SW Engineering with FM

Testing Exercises

1- Consider this below illustrated FSM.
a. Find the W set and the (P)UIO sequence for all states.

b- From the previous question and the strategy of your choice, determine a TS for (S2, b/y, S2).
2- Consider this below illustrated FSM.

a. Find the W set and the (P)UIO sequence for all states.
b. From the previous question and the strategy of your choice, determine a TS for (S1, a/y, S2).

3- Consider this below illustrated FSM.

Input=\{a,b\}
Output=\{x,y,z\}
Initial state : S1

a. Determine a DS (if it does not exist, use a W approach) for this state machine.
b. Using the above used strategy, write a TS for (S2, b/y, S2).
c. After the execution of such a TS, the Test System answers: NULL, y, y, x, x. What would be the testing verdict?

4- A) 1 is the initial state, inputs=\{a,b\}, outputs=\{x,y\}. After having guaranteed the main testing hypotheses regarding the state machine (remember deterministic>minimization), determine a W and (P)UIO for all states.

B) Write a test sequence TS for the following behavior: (1, $a / x, 2) \cdot(2, b / y, 3)$.
C) A Tester execute such a TS and obtain the answers: xyxxyxx. Please provide the testing verdicts.
D) Still using TS, write a execution on IUT leading to a mixed error.
5)
a- Determiner, if it exists, the DS, the W set and the (P)UIOs.
b- From the previous question, write 2 different test sequences for the transition ($4, a / x, 1$). You will briefly explain your choices and differences.
c- In using one of these sequences, provide 2 outputs sequences, 1 leading to a fail, another to an INC.
d - By using one of these test sequences, could we block the used testing architecture?
Justify.

Input=\{a,b\}
Output $=\{x, y, z\}$
Initial state : 1
6) Determine the (P)UIO of all states of the following finite state machine. 1 is the initial state, the inputs belong to $\{a, b, c\}$, the outputs to $\{x, y\}$. Then, using the (P)UIO, determine a test sequence for the transition $(1, a / x, 3)$.

