
Introduction to SDL

TSP
Stéphane Maag

Stephane.Maag@telecom-sudparis.eu 2

Specification Description
Language

Outline
SDL, a FDT for complex system specification
MSC to SDL
SDL system
SDL notations
SDL process
From the specification to the simulation
RTDS

… and conclusion.

Stephane.Maag@telecom-sudparis.eu 3

SDL - a Formal Description
Technique

FDTs (also called specification language):
specify the functional properties of a system according

to its environment
are conceived to describe distributed systems composed

by processes that are executed in parallel, synchronize
themselves and communicate by messages

Other techniques: process algebra (CCS), finite
state machines, temporal logic, Petri networks, ...

Stephane.Maag@telecom-sudparis.eu 4

Briefly, SDL

SDL (Specification Description Language):

Define and normalized by ITU(-T) (1988,
1992, 1996, 2000)
based on the Extended Finite State Machines

(EFSM), asynchronous
2 visions: SDL-GR (graphical) and SDL-PR

(textual)
Abstract data types, ASN.1

Stephane.Maag@telecom-sudparis.eu 5

SDL for
Reactive and Discrete Systems

Communication:
Message exchanges between the system and its environment
Mainly asynchronous interactions, but synchronous ones also

supported

Nevertheless:
SDL is not adapted to cyclic data-driven inputs
SDL is unable to describe non real-time aspects, such as:

 Data bases
 GUIs

Stephane.Maag@telecom-sudparis.eu 6

SDL applications

Wide range of applications
safety and mission critical

communicating systems
real-time applications

Wide range of architectures
workstation-based distributed system,

32-bits communication board, 8-bits
micro-controller embedded system

Stephane.Maag@telecom-sudparis.eu 7

SDL architecture and behaviors

To specify, to describe without ambiguities
telecommunication systems

To represent functional properties of a system:
structural properties: system architecture, its

decomposition into interconnected functional blocks
behavioral properties: system reactions after stimuli

coming from the environment

The architecture The behavior

Stephane.Maag@telecom-sudparis.eu 8

SDL
Two normalized representations

Graphical representation: GR
Textual representation: PR
Exchange format: PR+CIF

(information+extensions)

GR PR
Graphical
grammar

Textual
grammar

common

Stephane.Maag@telecom-sudparis.eu 9

MSC - to provide the
behaviors

Message Sequence Chart

Z.120 Recommendation managed by the ITU

“is to provide a trace language for the
specification and description of the
communication behavior of system
components and their environment by means
of message interchange”

•SDL, a FDT for complex system specification
•MSC to SDL
•SDL system
•SDL notations
•SDL process
•From the specification to the simulation
•ObjectGEODE

Stephane.Maag@telecom-sudparis.eu 10

SDL with MSC

To describe cases by
sequences of interactions
between instances and the
environment

allows to observe the
interactions, but difficult to
assign values and process
operations … we use SDL and
we may control with MSC.

Name of the MSC
Name of the

instance

Instance
head

Instance tail
(not termination)

messages

Stephane.Maag@telecom-sudparis.eu 11

System specification

Three aspects in order to specify:

The definition of the system structure with
the interconnections
The dynamic behavior of each process (or

machines) and their interaction with the other
processes and the environment
operations on data (into the processes)

Stephane.Maag@telecom-sudparis.eu 12

Semantic models -
Hierarchy

System architecture:
Decomposition by interconnected structural

entities: system, block, channel, process

System behavior:
communicating processes: signals,

variables as inputs/outputs: EFSM

Data: variables, signals, sorts, ASN.1,
...

System

Block

Process

Procedure

Stephane.Maag@telecom-sudparis.eu 13

System architecture

M2 M3

M4 M5

M1

S1 S2

S(x,y,z)

System

Environment

signal

channel

process

block

Block B1

•SDL, a FDT for complex system specification
•MSC to SDL
•SDL system
•SDL notations
•SDL process
•From the specification to the simulation
•ObjectGEODE

Stephane.Maag@telecom-sudparis.eu 14

System SDL: example

SYSTEM S

B1

B2

C4

[S4]

C1

C2

C3
[(L3)]

[S2]

[S1]
SIGNAL S1, S2, S3, S4(INTEGER);
SIGNALLIST L1 = S1, S2;
SIGNALLIST L2 = S2, S3;
SIGNALLIST L3 = L1, S3;

[(L2)]

block
channel signal signallist

System name

parameter
Signal

definition

Stephane.Maag@telecom-sudparis.eu 15

Channels

B
C1

[S1, S2, S3]
A

C
C2

[EXT1, EXT2][INT1]

unidirectional

bi-directional

C C
R1

R2

R3

[S1]

[S2]

[S3]

R1
R2

R3 [S1]

[S1]

[S2]

[S3]
[S1, S2, S3] [S2, S3]

Multi-connections

Stephane.Maag@telecom-sudparis.eu 16

SDL predefined types

•SDL, a FDT for complex system specification
•MSC to SDL
•SDL system
•SDL notations
•SDL process
•From the specification to the simulation
•ObjectGEODE

Stephane.Maag@telecom-sudparis.eu 17

Operators on predefined
types

All types
 =, /=

INTEGER and NATURAL
 -, +, *, /, >, <, >=, <=, Float, Mod, Rem

REAL
 -, +, *, /, >, <, >=, <=, Fix

Stephane.Maag@telecom-sudparis.eu 18

CONSTANTS

They can be defined at any level of the
SDL hierarchy

SYNONYM maxusers INTEGER = 10;

Stephane.Maag@telecom-sudparis.eu 19

Basic user-defined types

Stephane.Maag@telecom-sudparis.eu 20

The SDL process

It describes the behavior and extends the FSM
concept:

 the queue associated to each process is not necessarily a FIFO.
A transition (not necessarily of a null length) may contain:

• receiving and sending data
• analyzing variables to determine the next transition
• execution of tasks
• procedure call
• dynamic creation of process
• triggered timers

•SDL, a FDT for complex system specification
•MSC to SDL
•SDL system
•SDL notations
•SDL process
•From the specification to the simulation
•ObjectGEODE

Stephane.Maag@telecom-sudparis.eu 21

Major SDL elements in a
process

But always starts with a start state
before the idle state !!

idle

Initial actions

Stephane.Maag@telecom-sudparis.eu 22

Body of a process

l1E2

E1

Stimulus 1 Stimulus nStimulus 2 …

Action 1.1
Action 1.2

.

.

.
Action 1.p

Action 2.1
Action 2.2

.

.

.
Action 2.q

Action 3.1
Action 3.2

.

.

.
Action 3.r

l1
Transitions

label

join

Stephane.Maag@telecom-sudparis.eu 23

Declaration in processes

Variables
 declared in a Text symbol

of a process, service,
procedure

 no global variables at
system or block level

 can be initialized:

Stephane.Maag@telecom-sudparis.eu 24

Stimuli types - inputs

State1

State2

S2

< Transition >

S1

S1S2S3

State State1

S1S3

State State2

save

“save” allows to save a signal and keeps
it in the queue until the next state …
waiting for the next signal.

S3,S4

S3 or S4

Stephane.Maag@telecom-sudparis.eu 25

Input - Condition

Boolean expression

 signal can only be consumed if
the condition is true, otherwise
it is saved.

 ! The expression may not
depend on current input signal
parameters: only the previous
value is accessible

Stephane.Maag@telecom-sudparis.eu 26

Input - priority

Priority signals are processed
prior to the other signals in the queue

Stephane.Maag@telecom-sudparis.eu 27

Decisions

A

Y

X = Y

'TYPE'

X - Y

X

(=1)(=0)
(TRUE) (FALSE)

(= 0)(> 0) (< 0)

(ELSE)('A') ('B') ('C')

A := 1

20, 301:10 ELSE

l1

l1

(= 0) (/= 0)

A := A + 1

a task, may also
be an informal text

Stephane.Maag@telecom-sudparis.eu 28

Non-deterministic
transitions

(any(type_name)))(any(type_name))

Non-deterministic transitions
are used to describe random events

a(x)/b a(x)/c

x

b c

SET (30.0 , door_timeout)

Stephane.Maag@telecom-sudparis.eu 29

Express the Time in SDL

A Timer is a meta-process
able to transmit signals on
demand to the process.

The RESET also removes
the corresponding signal
from the process queue
(case of an expired TIMER,
but the signal is not
consumed yet.

RESET (T1, T2, T3)

Stephane.Maag@telecom-sudparis.eu 30

Use of Timers

We do not need
to reset the timer

Stephane.Maag@telecom-sudparis.eu 31

Mapping with MSC

Withdrawal

withdrawal

cash

taken

The timer is set and reset because
the arriving of signal taken

•Delete the process
•signals remaining in the queue are lost
•future messages to thies process are lost

Stephane.Maag@telecom-sudparis.eu 32

To ease the writing (1/2)

C *

'T1'

A

SA SB SC ERR

B * (A, B)

'T1'

ERR

The transition associated to the state * is applicable
with all the states, while the state *(A,B) is also applicable
with all the states except A and B

Stephane.Maag@telecom-sudparis.eu 33

To ease the writing (2/2)

To go back to the previous state

Input *: represents all other signals

A

B –

SA SB

Go back to
state A

A

'T1'

SA SB *

'T2' 'T3'

Stephane.Maag@telecom-sudparis.eu 34

System simulation -
Objectives

The model is now syntactically correct and semantically
consistent. But it is good ?

From low costs to high quality:
debugging
evaluation of alternative solutions
verification, detection of errors, comparison with MSC

requirements.
Test generation

 to minimize the final costs

•SDL, a FDT for complex system specification
•MSC to SDL
•SDL system
•SDL notations
•SDL process
•From the specification to the simulation
•RTDS

Stephane.Maag@telecom-sudparis.eu 35

Two kind of simulation

Interactive

step-by-step
(debugging)

access to all data
MSC generation
SDL tracking

Exhaustive

fully automatic
measures state and

transitions coverage
check properties
reachability graph

generation

Stephane.Maag@telecom-sudparis.eu 36

Pragmadev Studio

 A Pragmadev tool

 The tool allowing the edition from the requirements

 Architectural and behavioral design

 Model checking capabilities,

 Traceability information.

 Code generation

 Testing

 TTCN3

•SDL, a FDT for complex system specification
•MSC to SDL
•SDL system
•SDL notations
•SDL process
•From the specification to the simulation
•RTDS

Stephane.Maag@telecom-sudparis.eu 37

GUI - PragmaStudio

Graphical User
Interface

Then:
- New project
- SDL Z100 project

Stephane.Maag@telecom-sudparis.eu 38

Conclusion

SDL, a language to specify complex
systems. User-friendly with its PR/GR
Powerful to express important protocols
Allows to simulate system behaviors

In the following : on the road of
instantiating and testing … on the road ...

SDL the following …

Part 2

TMSP
Stéphane Maag

Stephane.Maag@telecom-sudparis.eu

Objectives

This course intends to make the participants discover:

�Structures

�Structural types

�Packages

�PID

�Procedures

�MacroDefinitions

�ASN.1 - Z.105

Stephane.Maag@telecom-sudparis.eu

Remote Variables

�EXPORT-IMPORT: to get the value of a
variable of another process (implicit signals)

In a block
or system

Stephane.Maag@telecom-sudparis.eu

Definition of Structure

Structure with Fields

NEWTYPE Product
STRUCT

reference CHARSTRING;
price REAL;
quantity INTEGER;

ENDNEWTYPE Product;

The field types
may be some structures

Stephane.Maag@telecom-sudparis.eu

Use of Structure

DCL prod Product;

prod := (. ‘ball’,20.0,3 .)

assignment

prod!price := 21.0

prod!reference := ‘Super new ball’

Modify by accessing the fields

Stephane.Maag@telecom-sudparis.eu

Array Type

NEWTYPE Product_T
ARRAY (Index_T ,Product);
ENDNEWTYPE;

DCL prod_set Product_T;
DCL prod Product;

prod_set := (. (. ’ball’,20.0,3 .) .) prod_set(1) := prod prod := prod_set(3)

Initialization Modify Extract

Type of
the index (integer)

Indexes are integer

Stephane.Maag@telecom-sudparis.eu

Process: Active Class

�SDL allows to generate process instances:

�They are active objects

�Perform their own actions

�Manage their own data

�Several possible instances may run in parallel.

�To represent them:

Stephane.Maag@telecom-sudparis.eu

Structural Types and

Instances

�Block type or Process type

�General description to reuse later

�Allows to generate many block or process instances

�Define the content of all instances

�We may define one instance or set of instances

USER firstUser:
USER

Users(10):
USER

Block type A set of 10 instances
of USER

Stephane.Maag@telecom-sudparis.eu

Why Block and Process

type ?

�They are defined once and used many times

�a defined block may then be used in different
systems

�to define only once the content of several
processes that run in different blocks

�structural types and instances available for
systems, blocks and processes

Stephane.Maag@telecom-sudparis.eu

Structural Types in RTDS

block type

process type

process

� Structural types
need gates.

� gates define, with
channels, the
signals sent
and/or received.

� Instances are
connected by
channels through
gates.

gate/port
instance

Stephane.Maag@telecom-sudparis.eu

Examples of instantiations

Stephane.Maag@telecom-sudparis.eu

Where to use structural

types ?

�In package: a set of types

�Structural types (block types, process types,…)

�Signals and lists

�Constants

�Data types

�A package allows to reuse types in several
models.

Stephane.Maag@telecom-sudparis.eu

Package example

PR format

gate/port
instance

set of process
class instances

use of the package
at the System level

process class
in the package

gate/port
instance

process

the signals are
mentioned

in the package

Stephane.Maag@telecom-sudparis.eu

Dynamic Creation of

Processes

�Process instance
may dynamically
creates instance of
process in the same
block.

Block Industry

Enterprise(1,1)

Agency(0,Max)

1 and infinite by default

dynamic
creation

Stephane.Maag@telecom-sudparis.eu

How to dynamically create

processes

�The CREATE request
provokes the immediate
creation of the process.

�The created processes
may carry parameters
given by the creator.

�The new instance has its
own new PID

Process Enterprise

idle

new_one

Agency(nbr,name)

CREATE
request

Stephane.Maag@telecom-sudparis.eu

Process parameters

PROCESS Agency(0,Max)
FPAR

nbr integer,
name charstring

Formal
parameters

Interval for the
number of possible
created instances

Agency(12,myagency)

actual
parameters

We may kill
the processes

Stephane.Maag@telecom-sudparis.eu

Process IDentification

�The PID is the unique identifier of each instance of
process.

�Remember … PID is a predefined type !

�The PID cannot be modified

�The PID type has one predefined constant: NULL

�PIDs are used for communication in case of many
possible receivers.

�Client/server, mobile topologies (broadcast),…

�signals that are both sent and received, …

� ...

Stephane.Maag@telecom-sudparis.eu

Process destination for

Output

S1
[TO process destination]
[VIA path] S1

No destination specified
unique dest. or non-det. choice

TO

Process name PID

VIA

channel
or gate

ALL c1,c2,c3…

Multicast,
one message for

each route

Stephane.Maag@telecom-sudparis.eu

Predefined PID

expressions

�SELF: PID of the process itself

�OFFSPRING: last process instance created by itself. If
none was created then OFFSPRING is NULL

�PARENT: PID of parent process. If SELF was not
dynamically created, then PARENT is NULL

�SENDER: PID of the process that has sent the last
consumed signal by SELF. If no consumed signal the
SENDER is NULL

Stephane.Maag@telecom-sudparis.eu

Example of PID use

sender ’s PID

Stephane.Maag@telecom-sudparis.eu

Procedures

�Use to factorize and parameterize actions

�Encapsulation, abstraction

�Allow to reduce the EFSM size

�Executed in their owning process

Stephane.Maag@telecom-sudparis.eu

Procedure definition

� It is described like process, using
EFSM

� It is executed using the queue of its
own process

� It does not have any PID (even the
one of the process)

� Signals are sent to process only

� It may have local variables

� It can be defined at process, block
or system level

�No Stop in a procedure

Stephane.Maag@telecom-sudparis.eu

Procedure parameters

� Introduced by FPAR and IN or
IN/OUT:

�FPAR: parameters of the
procedure

�IN/OUT:

� by reference

� it means that the parameter may
be modified

�IN:

� by value

� it means that the caller may not
see the changes

�by default the parameter are IN.

Stephane.Maag@telecom-sudparis.eu

Procedure Example
Procedure
declaration

Stephane.Maag@telecom-sudparis.eu

Procedures as classic

functions

�They may be called as
classic functions in
expressions: allows to
return explicit values.

x:=5*
CALL Incr10(x)

a value return

Stephane.Maag@telecom-sudparis.eu

MacroDefinition

�The Macros allow to treat the repetition of code,
a description, a behavior that is often repeated,

�Used only within processes or procedures,

�May have formal parameter, it is necessary to
transmit them.

Call of a macro Macro inlet symbol Macro outlet symbol

Stephane.Maag@telecom-sudparis.eu

Macrodefinition Example

Formal
parameters

outlet

inlet

Stephane.Maag@telecom-sudparis.eu

ASN.1 and SDL

�Z.105: Inclusion of ASN.1 in SDL

�Standard: ASN.1 is widely used in
standards and can be part of the
requirements

�Technically, ASN.1 allows to focus only on
data: values, set of values, …

Stephane.Maag@telecom-sudparis.eu

Use of ASN.1 in Z.105

�ASN.1 declarations located in same box
than SDL ones,

�ASN.1 and SDL declaration may be mixed,

�Z.105 is not case-sensitive,

�hyphens (“-”) cannot be used.

Stephane.Maag@telecom-sudparis.eu

ASN.1 predefined types

�INTEGER == INTEGER

�BOOLEAN == BOOLEAN

�REAL == REAL

�CHARSTRING == IA5String

Stephane.Maag@telecom-sudparis.eu

SDL ASN.1

NEWTYPE colors LITERALS

red, blue,black, yellow, white;

ENDNEWTYPE colors;

SYNONYM clearcolor colors
= white;

colors ::= ENUMERATED

{red, blue,black, yellow, white};

clearcolor colors ::= white;

Stephane.Maag@telecom-sudparis.eu

Composite types in ASN.1:

Sequence types (Structure in SDL)

NEWTYPE T_Seq

STRUCT

a BOOLEAN;

b CHARSTRING OPTIONAL;

c INTEGER DEFAULT 5;

ENDNEWTYPE T_Seq;

T_Seq ::= SEQUENCE {

a BOOLEAN,

b IA5String OPTIONAL,

c INTEGER DEFAULT 5};

s1 T_Seq ::= { a TRUE,

b ‘OK’,

c 12};

s2 T_Seq ::= { a FALSE,

c 23};

s3 T_Seq ::= {a TRUE};

assignment

Stephane.Maag@telecom-sudparis.eu

Sequence Example

Process proc1

T_Seq ::= SEQUENCE {
a BOOLEAN,
b IA5String OPTIONAL,
c INTEGER DEFAULT 5};

DCL var1, var2 T_Seq;

idle

idle

obt(var1)

b!present (var1)

(TRUE)
(FALSE)

var1!a:=TRUE
var2:={a FALSE}

Stephane.Maag@telecom-sudparis.eu

Composite types in ASN.1:

CHOICE types

Process proc1

T_Ch ::= CHOICE {
a BOOLEAN,
b IA5String,
c INTEGER};

DCL var11, var12 T_Ch;

idle

idle

obt(var11)

var11!present

(a) (c)

var12!present:= a var11:= {a: FALSE}

(b)

var11:= {b: ‘NOTOK’}

Stephane.Maag@telecom-sudparis.eu

CONCLUSION

�Think to use structural types for
reusability

�Process ID

�Readability with procedure and
macrodefinitions

�CHOICE in ASN.1

Stephane.Maag@telecom-sudparis.eu

Exercises

Specify a process that receives a message
ATM_req containing a data atm_req as a
structure “(quantity, ticket)” where
quantity is an integer and ticket is an
optional character.

This process sends the output OK if ticket
is received or NOK if not.

