

Inputs: { x, y}

Outputs : {0, 1, 2, 3}

Tabular Representation of a NFSM

At state a under the input x, we have four transitions

 (a, x, 0, a), (a, x, 1, a), (a, x, 2, a), (a, x, 3, a)

12th TAROT Summer School 96

Why non-determinism ?
• For example, when we have limited

Controllability or Observability as in Remote
Testing

• Due to the optionality

• Due to the abstraction level

• …

12th TAROT Summer School 97

Input/Output Traces of an FSM

a b

x a / 0, 1, 2, 3 a / 1, 2

y b / 1, 2 a / 0

b /3

At state a, for input trace x , output traces:

 out(a, x) = {0 , 1 , 2 , 3}

At state a, for input trace x.y, output traces are :

 out(a, x.y) = { 0.1 , 0.1 , 1.1 , 1.2 , 2.1 , 2.2 , 3.1 , 3.2 }

(I/O)Traces of an FSM: all I/O sequences that can be
derived from the initial state of the FSM

12th TAROT Summer School 98

More Coformance Relations Between
nondeterministic FSMs

• FSMs P and S are indistinguishable if
"a ÍI* (outP(p1,a) = outS(s1,a))

• FSMs P and S are non-separable if

"aÍI*(outP(p1,a) Æ outS(s1,a) Å)

• FSMs P and S are r-compatible if there exists
a complete FSM is a reduction of both FSMs, P and S

! There are methods for deriving complete test suites w.r.t.

various conformance relations for NFSMs
!! Sometimes all-weather-conditions have to be used

12th TAROT Summer School 99

IRC protocol

FSM S
FSM T

[RFC2812] 12th TAROT Summer School 100

Inconsistencies detected

- Wrong code reply to the command NICK with
the empty parameter (without nickname)

- Wrong server processing when using already
occupied nickname

- Command MODE is wrongly processed

PASS(2)/NULL NICK(1)/{431}

PASS(2)/NULL NICK(3)/NULL USER(3,0,5)/001 NICK(3)/{433}

PASS(2)/NULL NICK(3)/NULL USER(3,0,5)/001 MODE(1,7)/{461}

12th TAROT Summer School 101

Publications

1. Hierons, R. M.: Adaptive testing of a deterministic implementation against a nondeterministic finite
state machine. The Computer Journal, 41(5), (1998) 349–355.

2. Petrenko, A., Yevtushenko, N.: Conformance Tests as Checking Experiments for Partial
Nondeterministic FSM. In Proceedings of the 5th International Workshop on Formal Approaches to
Testing of Software, LNCS vol. 3997, pp. 118—133 (2005)

3. Shabaldina, N., El-Fakih, K., Yevtushenko, N:. Testing Nondeterministic Finite State Machines with
respect to the Separability Relation. Lecture Notes in Computer Science vol. 4581, pp. 305-318 (2007)

4. A. Petrenko, N. Yevtushenko. Testing deterministic implementations against their nondeterministic
specifications. In ICTSS 2011. Lecture Notes in Computer Science 7019, pp. 162-178 (2011)

5. Petrenko, A., Simão, A., Yevtushenko, N: Generating checking sequences for nondeterministic finite
state machines, In Proc. of the ICST, pp. 310-319 (2012)

6. Ermakov, A.: Deriving checking sequences for nondeterministic FSMs. Proc. of the Institute for System
Programming of RAS, Vol. 26, pp. 111-124 (2014) (in Russian)

7. Petrenko, A., Simão, A: Generalizing the DS-Methods for testing non-deterministic FSMs, Computer
Journal, 58 (7), pp. 1656-1672 (2015)

8. N. Yevtushenko, N. Kushik, K. El-Fakih and A. R. Cavalli.: On adaptive experiments for nondeterministic
finite state machines. International Journal of Software Tools for Technology Transfer, 18(3):251–264
(2016)

9. H. Yenigün, N. Yevtushenko, N. Kushik. Some Classes of Finite State Machines with Polynomial Length
of Distinguishing Test Cases. In Proceedings of 31th ACM Symposium on Applied Computing
(SAC 2016), track: Software Verification and Testing (SVT 2016). Pisa, Italy, Apr 3-8, 2016, pp. 1680 –
1685.

12th TAROT Summer School 102

Complexity problems for
nondeterministic FSMs

12th TAROT Summer School 103

Some primitive complexity into…

…This is what it counts for an algorithm A…

n is the size of the input of a problem P

1) Time – can be considered as the number of primitive

operations, in the worst case, to solve the problem

// number of transitions of the corresponding Turing machine

2) Space – can be considered as the size of memory to be used,

in the worst case, to solve the problem

// the length of a tape in use of the corresponding Turing machine

Time Space

12th TAROT Summer School 104

What is good and what is bad?

When the time is
polynomial

• There exists an algorithm
that solves the problem in a
polynomial time

• The problem is in P then

When the time is not polynomial

• Maybe, there exists an algorithm that
verifies the solution in a polynomial time?

Then the problem is in NP

• Or maybe there exists an algorithm that
solves the problem using a polynomial
space?

Then the problem is in PSPACE

! P is good, for small degrees of the polynomials J

NP and PSPACE – not really

12th TAROT Summer School 105

Bad… very bad ‘news’

Most of the problems in Model based testing are
PSPACE-complete

In particular…

The problem of checking the existence of a distinguishing sequence
for complete deterministic FSMs

The problem of checking the existence of a distinguishing sequence
for complete nondeterministic FSMs

The problem of checking the existence of a homing / synchronizing
sequence for complete non-reduced (non-)deterministic FSMs

Test sequences and checking sequences are somewhat hard to
deriveé

12th TAROT Summer School 106

How to decrease the complexity?

Utilizing scalable

representations

allows to ‘hide’ the

complexity

Research groups of R.

Brayton, R. Jiang, А.

Mischenko, T. Villa, J.

Tretmans, V. Kunz, H.

Yenigün

Considering specific types of

bugs in the software, i.e.,

specific fault models

Research groups of J. Offut, F.

Wotawa, N. Yevtushenko

Providing effective heuristics

Research groups of A.

Zakrevskiy, H. Yenigün, R.

Brayton, A. Cavalli, A. Simão

Switching from preset to

adaptive test derivation strategy

Research groups of M.

Yannakakis, N. Yevtushenko, A.

Petrenko, A. Simão, R. Hierons

12th TAROT Summer School 107

How to decrease the complexity (2)?

Simplifying a derivation of test sequences
1) Using scalable representations

Logic circuits, for example?

2) Considering proper FSM classes

1-distinguishing, merging free,…

3) Developing effective heuristics

Check if a given FSM has a submachine with good transfer and

distinguishing properties

4) Switching from preset to adaptive test derivation strategy

Already saw that this can help when deriving checking sequences even

for deterministic FSMs

…

12th TAROT Summer School

Each of the above is good for appropriate FSM classes

108

Conclusions

• Theoretically: almost all the problems in software testing that
provide the guaranteed fault coverage have terrible
(exponential or more!!!) complexity

• Practically: methods and tools for decreasing the complexity
seem to be promising

Þ

New models (or new heuristics) need to appear and new
methods and tools need to be provided to decrease the

complexity

Þ

We do have something for the future work J

12th TAROT Summer School 109

Working together with

Original results presented here were obtained in collaboration with research

groups lead by

Prof. Ana Cavalli (and scientific group under her supervision)

Prof. Khaled El-Fakih

Prof. A. Petrenko (Canada and Russia J)

Prof. Ades Simão

Prof. H. Yenigün

PhD Natalia Kushik

Scientific group of Tomsk State University

12th TAROT Summer School 110

Thank you!

12th TAROT Summer School 111

