

Presentation material

Ericsson
Test Solutions and Competence Center

TTCN-3 COURSE

Presenter
Presentation Notes
Copyright © Ericsson AB 2002-2015 - All rights reserved.All information contained in this document is the sole property of Telefonaktiebolaget LM Ericsson and is protected under copyright law.�The content of this document is subject to revision without notice. Changes may periodically be made to the information and will be incorporated in new editions of this document. Telefonaktiebolaget LM Ericsson may make improvements or changes in products and programs described in this publication at anytime without notice.Information on this document is provided "as is" without any warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. The information herein may include technical inaccuracies or typographical errors. Ericsson shall have no liability for any error or damage of any kind resulting from the use of this document. Ericsson and the Ericsson logotype is the trademark or registered trademark of Telefonaktiebolaget LM Ericsson. All other product or service names mentioned in this document are trademarks of their respective companies.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 2

All information contained in this document is the sole property of Telefonaktiebolaget
LM Ericsson and is protected under copyright law.

The content of this document is subject to revision without notice. Changes may
periodically be made to the information and will be incorporated in new editions of this
document. Telefonaktiebolaget LM Ericsson may make improvements or changes in
products and programs described in this publication at anytime without notice.

Information on this document is provided "as is" without any warranty of any kind,
either express or implied, including but not limited to, the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement. The information
herein may include technical inaccuracies or typographical errors. Ericsson shall have
no liability for any error or damage of any kind resulting from the use of this
document.

Ericsson and the Ericsson logotype is the trademark or registered trademark of
Telefonaktiebolaget LM Ericsson. All other product or service names mentioned in
this document are trademarks of their respective companies.

Copyright © Ericsson AB 2002-2013 - All rights reserved.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 3

Protocols and Testing 3
Introduction to TTCN-3 16
TTCN-3 module structure 27
Type system 36
Constants, variables, module parameters 69
Program statements and operators 79
Timers 87
Test configuration 93
Functions and testcases 105
Verdicts 120
Configuration operations 125
Data templates 153
Abstract communication operations 192
Behavioral statements 206
Sample test case implementation 231

Contents

What is a “protocol”?
Definitions

Protocol verification, testing and validation

I. PROTOCOLS
AND TESTING

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 5

Protocol

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 6

Communications
ProtocolS

• Protocol is a set of rules that controls the communication
• syntactical rules (static part):

• define format (layout) of messages

• semantical rules (dynamic part):
• describe behavior (how messages are exchanged) and

meaning of messages

Presenter
Presentation Notes
A protocol is a set of rules that controls the communication between entities in different systems.Protocols define format (syntax), order of messages sent and received among network entities, as well as actions taken on message transmission or reception (behaviour).Behaviour of the protocols can be defined using natural language (e.g. English) or some formal description technique. Examples for the latter: SDL, Estelle and Lotos. They are compilable specification languages. None of them has outweighed the others.ASN.1 Abstract Syntax Notation One (ITU-T X.680-X.699)TTCN-3 Testing and Test Control Notation version 3 (ETSI ES 201 873)UML Unified Modeling Language (http://www.omg.org/uml/, ITU-T Z.109 [SDL combined with UML])SDL: Specification & Description Language. (ITU-T Z.100-Z.109) Most popular in the industry.MSC Message Sequence Charts (ITU-T Z.120-Z.129)LOTOS: Language of Temporal Ordering Specifications (ISO8807) is widely used in the academic world. LOTOS is based on communicating processes.Estelle (ISO9074) is based on extended finite automata.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 7

Protocol technology

Informal
specification

Formal
specification

Implementation

Test cases

• Ambiguous
• Not complete

• ASN.1, TTCN-3, ...
• UML, SDL, MSC, ...
• Verification, validation

• Conformance tests

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 8

• Black box testing
– Implementation/System

Under Test
– Point of Control and

Observation

• Not possible to test all the

situations
– Test Purposes

Testing

IUT
PCO

! A

? B

Verdict:
 pass,
 fail,
 inconclusive

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 9

Formal techniques in
conformance assessment

Protocol
specification

Modeling

Test results

ETS

ATS

Formal protocol
description

Test Purposes

Test execution

Validation

Verification

• Verification:
– Check correctness of formal model

• Testing (black-box):
– Check if Implementation Under Test (IUT)

conforms to its specification
– Experiments programmed into Test Cases

• Validation:
– Ensure correctness of test cases of ATS

Presenter
Presentation Notes
ATS: Abstract Test Suite, a collection of Abstract Test Cases.ETS: Executable Test Suite, a set of Executable Test Cases.IUT: Implementation Under Test

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 10

• Conformance testing
–Function tests
–System tests
–Regression tests

• Interoperability testing

•Performance (Load) testing

Test types

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 11

Test cases in
black-box test

alternatives

alternatives

P

P F I

I F

• Implementation of Test Purpose (TP)
– TP defines an experiment

• Focus on a single requirement
• Returns verdict (pass, fail, inconclusive)
• Typically a sequence of action-observation-verdict

update:
– Action (stimulus): non-blocking

(e.g. transmit PDU, start timer)
– Observation (event): takes care of multiple

alternative events (e.g. expected PDU,
unexpected PDU, timeout)

non-blocking

Stimulus non-blocking

blocking events

blocking events

Presenter
Presentation Notes
Black-box testing means that the internal structure of the tested software product is not known: the only way to test it is to send a message ("stimulus") to the system and to analyse the received response. The latter is compared to the due response determined beforehand using the reference specification. If the comparison ("pattern matching") between the real and the expected response fails, the test case is considered as "failed" otherwise "passed". The test script language must have means to match the expected and the received messages even if the message elements arrive in different order, or some of them (the optional ones) are missing. Usually, there are more than one possible responses; all of them must be accepted.Once the match is determined, the next stimulus is constructed taking into consideration the data having received in the response, and so on.The test script language must be prepared to determine that the expected response is not received within the specified time frame: it must handle timing ("temporal") requirements.3.3.118 test purpose: A prose description of a well defined objective of testing, focusing on a single conformance requirement or a set of related conformance requirements as specified in the appropriate OSI specification (e.g. verifying the support of a specific value of a specific parameter).3.3.3 abstract test case: A complete and independent specification of the actions required to achieve a specific test purpose, defined at the level of abstraction of a particular Abstract Test Method, starting in a stable testing state and ending in a stable testing state. This specification may involve one or more consecutive or concurrent connections.Note 1: The specification should be complete in the sense that it is sufficient to enable a test verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events).Note 2: The specification should be independent in the sense that it should be possible to execute the derived executable test case in isolation from other such test cases (i.e. the specification should always include the possibility of starting and finishing in the “idle” state).3.3.31 executable test case: A realization of an abstract test case.3.3.107 test case: An abstract or executable test case.AbbreviationsIUT: Implementation Under TestSUT: System Under Test

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 12

• Abstract test cases shall contain
– preamble: sequence of test events

to drive IUT into initial testing state from
the starting stable testing state

– test body: sequence of test events
to achieve the test purpose

– postamble: sequence of test events which
drives IUT into a finishing stable testing
state

• Preamble/postamble may be absent
• Starting stable testing state and

finishing stable testing state are the
idle state in TTCN-3

Independence and
structure of abstract
test cases

idle

postamble

idle

preamble body

idle

Presenter
Presentation Notes
3.3.121 testing state: A state encountered during testing, comprising the combination of the states of the SUT, the test system, the protocols for which control and observation is specified in the ATS, and, if relevant, the state of the underlying service.3.3.93 stable testing state: A testing state which can be maintained, without prescribed Lower Tester behaviour, sufficiently long to span the gap between one test case and the next in a test campaign.3.3.47 initial testing state: The testing state in which a test body starts.3.3.110 test event: An indivisible unit of test specification at the level of abstraction of the specification (e.g. sending or receiving a single PDU).3.3.117 (test) preamble: The sequences of test events from the starting stable testing state of the test case up to the initial testing state from which the test body will start.3.3.105 test body: The sequences of test events that achieve the test purpose.3.3.116 (test) postamble: The sequences of test events from the end of the test body up to the finishing stable testing state(s) for the test case.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 13

• All test cases in an ATS must be sound

– Exhaustive test case results pass verdict if IUT is correct
(practically impossible with finite number of test cases)

– Sound test case gives fail verdict if IUT behaves incorrectly
– Complete test case is both sound and exhaustive

• Must not terminate with none or error verdict

Requirements on test
suites

Presenter
Presentation Notes
ATS is exhaustive if all test cases are exhaustive (all passing implementations are compliant)ATS is sound if all test cases are sound (all implementations that do not pass are not compliant)ATS is complete if all test cases are both sound and exhaustive---

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 14

• Test purpose definition
– Formally or informally

• TTCN-3 Abstract Test Suite (ATS)
– design or generation

• Executable Test Suite (ETS) implementation
– using the Means of Testing (MoT)

• Test execution against the Implementation Under Test (IUT)
– with MoT

• Analysis of test results
– verdicts, logs (validation)

Phases of black-box
(functional) testing

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 15

• Manual design:

– Identify test purposes from protocol specification based on
the test requirements

– Implement abstract test cases from test purposes using a standardized test
notation (TTCN-3)

• Automatic design:

– Generate test purposes and abstract test cases directly from formal
protocol specification in e.g. UML, SDL, ASN.1

– Requires formal protocol specification
– Computer Aided Test Generation (CATG) is an open problem
– Model Based Testing (MBT)

Abstract Test Suite
design

Presenter
Presentation Notes
Once the protocol specification is formalised, it is theoretically possible to generate executable test cases automatically. However, this procedure, called Computer Aided Test Generation (CATG) is only being developed. Otherwise, one needs to design abstract test cases manually. Manual test suite design starts with the formulation of test purposes from protocol specification. Test purposes are implemented in test cases.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 16

• Realize Executable Test Suite (ETS) from Abstract Test
Suite (ATS) using the chosen Means of Testing (MoT)

– MoT = TITAN
– ATS->ETS = build project

• Execute the ETS on the test system against the IUT
– execute in TITAN

• Observe the verdict of executed test cases
– pass, fail, inconclusive (none, error)

Test execution

Presenter
Presentation Notes
The test system is the link between “abstract” and “executable”. It derives executable test cases from abstract test cases and executable test suites (ETSs) from abstract test suites (ATSs). The test system and any additional equipment and procedures that may be required for the execution of test cases together are called the Means of Testing.

History of TTCN
TTCN-2 to TTCN-3 migration

TTTCN-3 capabilities, application areas
Presentation formats
Standard documents

II. INTRODUCTION
TO TTCN-3

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 18

• Originally: Tree and Tabular Combined Notation
• Designed for testing of protocol implementations based on the OSI Basic Reference

Model in the scope of Conformance Testing Methodology and Framework (CTMF)
• Versions 1 and 2 developed by ISO (1984 - 1997) as part of the

widely-used ISO/IEC 9646 conformance testing standard

• TTCN-2 (ISO/IEC 9646-3 == ITU-T X.292) adopted by ETSI

– Updates/maintenance by ETSI in TR 101 666 (TTCN-2++)
• Informal notation: Independent of Test System and SUT/IUT

• Complemented by ASN.1 (Abstract Syntax Notation One)

– Used for representing data structures
• Supports automatic test execution (e.g. SCS)
• Requires expensive tools (e.g. ITEX for editing)

History of TTCN

Presenter
Presentation Notes
Test notation is used to describe abstract test cases. The test notation can be an informal notation (without formally defined semantics) or a Formal Description Technique (FDT). TTCN-2 is an informal notation with clearly defined, but not formally defined semantics.aThe International Organization for Standardization (ISO*) has standardised first two versions of TTCN. The very same standard has been adopted as ITU-T and ETSI standard. Data structure definitions written in ASN.1 can be imported to TTCN-2. TTCN-2 test cases can be edited using special software, e.g. ITEX. Executable test cases are produced and run with help of e.g. SCS.Abbreviations:ETSI	European Telecommunications Standards Institute IEC	International Engineering ConsortiumITU-T	International Telecommunication Union �Telecommunication Standardization Sector SCS	System Certification System �	(Ericsson's TTCN test case execution platform)ITEX	Interactive TTCN Editor and eXecutor �	(from the Swedish firm Telelogic)* Because "International Organization for Standardization" would have different abbreviations in different languages ("IOS" in English, "OIN" in French for Organisation internationale de normalisation), it was decided at the outset to use a word derived from the Greek isos, meaning "equal". Therefore, whatever the country, whatever the language, the short form of the organization's name is always ISO.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 19

• TTCN-2 was getting used in other areas than Conformance Test
(e.g. Integration, Performance or System Test)

• TTCN-2 was too restrictive to cope with new challenges (OSI)
• The language was redesigned to get a general-purpose test

description language for testing of communicating systems
– Breaks up close relation to Open Systems Interconnections model
– TTCN’s tabular graphical representation format (TTCN.GR) is getting

obsolete by TTCN-3 Core Language
– Some concepts (e.g. snapshot semantics) are preserved, others (abstract

data type) reconsidered while some are omitted (ASP, PDU)
– TTCN-3 is not backward compatible

• Name changed: Testing and Test Control Notation

TTCN-2 to TTCN-3
migration

Presenter
Presentation Notes
Language development was being done in the following framework:�ETSI MTS/STFs 133, 156, 213, 253TTCN-3 can be used for protocol testing (for mobile and Internet protocols), supplementary service testing, module testing, the testing of CORBA-based platforms, the testing of Application Programming Interfaces (APIs) and many more applications. The language is not restricted to conformance testing, but can be used for interoperability, robustness, regression, system, and integration testing.The syntax of TTCN-3 is new, but the language has retained (and improved upon) much of the well proven capabilities of its predecessors. Its main features include:Dynamic, concurrent testing configurations Synchronous and asynchronous communication mechanisms Encoding information and other attributes (including user extensibility) Data and signature templates with powerful matching mechanisms Type and value parameterization Assignment and handling of test verdicts Test suite parameterization and test case selection mechanisms Combined use of TTCN-3 with ASN.1 Well defined syntax, interchange format and static semantics Optional presentation formats (eg. tabular conformance presentation format, MSC (Message Sequence Chart) format) Precise execution algorithm (operational semantics) Execution and control of test cases

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 20

• Multi-part ETSI Standard
– ES 201 873-1: TTCN-3 Core Language
– ES 201 873-2: Tabular Presentation Format (TFT)
– ES 201 873-3: Graphical format for TTCN-3 (GFT)
– ES 201 873-4: Operational Semantics
– ES 201 873-5: TTCN-3 Runtime Interface (TRI)
– ES 201 873-6: TTCN-3 Control Interface (TCI)
– ES 201 873-7: Using ASN.1 with TTCN-3 (old Annex D)
– ES 201 873-8: TTCN-3: The IDL to TTCN-3 Mapping
– ES 201 873-9: Using XML schema with TTCN-3
– ES 201 873-10: Documentation Comment Specification

• Available for download at: http://www.ttcn-3.org/

TTCN-3 Standard
Documents

Presenter
Presentation Notes
The latest ETSI TTCN-3 Core Language standard edition dates from 2005. The exact URL is http://ttcn.ericsson.se/standardization/downloads.shtml#ttcnv3.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 21

• Core Language
– is the textual common

interchange format between
applications

– can be edited as text or
accessed via GUIs offered
by various presentation
formats

• Tabular Presentation Format
(TFT)

– Table proformas for
language elements

– conformance testing
• Graphical Presentation Format

(GFT)
• User defined proprietary formats

TTCN-3 Presentation
Formats

Presentation
Format3

Presentation
Formatn

TTCN-3
Core
Language

Text format

Graphical
Format

Tabular
Format

Presenter
Presentation Notes
The Core Language has a textual format, that, as opposed to the mp format of the TTCN-2 language, can be read by humans.Tabular format was originally meant to facilitate the migration from TTCN-2 to TTCN-3. It is sparingly used nowadays.In the graphical format (similarly to MSC) it is not possible to define types, templates etc.User Defined Formats are open to anyone.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 22

Example in Core
Language

function PO49901(integer FL) runs on MyMTC
{
 L0.send(A_RL3(FL, CREF1, 16));
 TAC.start;
 alt {
 [] L0.receive(A_RC1((FL+1) mod 2)) {
 TAC.stop;
 setverdict(pass);
 }
 [] TAC.timeout {
 setverdict(inconc);
 }
 [] any port.receive {
 setverdict(fail);
 }
 }
 END_PTC1(); // postamble as function call
}

Presenter
Presentation Notes
Core Language is the basic language. White space or new line characters are not taken into consideration; it makes it similar to a programming language. Different TTCN-3 applications use it for data interchange.You should not strive to understand the example, rather get a look and feel of it. It looks like any ordinary programming language.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 23

Example in Tabular
Format

Function
Name MyFunction(integer para1)
Group
Runs On MyComponentType
Return Type boolean
Comments example function definition

Local Def Name Type Initial Value Comments
MyLocalVar boolean false local variable
MyLocalConst const float 60 local constant
MyLocalTimer timer 15 * MyLocalConst local timer

Behaviour
if (para1 == 21) {
 MyLocalVar := true;
}
if (MyLocalVar) {
 MyLocalTimer.start;
 MyLocalTimer.timeout;
}
return (MyLocalVar);
Detailed Comments detailed comments

Presenter
Presentation Notes
Tabular Presentation Format resembles the most the TTCN-2 format, it is specified mainly for compatibility reasons. Editing is done in strictly specified tables, but data is saved in Core Language.The example shows the same extract in Tabular Format: we can fill in the name of the test case, any comments, the type of the variables. The behaviour is specified as text in the next raw.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 24

Example in GFT Format
function newGuest(float eatingTime)
runs on MtcType

MtcType
self

mPCOtype
P1

mCPtype
CP

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer T1 := maxWaitingTime;

var default def
:= activate (StandardDefault())

standardSeatRequest
T1

alt
? -> value aSeat

newPTC := GuestType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1,

system:gPCO[aSeat.number]);

SeatRejectType
?

inconc

T1

inconc

SeatAssignmentType

activePTCs := activePTCs + 1;
createdPTCs := createdPTCs + 1;

newPTC.start
(aGuest(1200.0))

function newGuest (float eatingTime) runs on MtcType {

var SeatAssignmentType aSeat;
var GuestType newPTC := null;
timer T1 := maxWaitingTime;

var default def := activate(StandardDefault());

// Request for a seat
P1.send(standardSeatRequest);
T1.start;

alt {
[] P1.receive(SeatAssignmentType:?) -> value aSeat {

newPTC := GuestType.create;

connect(self:CP, newPTC:CP);
map(newPTC:P1, system:gPCO[aSeat.number]);

newPTC.start(aGuest(1200.0));

activePTCs := activePTCs+1; // Update MTC variables
createdPTCs := createdPTCs+1;

}

[] P1.receive(SeatRejectType:?) { // No seat assigned
setverdict(inconc);

}

[] T1.timeout { // No answer on seat request
setverdict(inconc);

}
}
return;

}

Presenter
Presentation Notes
Graphical Presentation Format reminds the Test Sequence Chart or MSC. The messages sent and received are represented by arrows; there are additional special symbols for dynamic behaviour, cycles, decisions. For the time being, no editing program handling this format is known to us, however, there are programs capable of displaying Core Language programs in Graphical Format.The perpendicular lines symbolize the components or, more precisely, the ports of the components. The horizontal arrows represent the messages sent and received. Boxes of various shape are representing the diverse operations coded in the Core Language.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 25

Interworking with
other languages

TTCN-3
Core

Language XML schema (XSD)
& XML document

IDL

Other types
& valuesn

• Harmonization possible with
other type and value systems
(possibly from proprietary
languages) when required

C/C++ functions
and constants

• C/C++ functions and
constants can be used

ASN.1 Types
& values

• Fully harmonized with ASN.1
(version 2002 except XML
specific ASN.1 features)

• TTCN can be integrated with
other 'type and value'
systems

Presenter
Presentation Notes
The most important language TTCN-3 can interwork with is ASN.1. TTCN-3 has been designed from the beginning to ensure that definitions written in ASN.1 can be imported into test suites without the need for any modifications. With other words, when a protocol is specified in ASN.1 there is no need to rephrase it. Likewise, information in other format can be reused, e.g. functions written in C++ can be called from within the TTCN-3 module. It is planned to harmonize TTCN-3 with XML (eXtended Markup Language) and IDL (Interface Definition Language), but it can be harmonized with other 'type & value' system.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 26

TTCN-3 = C-like control structures and operators, plus
+ Abstract Data Types
+ Templates and powerful matching mechanisms
+ Event handling
+ Timer management
+ Verdict management
+ Abstract (asynchronous and synchronous) communication
+ Concurrency
+ Test-specific constructions: alt, interleave, default, altstep

TTCN-3 is a procedural
language
(like most of the programming languages)

Presenter
Presentation Notes
TTCN-3 is a procedural language,�i.e., using the concept of the unit and scope. Unit corresponds to TTCN-3 modules, which are built of procedures (functions). Scope is the viewing range of a definition. There are seven scoping units in TTCN-3; they are dealt with later.Abstract Data Types�Data can be specified independently from its coding and physical representation.Templates �When sending a message, templates make possible to parameterise the message. When receiving a message, parameters or wildcards in templates render possible to accept or reject ('to match') a group of possible messages.Event handling�While executing the program, we can wait for different events. The incidental arrival of these independent events influences the further program execution. Events are among others: reception of a message, completion of a test component, timer expiration. Timer management�Timers can be started, stopped. The actual value of a timer can be read as well whether a given timer is running. The expiration of a timer can be checked.Verdict management �Test verdict can be pass, fail, inconclusive, none or error. The final verdict is determined with regard to the outcome of each test step.Abstract communication�Between the test executor system and the implementation under test there are two different communication possibilities. Message based communication is asynchronous while procedure based communication is synchronous. There is communication also between components.Concurrency�Parallel test components (PTCs) are working concurrently, they can be created and destroyed.Test specific constructions: alt, interleave, default, altstep�…are used to specify message reception behavior �

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 27

Test arrangement
and its ttcn-3 model

Test System

 Network

IUT

SAP

ASPs ASPs

PCO

SUT

 Network
Test Port

IUT

Port

MTC

System
ASPs

Syntactical rules
Module

Module definitions part
Module control part
General syntax rules
Module parameters

III. TTCN-3 MODULE
STRUCTURE

contents

Presenter
Presentation Notes
The principal building blocks of TTCN-3 are modules.The module definitions part specifies the top-level definitions of the module and may import identifiers from other modules. TTCN-3 does not support the definition of variables in the module definitions part. This means that global variables cannot be defined in TTCN-3.The module control part may contain local definitions and describes the execution order of the actual test cases. A test case shall be defined in the module definitions part and called in the control part.General syntax rules describe the file format, capitalisation, delimiters, identifiers etc.The module parameter list defines a set of values that are supplied by the test environment at run-time. During test execution these values shall be treated as constants. Module parameters shall be defined within the module definition part only.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 29

• Keywords always use lower case letters e.g.: testcase
• Identifiers e.g.: Tinky_Winky

– consist of alphanumerical characters and underscore
– case sensitive
– must begin with a letter

• Comment delimiters: like in C/C++
– C-style “Block” comments e.g.: /* enclosed comment */
– Block comments must not be nested
– C++-style line comments e.g.: // lasts until EOL

• Statement separator is the semicolon
– Mandatory except before or after } character, where it is optional

e.g.: { f1(); log("Hello World!") }
• In this material:

– Red letters or red frames : erroneous examples

TTCN-3 syntactical rules
and notational Conventions

Presenter
Presentation Notes
Keywords are listed in table A.3 of the ETSI standard 201 873-1. These words must not be used as identifiers.Identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters (A-Z) and numeric digits (0-9). Use of the underscore (_) symbol is also allowed. An identifier shall begin with a letter.Comments written in free text may appear anywhere in a TTCN-3 specification.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 30

• Module – Top-level unit of
TTCN-3

• A test suite consists of one or
more modules

• A module contains a module
definitions and an (optional)
module control part.

• Modules can have run-time
parameters → module
parameters

• Modules can have attributes

TTCN-3 Modules

[with { <attributes> }]

module <modulename>
[objid <object identifier>]
{

}

Module
Control Part

Module
Definitions Part

Presenter
Presentation Notes
A test suite consists of one ore more modules. There is no hierarchy between modules. Modules are written as free text files: line breaks or paragraph marks may be used without restrictions. A module consists of a (optional) definitions part, and a (optional) module control part. Usually, the definitions part is longer, the control part only states the execution order of the test cases. Module parameters are supplied to the module at run-time and are considered constant during test execution. Module attributes give additional information, like coding rules or the size of a table.The beginning of a module is indicated in the header by the keyword "module" followed by the module name (here:modulename). Thereafter between curly brackets appears the definitions part followed by the control part. Module attributes (here: the encoding rule valid for the whole module) may be given after the closing curly bracket of the module. Attributes are introduced by the keyword "with" whereas the attributes themselves are listed between curly brackets.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 31

Definitions in module definitions part
are globally visible within the module

• Module parameters are external
parameters, which can be set at test
execution

• Data Type definitions are based on the
TTCN-3 predefined types

• Constants, Templates and Signatures
define the test data

• Ports and Components are used to set
up Test Configurations

• Functions, Altsteps and Test Cases
describe dynamic behaviour of the tests

Module Definitions
Part

Test Cases

Altsteps

Functions

Test Components
Communication Ports
Signature Templates

Message Templates

Signatures

Constants

Data Types

Module Parameters

Presenter
Presentation Notes
Module Parameters are supplied by the test environment at run-time and are treated as constants during test execution.Data Types : a common name for simple basic types, basic string types, structured types, the special data type and all user defined types based on them.Procedure Signatures (or signatures for short) are needed for procedure-based communication.Templates are used to either transmit a set of distinct values or to test whether a set of received values matches the template specification. A template can be thought of as being a set of instructions to build a message for sending or to match a received message. Message Templates are used over message based ports, whereas Signature Templates are used over procedure based ports.Test components are connected via their Communication Ports. Each port is modelled as an infinite FIFO queue which stores the incoming messages or procedure calls until they are processed.Test Components are the owner of the ports. Each test component has a unique reference created during the execution of a test case.Altsteps are special functions used to specify and structure test behaviour. Test Cases are functions running on MTC and returning the result of the test ("verdict").

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 32

• The main function of a TTCN-3
module: the main module’s control
part is started when executing a Test
Suite

• Local definitions, such as variables
and timers may be in the control part

• Test Cases are usually executed
from the module control part

• Basic programming statements may
be used to select and control the
execution of the test cases

Module Control part

[with { <attributes> }]

control
{

}

Test Case Execution

Control Part
Local Definitions

Presenter
Presentation Notes
The module control part manages the execution of the test cases.In the module control part the execute statement is used to start test cases. Program statements may be used in the control part of a module to specify such things as the order in which the test cases are to be executed or the number of times a test case may be run. Variables, timers etc. (if any) defined in the control part of a module are only locally visible, i.e., they shall be passed into the test case by parameterization when required.As the result of the execution of a test case a test case verdict of either none, pass, inconclusive, fail or error shall be returned.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 33

Modules can import
definitions from other
modules

module M2
{
 import from M1 all;

 type record R {
 S f1,
 I f2
 }
 const I one := 1;

 control {
 execute(tc())
 }
}

module M1
{
 type integer I;
 type set S {
 I f1,
 I f2
 }
 …

 testcase tc() runs on CT
 { … }

 control { … }
}

Presenter
Presentation Notes
Modules can import definitions from any module. Identifiers imported from other modules are globally visible throughout the importing module. It is possible to import to various extent:single definitions;groups of definitions;all templates, functions and types;all definitions.The default import mechanism imports referenced definitions without their identifier. A recursively imported definition, in turn, is imported together with all referenced definitions, i.e. the identifier of all referenced definitions becomes visible and usable in the importing module.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 34

Importing definitions

// Importing all definitions
import from MyModule all;

// Importing definitions of a given type
import from MyModule { template all };

// Importing a single definition
import from MyModule { template t_MyTemplate };

// To avoid ambiguities, the imported definition may be
// prefixed with the identifier of the source module
MyModule.t_MyTemplate // means the imported template
t_MyTemplate // means the local template

Presenter
Presentation Notes
It is possible to re-use definitions specified in different modules using the import statement. An import statement can be used anywhere in the module definitions part. It shall not be used in the control part.TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants, external constants, data templates, signature templates, functions, external functions, altsteps and test cases.The rules of importing are depicted in the chapter 7.5 of ETSI standard ES 201 873-1.Legend: the import options preceded by comments in red are not implemented in the TITAN environment.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 35

• Specifies if the TTCN-3 module requires a minimum version of another
TTCN-3 module or a minimum version of TITAN.

Version information

module X {
…
}
with {
extension "requires TITAN R8C";
}

module X has to be compiled with
TITAN R8C or later.

module supplier {
 …
}
with {
extension "version R1A";
}

module importer {
import from supplier all;
}
with {
extension "requires supplier R2A"
}

module’s own version information can
be specified in an extension attribute

minimum version of an imported
module can be specified

Presenter
Presentation Notes
It is possible to re-use definitions specified in different modules using the import statement. An import statement can be used anywhere in the module definitions part. It shall not be used in the control part.TTCN-3 supports the import of the following definitions: module parameters, user defined types, signatures, constants, external constants, data templates, signature templates, functions, external functions, altsteps and test cases.The rules of importing are depicted in the chapter 7.5 of ETSI standard ES 201 873-1.Legend: the import options preceded by comments in red are not implemented in the TITAN environment.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 36

An example: “Hello,
World!” in TTCN-3

module MyExample {
 type port PCOType_PT message {
 inout charstring;
 }
 type component MTCType_CT {
 port PCOType_PT My_PCO;
 }
 testcase tc_HelloW ()
 runs on MTCType_CT system MTCType_CT
 {
 map(mtc:My_PCO, system:My_PCO);
 My_PCO.send ("Hello, world!");
 setverdict (pass);
 }
 control {
 execute (tc_HelloW());
 }
}

Presenter
Presentation Notes
This classical example illustrates how many definitions should be made to complete a module.The main point is the testcase called HelloW. The message is sent over the port My_PCO defined previously. The port, component, testcase definition form the module definitions part followed by the module control part.

Overview
Basic and structured types

Value notations
Sub-typing

IV. TYPE SYSTEM

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 38

• Predefined basic types
– well-defined value domains and useful operators

• User-defined structured types

– built from predefined and/or other structured types
• Sub-typing constructions

– Restrict the value domain of the parent type
• Aliasing

• Type compatibility
• Forward referencing permitted in module definitions part

TTCN-3 Type System

Presenter
Presentation Notes
TTCN-3 supports a number of predefined basic types. These basic types include ones normally associated with a programming language, such as integer, boolean and string types, as well as some TTCN-3 specific ones such as objid and verdicttype. Structured types such as record types, set types and enumerated types can be constructed from these basic types.User-defined type is defined by subtyping of a basic type, defining a structured type or constraining the anytype to a single type by the dot notation.Definitions in the module definitions part may be made in any order but forward references should be avoided for readability reasons.Sub-types are user-defined types formed from simple basic and basic string types using lists, ranges and length restrictions.Parameterisation: all user-defined type definitions support static value parameterization (i.e. this parameterization shall be resolved at compile-time); template, signature, testcase, altstep and function support dynamic value parameterization (i.e. this parameterization shall be resolvable at run-time).Type compatibility: TTCN-3 is not strongly typed. For non-structured variables, constants, templates etc. the value "b" is compatible to type "A" if type "B" resolves to the same root type as type "A" and it does not violate subtyping (e.g. ranges, length restrictions) of type "A". In the case of structured types (except the enumerated type, that is never compatible with other basic or structured types) a value "b" of type "B" is compatible with type "A", if the effective value structures of type "B" and type "A" are compatible. The communication operations are exceptions to the weaker rule of type compatibility and require strong typing.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 39

•integer
– Represents infinite set of integer values
– Valid integer values: 5, -19, 0

•float
– Represents infinite set of real values
– Valid float values: 1.0, -5.3E+14

•boolean: true, false
•objid

– object identifier e.g.: objid { itu_t(0) 4 etsi }
•verdicttype

– Stores preliminary/final verdicts of test execution
– 5 distinct values: none, pass, inconc, fail, error

Simple basic types

Presenter
Presentation Notes
Integer: a type with distinguished values which are the positive and negative whole numbers, including zero.Float: a type to describe floating-point numbers. Floating point numbers are represented in TTCN-3 as: <mantissa> × <10><exponent>.Boolean: a type consisting of two distinguished values: true, false.Objid: a type whose distinguished values are the set of all object identifiers conforming to clause 6.2 of ITU-T Recommendation X.660.Verdicttype: a type for use with test verdicts consisting of 5 distinguished values.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 40

•bitstring
– A type whose distinguished values are the ordered sequences of bits
– Valid bitstring values: ’’B, ’0’B, ’101100001’B
– No space allowed inside

•hexstring
– Ordered sequences of 4bits nibbles, represented as hexadecimal digits:
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

– Valid hexstring values: ’’H, ’5’H, ’F’H, ’A5’H, ’50A4F’H
•octetstring

– Ordered sequences of 8bit-octets, represented as even number of
hexadecimal digits

– Valid octetstring values: ’’O, ’A5’O, ’C74650’O, ’af’O
– invalid octetstring values: ’1’O, ’A50’O

Basic string types

Presenter
Presentation Notes
Bitstring: a type whose distinguished values are the ordered sequences of zero, one, or more bits.Hexstring: a type whose distinguished values are the ordered sequences of zero, one, or more hexadecimal digits, each corresponding to an ordered sequence of four bits.Octetstring: a type whose distinguished values are the ordered sequences of zero or a positive even number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of eight bits).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 41

•charstring
– Values are the ordered sequences of characters of ISO/IEC 646 complying

to the International Reference Version (IRV) – formerly International
Alphabet No.5 (IA5) described in ITU-T Recommendation T.50

– In between double quotes
› Double quote inside a charstring is represented by a pair of double

quotes
– Valid charstring values: "", "abc", """hello!"""
– Invalid charstring values: "Linköping", "Café"

•universal charstring
– UCS-4 coded representation of ISO/IEC 10646 characters: "∂ξ"
– May also contain characters referenced by quadruples, e.g.:
– char(0, 0, 40, 48)

Basic string types
continued

Presenter
Presentation Notes
Universal charstring: The "quadruple" is capable to denote a single character and denotes the character by the decimal values of its group, plane, row and cell according to ISO/IEC 10646.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 42

•anytype
– Introduced to allow mapping of CORBA IDL to TTCN-3;
– Defined as a shorthand for the union of all known types in a TTCN-3 module, where

known type embraces all built-in types, user-defined types, imported ASN.1 and other
imported external types.

– The fieldnames of the anytype shall be uniquely identified by the corresponding type
names using the "dot" notation.

– Performance problems – not to use unless explicitly necessary!
› all used types must be listed at the end of the module

 – with {extension “anytype ... “}

Special types (1)

module my_Module {
 type record MyRec {integer i,float f}
 control { var anytype v_any;
 v_any.charstring := "three";
 v_any.MyRec := {{ 1,true} }
 } with { extension "anytype charstring, MyRec"}

Presenter
Presentation Notes
CORBA	Common Object Request Broker ArchitectureIDL		Interface Description LanguageThe specification of CORBA IDL can be read by following the Uniform Resource Locator:http://www.omg.org/technology/documents/idl2x_spec_catalog.htmmodule my_Module {type integer money;type record MyRec {integer i,float f}control {var anytype v_any;v_any.integer := 3;// ischosen(v_any.integer) == truev_any.charstring := “three”;}}with {extension “anytype integer, charstring” // adds two fieldsextension “anytype MyRec” // adds a third fieldextension “anytype money” // adds the money type}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 43

Configuration types are used to define the architecture of the test system:
•port

– A port type defines the allowed message and signature types between test
components → Test Configuration

•component
– Component type defines which ports are associated with a component

 → Test Configuration
•address

– Single user defined type for addressing components
– Used

› to interconnect components
→ Test Configuration

› in send to/receive from operations and sender clause
→ Abstract Communication Operations

Special types (2)

Presenter
Presentation Notes
Address shall only be used in receive and send operations of ports mapped to test system interface. Only one definition of type address may exist in a test suite.	SUT: System Under TestEach port type definition shall have list(s) indicating the allowed collection of message types and/or procedures together with the allowed communication direction.Component definitions shall be made in the module definitions part. It is possible to define constants, variables and timers local to a particular component.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 44

•default
– Implementation-dependent

type for storing the default
reference

– A default reference is the
result of an activate
operation

– The default reference can be
used to a deactivate
given default
→ Behavioral Statements

Special types (3)
function PO49901(integer FL) runs
on MyMTC
{
 L0.send(A_RL3(FL, CREF1,
16));
 TAC.start;
 alt {
 [] L0.receive(A_RC1(FL)){
 TAC.stop;
 setverdict(pass);
 }
 [] TAC.timeout {
 setverdict(inconc);
 }
 [] any port.receive {
 setverdict(fail);
 }
 }
 END_PTC1();
}

Presenter
Presentation Notes
Received messages are usually examined in an alt statement. When no branch of the alt matches the received message, the previously activated default(s) are examined. It is possible to have several defaults activated at same time and deactivate them one by one.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 45

• General syntax of structured type definitions:
type <kind> [element-type] <identifier> [{ body }] [;]

• kind is mandatory, it can be:
record, set, union, enumerated, record of, set of

• element-type is only used with record of, set of

• body is used only with record, set, union, enumerated;
it is a collection of comma-separated list of elements

• Elements consist of <field-type> <field-id> [optional]
except at enumerated

• element-type and field-type can be a reference to any basic or user-defined
data type or an embedded type definition

• field-ids have local visibility (may not be globally unique)

Overview of
structured type syntax

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 46

• User defined abstract container types representing:
– record: ordered sequence of elements
– set: unordered list of elements

• Optional elements are permitted (using the optional
keyword)

Structured types –
record, set

// example set type def.
type set MySetType {
 integer field1 optional,
 boolean field2
}

// example record type def.
type record MyRecordType {
 integer field1 optional,
 boolean field2
}

Presenter
Presentation Notes
In the above example, "type" of the elements is integer or boolean, their "identifier" is field1 or field2. The same identifiers may be used in both record and set, because it is not mandatory to use globally unique names.Optional elements may or may not be present when assigning value to the constructs.A record or a set may be an element of another record or set.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 47

record – ordering of elements is fixed
set – order of elements is indifferent

Difference between
record and set types

MySetType MyRecordType

etc.

• { field1 := 0,
 field2 := true }

• { field1 := 0,
 field2 := false }

• { field1 := omit,
 field2 := true }

• { field1 := 1,
 field2 := true } • { field1 := omit,

 field2 := true }

etc.

• { field1 := 0,
 field2 := true }
≡ { field2 :=true,
 field1 := 0 }

• { field1 := 0,
 field2 := false }

• { field2 := false,
 field1 := omit }

• { field2 := true,
 field1 := 1 }

• { field1 := omit,
 field2 := true }

Presenter
Presentation Notes
The main difference between record and set is the following: elements of a record must be referenced in the same order as defined, whereas elements of a set may be referenced in arbitrary order. In other words, the ordering of the set fields is not significant.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 48

• Values may be explicitly assigned to fields
– not present optional elements must be set to omit
– values of the unlisted elements remain unbound
– applicable for: record, set, union

Value assignment
notation

var MyRecordType v_myRecord1 := {
 field1 := 1,
 field2 := true
}

var MySetType v_mySet1 := {
 field2 := true,
 field1 := omit // field1 is not present
}

var MyRecordType v_myRecord2 := {
 field2 := true // field1 presents, but unbound
}

Presenter
Presentation Notes
Value notation: notation by which an identifier is associated with a given value or range of a particular typeAssignment notation: in the curly brackets following the name of the record or set, the element identifier must be present to designate which element is the value is assigned to. It is important to know that every identifier of the record or set must be listed. Omitted optional elements must be given the value "omit" otherwise its value remains undetermined (unbound), resulting in run-time error.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 49

• Value list notation
– Elements are assigned in the order of their definition
– All elements must present, dropped optional elements must explicitly

specified using the omit keyword
– Assigning the “not used symbol” (hyphen: –) leaves the value of the element

unchanged
– Valid for: record, record of, set of and array, but not for set

Value list notation

var MyRecordType v_myRecord3 := { 1, true }
var MyRecordType v_myRecord4 := { omit, true }
var MyRecordType v_myRecord5 := { -, true } // <unbound>,true
 v_myRecord5 := { 1, - } // 1, true

var MySetType v_mySet2 := { 1, true } // not for set

var MyRecordType v_myRecord6 := { true } // not all fields!

Presenter
Presentation Notes
Value-list notation: in the curly brackets following the name of the record, values of the elements are listed one by one. Every identifier of the record must be listed. Omitted optional elements must be given the value "omit" otherwise its value remains undetermined (unbound), resulting in run-time error. In contrast to value assignment notation, all elements must appear inside the initializer. Application of the hyphen (-) leaves the corresponding field unchanged. Attention! Such a field is unbound unless it has been given a value earlier. It is not allowed to mix value-list notation and assignment notation in the same context! The not-used symbol is only valid in value-list notation.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 50

Structured types –
nested values
type record InternalType {
 boolean field1,
 integer field2 optional
};
type record RecType {
 integer field1,
 InternalType field2
};
const RecType c_rec := {
 field1 := 1,
 field2 := { field1 := true,
 field2 := omit
 }
 };
// same as previous, but with value list
const RecType c_rec2 := { 1, { true, omit } }

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 51

• Reference or “dot” notation
› – Can not be used at specification, only for previously defined variables

– Referencing structured type fields
– Applicable in dynamic parts (e.g. function, control) only

field references

v_myRecord2.field1 := omit;
v_mySet1.field1 := v_myRecord2.field1;

type record R1 {
 integer i,
 boolean b
}
type record R2 {
 R1 r1,
 integer i2
}

var R2 r2;

r2.i2 := 2;
r2.r1.i := 1;
r2.i := 11;

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 52

• User defined abstract container type representing a single
alternative chosen from its elements
• Optional elements are forbidden (make no sense)
• More elements can have the same type as long as their

identifiers differ
• Only a single element can present in a union value
• Value list assignment cannot be used!
• The ischosen(union-ref.field-id) predefined function

returns true if union-ref contains the field-id element

Structured types –
union

Presenter
Presentation Notes
Union type is useful to model a structure which can take one of a finite number of known types.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 53

// union type definition
type union MyUnionType {
integer number1,

 integer number2,
 charstring string
}
// union value notation
var MyUnionType v_myUnion :=
 {number1 := 12}
var MyUnionType v_myUnion;
v_myUnion := {number1 := 12}
v_myUnion.number1 := 12;

// usage of ischosen
if(ischosen(v_myUnion.number1)) { … }

Structured types –
union (example)

MyUnionType

etc.

• { number1 := 0 }

• { string := "mystring" }

• { string := "abc" }

• { string := "" }

• { number2 := 0 }

• { number1 := 1}

Presenter
Presentation Notes
For the union type, assignment notation and dot notation may be used. (First, respective second row in the example on the middle of the slide.) Value-list notation (listing of element values without their identifiers) must not be used.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 54

• User defined abstract container type representing an ordered /unordered
sequence consisting of the same element type

• Value-list notation only (there is no element identifier!)

Structured types –
record of, set of

// record of types; variable-length array;
// length restriction is possible
type record of integer ROI;
var ROI v_il := { 1, 2, 3 };

// set of types, the order is irrelevant
type set of MySetType MySetList;
var MySetList v_msl := {
 v_mySet1, { field2 := true, field1 := omit }, v_mySet1
};

remember :
var MySetType v_mySet1 := {
 field2 := true,
 field1 := omit
}

Presenter
Presentation Notes
The only difference between record of and set of appears when comparing them. Two records of are only equal when they contain the equal elements in the same order. Two sets of are equal if there is exactly one pair for each element.These records and sets can be considered similar to an ordered array and an unordered array respectively.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 55

• Similarly to other notations (e.g. ASN.1) TTCN-3 type definitions may be nested
(multiple times)

• The embedded definition have no identifier associated

Structured types –
nested types

// nested type definition:
// the inner type "set of integer" has no identifier
type record of set of integer OuterType;

// …could be replaced by two separate type definitions:
type set of integer InnerType;

type record of InnerType OuterType;

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 56

• Individual elements of basic string, record of and set of types can be
accessed using array syntax

• Indexing starts by zero and proceeds from left to right

• Only a single element of a string can be accessed at a time

Indexing

v_bs[0..3] := ’0000’B; // Error!!!

var bitstring v_bs := '10001010'B;
var ROI v_il := { 100, 2, 3, 4 };
// the operations below on the variables above
v_bs[2] := '1'B; // results: v_bs = '10101010'B
v_il[0] := 1; // results: v_il = { 1, 2, 3, 4 }

Presenter
Presentation Notes
When indexing a string type element, index corresponds to different units of length in function of the string type. A bitstring is indexed by bits, a hexstring by hexadecimal digits, an octetstring by octets and finally a character string by characters.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 57

• omit – structured type’s optional field not present
• unbound – uninitialized value
• not-used (“-”) – preserves the original value, only in value list notation

Not-used, omit and
unbound

var ROI u, v := { -, 2, - }; // v == {<unbound>, 2, <unbound>}
log(sizeof(v)); // 3
v[0] := 1; // v == { 1, 2, <unbound> }
u := v;
v := { -, -, 3 }; // v == { 1, 2, 3 }

var MyRecordType r1, r2, r3, r4;
r1 := { field2 := true } // r1 == { <unbound>, true }
r2 := { -, true }; // r2 == { <unbound>, true } == r1
r3 := { omit, true }; // r3 == { omit, true } != r1
r4 := { 1 }; // PARSE ERROR!

type record MyRecordType {
 integer field1 optional,
 boolean field2
}

Presenter
Presentation Notes
NOTE1: The comments at the assignment examples of r2 and r3 might be misleading: an unbound value never can be a right-hand-side value, not even for relational operators! It causes a run time error!NOTE2: Just for convenience: the typedefs. from one of the earlier slides: // example record type def. type record MyRecordType { integer field1 optional, boolean field2}// example set type def. type set MySetType {	integer field1 optional,	boolean field2}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 58

• Implements types which take only a distinct named set of values (literals)

• Enumeration items (literals):
– Must have a locally (not globally) unique identifier

• Shall only be reused within other structured type definitions
– Must not collide with local or global identifiers
– Distinct integer values may optionally be associated with enumeration items

• Operations on enumerations
– must always use literals – integer values are only for encoding!
– are restricted to assignment, equivalence and comparing (<,>) operators

•enumerated versus integer types
– Enumerated types are never compatible with other basic or structured types!

Structured types –
enumerated

 type enumerated Ex1 {tuesday, friday, wednesday, monday};

type enumerated Ex2 {tuesday(1),friday(5), wednesday, monday};

Presenter
Presentation Notes
For each enumeration without an assigned integer value, the system successively associates an integer number in the textual order of the enumerations, starting at the left-hand side, beginning with zero, by step 1 and skipping any number occupied in any of the enumerations with a manually assigned value. These values are only used by the system to allow the use of relational operators.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 59

Structured types –
enumerated
(examples)

// enumerated types
type enumerated Wday1 {monday, tuesday, wednesday};
type enumerated Wday2 {monday(1), tuesday(5), wednesday};

var Wday1 v_11 := monday; //variable of type Wday1
var Wday1 v_12 := wednesday; //variable of type Wday1
// v_11 > v_12 is false

var Wday2 v_21 := monday; //variable of type Wday2
var Wday2 v_22 := wednesday; //variable of type Wday2
// v_21 > v_22 is true

// v_11 > v_22 causes error: different types of variables!
// v_11 > 2 causes error: enumerated is not integer

Presenter
Presentation Notes
Although the TTCN-3 standard does not require it, it is a good practice to begin user-defined type names with uppercase letters and to use lowercase letters as the first letter of element, variable and constant names. That's why weekdays are written in small letters violating English orthography.Comparison is only possible between two elements of the same enumeration type.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 60

• Deriving a new type child from an existing parent type by restricting the new type’s

domain to a subset of the parent types value domain:
– D(child) ⊆ D(parent)

• child has the same root type as parent
• Applicable to elements of

structured types also
• Various sub-typing constructs:

– value range,
– value list,
– length restriction,
– patterns,
– type alias.

Sub-typing

etc.

1
3

4

-1

0 2

-1248

-58

-2

11673

42

29

parent

child

Presenter
Presentation Notes
One way to create user-defined types is sub-typing a basic type. (The two other ways already discussed are defining a structured type or constraining the anytype to a single type by the dot notation.) By sub-typing the value set of the original type is restricted to certain values. In case of string types also the length of the string can be restricted. Mathematically spoken, the set D(New) is the proper subset of set D(basic) and has the same type as the original basic type.universal charstring / charstring types can be sub-typed with patterns (not supported in TITAN yet, as of v1.6.pl3 (R6D))

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 61

• Value-range subtype definition is applicable only for integer,
charstring, universal charstring and float types

– for charstrings: restricts the permitted characters!

•-infinity/infinity keywords can be used instead of a value indicating
that there is no lower/upper boundary

• Note that –infinity/infinity are NOT values and cannot be used in
expressions, thus the following example is invalid:

Sub-typing: value
range restrictions

type integer MyIntegerRange (1 .. 100);
type integer MyIntegerRange8 (0 .. infinity);
type charstring MyCharacterRange ("k" .. "w");

var integer v_invalid := infinity; // error!!!

Presenter
Presentation Notes
TTCN-3 permits the specification of a range of values of type integer, charstring, universal charstring and float. The lower boundary and the upper boundary are included in the range of permitted values. In the case of charstring and universal charstring types, the boundaries mean character positions according to the coding rules of the respective character set.The keyword infinity may be used in order to specify an infinite integer or float range.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 62

• Value list restriction subtype is applicable for all basic type as
well as in fields of structured types:

• For integer and float types it is permitted to mix value list
and value range subtypes:

Sub-typing: value list
restrictions

type charstring SideType ("left", "right");
type integer MyIntegerList (1, 2, 3, 4);
type record MyRecordList {
 charstring userid ("ethxyz", "eraxyz"),
 charstring passwd ("xxxxxx", "yyyyyy")
};

type integer MyIntegerListAndRange (1..5, 7, 9);

Presenter
Presentation Notes
The subtype defined by this list enumerated in parentheses restricts the allowed values of the subtype to those values in the list. The values in the list shall be of the root type and shall be a true subset of the values defined by the root type. For values of type integer, charstring, universal charstring and float it is possible to mix lists and ranges. Within charstring and universal charstring subtype definitions, lists and ranges shall not be mixed in the same subtype definition. For values of type bitstring, hexstring, octetstring it is possible to mix lists and length restrcitions. Note: in sub-typing we use parenthesizes around the value list, while in value-notation we use curly braces around the value lists

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 63

• Length restrictions are applicable for basic string types.
• The unit of length depends on the constrained type:

– bitstring – bit,
– hexstring – hexa digit,
– octetstring – octet,
– charstring/universal charstring – character

Sub-typing: length
restrictions (1)

// length exactly 8 bits
 type bitstring MyByte length(8);
// length exactly 8 hexadecimal digits
 type hexstring MyHex length(8);
// minimum length 4, maximum length 8 octets
 type octetstring MyOct length(4 .. 8);

Presenter
Presentation Notes
For the upper bound the keyword infinity may also be used to indicate that there is no upper limit for the length. The upper boundary shall be greater than or equal to the lower boundary. The lower boundary and the upper boundary are included in the range of permitted values.Length restriction can only be either a concrete number or a range. Other (e.g. value list) not allowedtype octetstring MyOct length(4 .. 8, 11);type octetstring MyOct length(4 , 8);Both wrong

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 64

•length keyword is used to restrict the number of elements in record
of and set of.

• It is permitted to use a range inside the length restriction

Sub-typing: length
restrictions (2)

// a record of exactly 10 integers
 type record length(10) of integer RecOfExample;

// a record of a maximum of 10 integers
 type record length(0..10) of integer RecOfExamplf;

// a set of at least 10 integers
 type set length(10..infinity) of integer RecOfExampg;

Presenter
Presentation Notes
According to table 3 in chapter 6.0 of ETSI ES 201 873-1 V2.2.1 length restriction of the structured types record of and set of is considered as sub-typing. Chapter 6.2.0, on the other hand, only allows sub-typing of on simple basic and basic string types.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 65

•charstring and universal charstring types can be restricted
with patterns (charstring value patterns)

• All values denoted by the pattern shall be a true subset of the type being
sub-typed

Sub-typing: patterns

// all permitted values have prefix abc and postfix xyz
type charstring MyString (pattern "abc*xyz");

// a character preceded by abc and followed by xyz
 type charstring MyString2 (pattern "abc?xyz");
//all permitted values are terminated by CR/LF
 type charstring MyString3 (pattern "*\r\n")

type MyString MyString3 (pattern "d*xyz");
/* causes an error because MyString does not contain a

value starting with character ’d’*/

Presenter
Presentation Notes
type charstring MyString2 (pattern "abc?\q{0,0,1,113}");/* causes an error because a universal char {0,0,1,113} is not allowed in the charstring type *///all permitted universal string values are terminated by CR/LF type universal charstring MyUString (pattern "*\r\n")

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 66

• An alternative name to an existing type;
• similar to a subtype definition, but the subtype restriction tag

(value list, value or length restriction) is missing.

Sub-typing: type alias

type MyType MyAlternativeName;

Presenter
Presentation Notes
Type aliasing is defined in TTCN-3 BNF only, but it is implemented in TITAN.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 67

Overview of subtype
constructs
for TTCN-3 types

Class of type Type name (keyword) Sub-Type

Simple basic types
integer, float range, list
boolean, objid, verdicttype list

Basic string types

bitstring, hexstring,
octetstring list, length

charstring,
universal charstring

range, list, length,
pattern

Structured types

record, set, union, enumerated
list

record of, set of list, length
Special data types anytype list

Presenter
Presentation Notes
NOTE: List subtyping of the types “record”, “record of”, “set”, “set of”, “union”, “enumerated”, “anytype” are possible when defining a new constrained type from an already existing parent type but not directly at the declaration of the first parent type.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 68

• Deviations from TTCN-3:
– Aliased types and sub-types are treated to be equivalent to their unrestricted

root types
– Different structured types are incompatible to each other
– Two array types are compatible if both have the same size and index offset

and the types of the elements are compatible according to the rules above

• Built-in functions available for converting between incompatible
types:

Type compatibility in
TITAN

int2char(65) == "A" // ASCII(65): letter A
int2str(65) == "65"
hex2str(’FABABA’H) == "FABABA"

Presenter
Presentation Notes
Type compatibility is a language feature, which allows to use values or templates of a given type as actual values of another type (e.g. at assignments, as actual parameters at calling a function, referencing a template etc. or as a return value of a function)An example for type compatibility of structured types is given in chapter 6.7.2 of ETSI ES 201 873-1.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 69

Predefined
conversion functions

To \ From integer float bitstring hexstring octetstring charstring Universal
charstring

integer float2int bit2int hex2int oct2int
char2int
str2int

unichar2int

float int2float str2float

bitstring int2bit hex2bit oct2bit str2bit

hexstring int2hex bit2hex oct2hex str2hex

octetstring int2oct bit2oct hex2oct
char2oct
str2oct

charstring int2char
int2str

float2str bit2str hex2str
oct2char
oct2str

universal
charstring

int2unichar

log2str; enum2int

Presenter
Presentation Notes
Conversion functions span the gap between different simple variable types.A function at the intersection of a given column and a row has an in parameter indicated in the column header and returns the value type indicated in the row header.The detailed description of predefined functions is given in annex C of the ETSI standard ES 201 873-1.Green letters indicate TITAN extensions, not included in the standard.Difference between functions with 'str' and 'char' in their names is explained with the following examples:int2char (66) = "B", int2str (66) = "66".

Constant definitions
Variable definitions

Arrays
Module parameter definitions

V. CONSTANTS,
VARIABLES, MODULE

PARAMETERS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 71

• Constants can be defined at any place of a TTCN-3 module
• The visibility is restricted to the scope unit of the definition

(global, local constants)
•const keyword

• The value of the constant shall be assigned when defined.

• The value assignment may be done externally

• Constants may be defined for all basic and structured types

Constant definitions

// simple type constant definition
const integer c_myConstant := 1;

const integer c_myConstanu; // parse error!

external const integer c_myExternalConst;

Presenter
Presentation Notes
Constants defined in module definitions part are globally (= anywhere in the module) visible. Those defined in the module control part, test cases, functions and altsteps are only locally (=within the same scope unit) visible. The ones defined in component type definitions are visible in functions, test cases and altsteps referencing that component type by a runs on-clause.No forward referencing allowed in constant definitions except in module definition part.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 72

• The value notation appropriate for the constant type shall be used to
initialize a constant

Constant definitions (2)

// compound types - nesting is allowed
// constant definition using assignment notation:
const SomeRecordType c_myConst1 := {
 field1 := ”My string”,
 field2 := { field21 := 5, field22 := ’4F’O }
}
// record type constant definition using value list
const SomeRecordType c_myConst2 := {
 ”My string”, { 5, ’4F’O } }
// record of constant
const SomeRecordOfType c_myNumbers := { 0, 1, 2, 3 }

Presenter
Presentation Notes
Both assignment notation and the short-hand value list notation may be used when assigning value to a constant.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 73

• Variables can be used only within control, testcase, function,
altstep, component type definition and block of statements scope units

• No global variables – no variable definition in module definition part

• Iteration counter of for loops

• Optionally, an initial value may be assigned to a variable

Variable definitions

control { var integer i1 }

for(var integer i:=1; i<9; i:=i+1) { /*…*/ }

control { var integer i1 := 1 }

Presenter
Presentation Notes
Variables defined in the module control part, test cases, functions and altsteps are only locally (=within the same scope unit) visible. The ones defined in component type definitions are visible in functions, test cases and altsteps referencing that component type by a runs on-clause. An initial value may be assigned to the variable. The naming convention (ETH/R-04:000010 Uen rev. A) generally requires that the variable names should be prefixed by ‘v’. However, the prefix may be omitted for non-protocol related variables like loop counters, for loop control variables, variables used in calculations etc.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 74

• Uninitialized variable remains unbound
• Variables of the same type can be defined in a list

Variable definitions (2)

const integer c_myConst := 3;
control {
 // list of local variable definitions
 var integer v_myInt1, v_myInt2 := 2*c_myConst;
 // v_myInt1 is unbound
 log(v_myInt2); // v_myInt2 == 6
}

Presenter
Presentation Notes
Forward references shall never be made inside the module control part, test case definitions, functions and altsteps. This means forward references to local variables, local timers and local constants shall never occur.Although initial value assignment is optional, a variable defined must receive a value assigned somewhere in the program, otherwise a reference to it results in run-time error (reference to an unbound value).In the last example, v_myInt1 remains unbound, while v_myInt2 has the value 2*c_myConst=6.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 75

• Arrays can be defined wherever variable definitions are allowed

• Array indexes start from zero unless otherwise specified
– Lower and upper bounds may be explicitly set:

• Multi-dimensional arrays

Arrays

// integer array of 5 elements with indexes 0 .. 4
var integer v_myArray1[5];

// 2x3 integer array
var integer v_myArray2[2][3]; // indices from (0,0) to (1,2)

var integer v_myBoundedArray[3..5]; // array of 3 integers
v_myBoundedArray[3] := 1; // first element
v_myBoundedArray[5] := 3; // last element

Presenter
Presentation Notes
It is important to realize that a single figure in brackets specifies the number of elements (=array dimension). When a range is given, however, the two figures give the lower respective the upper index value.In the first case, the maximum index value is one less then the figure indicated in the brackets; in the latter case, the maximum index value equals to the last figure indicated in brackets.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 76

• Value list notation may be used to set array values

• A multidimensional array may be replaced by record of
types:

•record of arrays without length restriction may contain any
number of elements

Arrays (2)

v_myArray1 := {1,2,3,4,5}; // one dimensional array
v_myArray2 := {{12,13,14},{22,23,24}}; // 2D array

// 2x3 integer matrix with 2D array
var integer v_myArray2[2][3];
// equivalent IntMatrix definition using record of types
type record length(3) of integer IntVector;
type record length(2) of IntVector IntMatrix;
// v_myArray2 and v_myArray2WithRecordOf are equivalent
// from the users’ perspective
var IntMatrix v_myArray2WithRecordOf;

Presenter
Presentation Notes
A multidimensional array may be replaced by nested record of types. The number of record of types equals to the number of indices of the array. The length of the individual records correspond to the value of the array indices.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 77

• Parameter values
– Can be set in the test environment (e.g. configuration file)
– May have default values
– Remain constants during test run

• Parameters can be imported from another module
• Can only take values, templates are forbidden

Module parameters

module MyModule
{
 modulepar integer tsp_myPar1a := 0, tsp_myPar1b;
 // module parameter w/o default value
 modulepar octetstring tsp_myPar2;
}

Presenter
Presentation Notes
The module parameter list defines a set of values that are supplied by the test environment at run-time. During test execution these values shall be treated as constants. Module parameters are defined by listing their identifiers and types following the keyword modulepar. Module parameters shall be defined within the module definition part only. Redefinition of module parameters is not allowed.It is allowed to specify default values for module parameters.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 78

• TTCN-3 provides seven basic units of scope:

– module definition part (module) – global

– control part of a module (control)
– block of statements ({...})

– functions (function)
– altsteps (altstep)
– test cases (testcase)
– component types (component) – ‘runs on’ clause

• Identifiers must be unique within the entire scope hierarchy

Scopes

Presenter
Presentation Notes
The scope unit is the region of the TTCN-3 source within which (constant, timer, variable, etc.) definitions may have effect, within which multiple definitions of the same name are prohibited, and outside of which definitions inside the unit do not have effect. Definitions made in the module definition part but outside of other scope units are globally visible in the module. So are imported identifiers.Definitions made in the module control part have local visibility, i.e. can be used within the control part only.Definitions made in a test component type may be used only in functions, test cases and altsteps referencing that component type by a runs on-clause.Functions, altsteps and test cases are individual scope units without any hierarchical relation between them, i.e. definitions made at the beginning of their body have local visibility.Definitions within block of statements (e.g. for, if-else, while, do-while, alt, interleave) have local visibility within the statement concerned.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 79

• On module level
– public definition is visible in every module importing the module.

(default)
– private the definition is only visible within the same module.
– friend the definition is only visible within the friend declared module.

Visibility Modifiers

module module1
{
friend module module2;
type integer module2Type;
public type integer module2TypePublic;
friend type integer module2TypeFriend;
private type integer module2TypePrivate;
} // end of module

module module2
{
import from module1 all;
const module2Type c_m2t:= 1;
//OK, type is implicitly public
const module2TypePublic c_m2tp := 2;
//OK, type is explicitly public
const module2TypeFriend c_m2tf := 3;
//OK, module1 is friend of module2
const module2TypePrivate c_m2tpr := 4;
//NOK, module2TypePrivate is private
to module2

Expressions
Assignments

Program control statements
Operators

Example

VI. PROGRAM
STATEMENTS AND

OPERATORS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 81

Expressions, assignments,
log, action and stop

Statement Keyword or symbol

Expression
Condition (Boolean expression)

e.g. 2*f1(v1,c2)+1
e.g. x+y<z

Assignment (not an operator!) LHS := RHS
e.g. v := { 1, f2(v1) }

Print entries into log log(a);
log(a, …);
log(”a = ”, a);

Stimulate or carry out an action action(”Press button!”);

Stop execution stop;

Presenter
Presentation Notes
Basic program statements can be used in the module control part, functions, altsteps and test cases.Expressions are specified using the operators shown on the following two slides.An assignment binds the variable on the left side to the value of the expression on the right side.Logging enables to write a string or a variable value to a log file in an implementation dependent manner.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 82

Program control
statements
Statement Synopsis
If-else statement if (<condition>) { <stmt> } [else { <stmt> }]
Select-Case statement select (<expression>) {

 case (<template>) { <statement> }
 [case (<template-list>) { <statement> }]
 …
 [case else { <statement> }]
}

For loop for (<init>; <condition>; <expr>) { <stmt> }
While loop while (<condition>) { <statement> }
Do-while loop do { <statement> } while (<condition>);
Label definition label <labelname>;
Jump to label goto <labelname>;

Presenter
Presentation Notes
An if-else statement is used to denote branching in the program execution based on a Boolean expression (condition).The select-case statement permits branching based on the calculated value of an expression. The statement block of the first branch containing a matching template inside its case is executed. The statement block of the case else is run when none of the cases match.The select case statement is an alternative to using if .. else if .. else statements when comparing a value to one or several other values. The statement contains a header part and zero or more branches. Never more than one of the branches is executed. The for statement defines a counter loop. The first statement (init) is used to initialize the counter variable. If the Boolean expression (cond) is true, the loop terminates. The second assignment (expr) is used to manipulate (increase or decrease) the index variable.A while loop is executed as long as the loop condition holds.The do while loop is identical to a while loop with the exception that the loop condition shall be checked at the end of each loop iteration. This means that the instruction is executed at least once.Label definition allows the specification of labels (a specific place in the program code). Jump to a label performs a jump to a previously defined label.Used in the control part of a module, the stop statement terminates the execution of the module control part. When used in a test case, altstep or function with runs on clause, it terminates the relevant test component.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 83

•break
– Leaves innermost loop
– or alternative within alt or interleave statement

•continue
– Forces next iteration of innermost loop

break and continue

Presenter
Presentation Notes
continueForces next iteration of innermost loopNot for taking new snapshot in alt or interleave statement -> repeat

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 84

Operators (1)
Category Operation Format Type of operands and result

Arithmetical

Addition +op or op1 + op2

op , op1, op2, result:
integer, float

Subtraction -op or op1 – op2

Multiplication op1 * op2

division op1 / op2

Modulo op1 mod op2 op1, op2, result: integer
Remainder op1 rem op2

String Concatenation op1 & op2 op1, op2, result: *string

Relational

Equal op1 == op2 op1, op2: all;
result: boolean Not equal op1 != op2

Less than op1 < op2
op1, op2: integer, float,
enumerated;
result: boolean

Greater than op1 > op2

Less than or equal op1 <= op2

Greater than or equal op1 >= op2

Presenter
Presentation Notes
Operands of arithmetic operators shall be of type integer or float, except for mod and rem which shall be used with integer types only. The result is of the same type as the operands, operands must not have different types. Both mod and rem have the same result for positive arguments but they differ for negative ones. See Table 7 in 7.1.1 in ETSI ES 201 873-1 V4.4.1 (2012-04).The operators rem and mod compute on operands of type integer and have a result of type integer. The operations x rem y and x mod y compute the rest that remains from an integer division of x by y. Therefore, they are only defined for non-zero operands y. For positive x and y, both x rem y and x mod y have the same result but for negative arguments they differ. Formally, mod and rem are defined as follows: x rem y = x - y * (x/y) x mod y = x rem |y| when x >= 0 = 0 when x < 0 and x rem |y| = 0 = |y| + x rem |y| when x < 0 and x rem |y| < 0 ETSI Effect of mod and rem operator x 	 -3 -2 -1 0 1 2 3x mod 3= 0 1 2 0 1 2 0 x rem 3= 0 -2 -1 0 1 2 0Concatenation is performed from left to right on compatible string types. The result type is the root type of the operands.The relational operators equal and not equal may be applied on all compatible types. All other relational operators shall have only operands of type integer, float or instances of the same enumerated types. The result type of these operations is boolean.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 85

Operators (2)
Category Operator Format Type of operands and result

Logical

NOT not op

op, op1, op2, result: boolean
AND op1 and op2

OR op1 or op2

exclusive OR op1 xor op2

Bitwise

NOT not4b op

op, op1, op2, result: bitstring,
hexstring, octetstring

AND op1 and4b op2

OR op1 or4b op2

exclusive OR op1 xor4b op2

Shift
left op1 << op2 op1, result: bitstring, hexstring,

octetstring; op2: integer right op1 >> op2

Rotate
left op1 <@ op2 op1, result: bitstring, hexstring,

octetstring, (universal)
charstring; op2: integer

right op1 @> op2

Presenter
Presentation Notes
The operands and the result of logical operations shall be of type boolean.The bitwise operators perform the operations of bitwise not, bitwise and, bitwise or and bitwise xor. The unary operator not4b inverts the individual bit values of its operand. The operands shall be of type bitstring, hexstring or octetstring. The result type shall be the root type of the operands.Shift operators perform the shift left and shift right operations. Their left-hand operand shall be of type bitstring, hexstring or octetstring. Their right-hand operand shall be of type integer and its value of e.g. 1 means a shift of one bit, one hexadecimal digit and one octet, respectively, according to the three possible left-hand operand types. The result type shall be the same as that of the left operand.Rotate operators perform the rotate left and rotate right operations. Their left-hand operand shall be of type bitstring, hexstring, octetstring, charstring or universal charstring. Their right-hand operand shall be of type integer and its value of e.g. 1 means a rotate of one bit, one hexadecimal digit, one octet and one character, respectively, according to the possible left-hand operand types. The result type shall be the same as that of the left operand.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 86

Operator precedence
Precedence Operator type Operator

Highest

Lowest

parentheses
Unary
Binary
Binary
Unary
Binary
Binary
Binary
Binary
Binary
Binary
Unary
Binary
Binary
Binary

()
+, -
*, /, mod, rem
+, -, &
not4b
and4b
xor4b
or4b
<<, >>, <@, @>
<, >, <=, >=
==, !=
not
and
xor
or

Presenter
Presentation Notes
Note: The assignment symbol := , structure field symbol . , function calling (),indexing [] are not operators!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 87

Sample program
statements and
expressions

function f_MyFunction (integer pl_y, integer pl_i)
{ var integer x, j;

 for (j := 1; j <= pl_i; j := j + 1)
 {
 if (j < pl_y)
 { x := j * pl_y;
 log(x)
 }
 else { x := j * 3;}
 }
}

Presenter
Presentation Notes
Is the value of j is less than pl_y, then x will get the value of j multiplied by the parameter pl_y, otherwise it will have the value of three times j. The value x will only be converted to a character string and logged when the flag equals true. The procedure described above will be executed in a for loop. The number of executions is controlled by the value of the parameter pl_i.The whole process is called in a function (f_MyFunction). The function has two parameters: pl_y sets the multiplication factor of j, while pl_i controls how many times the calculation is repeated.

Timer declarations
Timer operations

VII. TIMERS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 89

• Timers are defined using the timer keyword at any place where variable
definitions are permitted:

•
Timers measure time in seconds unit

• Timer resolution is implementation dependent
• The default duration of a timer can be assigned at declaration using non-

negative float value:

• Any number of timers can be used in parallel
• Timers are independent
• Timers can be passed as parameters to functions and altsteps

Timer declaration

// T2 timer is defined with default duration of 1s
timer T2 := 1.0;

timer T1; // T1 timer is defined

Presenter
Presentation Notes
Timers can be defined and used in the module control part, test cases, functions and altsteps. Additionally, timers can be defined in component type definitions. These timers can be used in test cases, functions and altsteps which are running on the given component type.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 90

• Timers can be started using the start operation:

• Parameter can be omitted when the timer has a default duration:

• Start is a non-blocking operation i.e. timers run in the background (execution
continues immediately after start)

• Starting a running timer restarts it immediately

• Trying to start a timer without duration results in error:

Starting timers

T1.start(2.5); // started for 2.5s (T1 has no default!)

T2.start; // T2 is started with its default duration 1s
T2.start(2.5); // started for 2.5s (overrides default)

timer T3; // T3 has no default duration
T3.start; // ERROR: T3 has no duration!!!

Presenter
Presentation Notes
When starting a timer, the optional timer value parameter shall be used if no default duration is given, or if it is desired to override the default value specified in the timer definition. When a timer duration is overridden, the new value applies only to the current instance of the timer, any subsequent start operation for this timer, which do not specify a duration, shall use the default duration. The start operation may be applied to a running timer, in which case the timer is stopped and re-started.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 91

• The timeout operation waits a timer to expire (blocking operation)

Supervising timers

T_myTimer.timeout; // waits for T_myTimer to expire

// any timer and all timer keywords refer to timers
// visible in current scope
any timer.timeout; // wait until ”some” timer expires
all timer.timeout; // wait for all timers expire

Presenter
Presentation Notes
The timeout operation allows to check expiration of a timer, or of all timers, in a scope unit in which the timeout operation has been called. The timeout shall not be used in a boolean expression, but it can be used to determine an alternative in an alt statement

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 92

• When the duration of a timer expires, then:
– timeout event is generated and
– timer is stopped automatically

• Timers can be stopped any time using the stop operation
– The RTE stops all running timers at the end of the Test Case
– Stopping idle timers results run-time warning

Expiration of timers

timer T := 5.0;
T.start; or T.start(2.5);
T.timeout; // block until timer expiry

T.stop;

// stopping all timers in scope:
all timer.stop;

Presenter
Presentation Notes
The stop operation is used to stop a running timer. The elapsed time of a stopped timer is set to the float value zero (0.0). An already stopped timer may be stopped again, although it does not have any effect.RTE: Run Time Environment

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 93

• The running operation can be used to determine if a timer is running (returns
a boolean value, does not block)

• Timers count from zero upwards
• The running timer’s elapsed value can be retrieved and optionally saved into a
float variable using the read operation:

•read returns zero for an inactive timer:

Other timer operations:
RUNNING, Read

// Reading the elapsed time of the timer
var float v_myVar := T_myTimer.read;

timer T_myTimer2;
var float v_myVar2 := T_myTimer2.read; // v_myVar2 == 0.0

// ”do something” if T_myTimer is running
if (T_myTimer.running) { /* do something */ }

Presenter
Presentation Notes
The running timer operation is used to check whether a timer has been started and has neither timed out nor been stopped.The read operation is used to retrieve the time that has elapsed since the specified timer was started. The operation returns a value of type float. Applying the read operation on an inactive timer will return the value zero.

Test components and communication ports
Test component definitions

Communication port definitions
Examples

VIII. TEST
CONFIGURATION

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 95

• IUT is a black box that must be put into context (i.e. test configuration) for
testing

• Test configuration contains a set of components interconnected via their
well-defined ports and the system component, which models the IUT itself

– components execute test behavior (except system)
– ports describe the components’ interfaces
– type and number of components in a test configuration as well as the

number of ports in components depends on the tested entity
• Test configuration in TTCN-3 is concurrent and dynamic

– components execute parallel processes
– at the beginning of the testcase the test configuration must be

established → Configuration Operations
– test configuration can be changed during test execution

Test Configuration

Presenter
Presentation Notes
The abstract test configuration consists of components. The components are interconnected by means of ports. In the course of the test, the components themselves may emerge and disappear, their interconnection vary, in other words, the test configuration is dynamic. The tested implementation (IUT, Implementation Under Test) is considered a black box, i.e., its internal structure is hidden from the tester. A special test component, called the test system interface (or System for short) interfaces the ports of the real world to the abstract world of components.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 96

Test arrangement and
its ttcn-3 model – tester
is a peer entity of IUT

Test System

 Network

IUT

SAP

ASPs ASPs

PCO

SUT

 Network
Test Port

IUT

Port

MTC

System
ASPs

Presenter
Presentation Notes
In most of the cases Tester behaves as a peer entity of the IUT/SUTMain Test Component (mtc)System Component (system)mtc and system are of the same type

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 97

TTCN-3 view of testing –
distributed tester

RNC1

Abstract Test System SUT

 Network
Real Test System Interface

Abstract Test System Interface

IUT
(MSC1)

SAP SAP SAP SAP

RNC2

VLR HLR

MSC2

MTC
connection

coordination

mapping ASPs

Service
Primitives

PTC

Presenter
Presentation Notes
The Implementation Under Test (IUT) is usually located inside the System Under Test (SUT). The test system is connected to the SUT through a Network. The connection points between the IUT and the Network respective between the test system and the network are called Service Access Points (SAPs). Communication between the Abstract Test System Interface (mapping the Real Test System Interface to the abstract world) and the Test Components is carried in Abstract Service Primitives (ASPs). ASP is an implementation-independent description of an interaction between the test system and the SUT. ASPs are usually described in the specification of the tested protocol. Communication within the test system (between the components) runs through associated ports. The association between components (on the slide: Parallel Test Components [PTCs] and the Main Test Component [MTC]) is called connection and is set up using the connect keyword. The association between components and the Abstract Test System Interface is called mapping and is set up using the map keyword.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 98

Graphical
representation of
components and ports

This is a port instance in
vc_myComp with the name

P1_PCO;
its type is defined in a separate

port type definition

comptype_CT is the component
type definition, which – among
others – specifies the types of

P1_PCO and P2_PCO

vc_myComp
P1_PCO

comptype_CT
P2_PCO

P2_PCO is a port instance in
vc_myComp;

its type is defined in a
separate port type definition

vc_myComp is the
component reference

identifying this
particular component

This is a
component

instance of type
comptype_CT

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 99

• Ports describe the interfaces of components

• Communication between components proceeds via ports
– ports always belong to components
– type and number of ports depend on the tested entity

• There are two port categories:

– message-based ports for asynchronous communication
– procedure-based ports for synchronous communication

• Interfaces connecting the TTCN-3 components with the real IUT

are implemented in C++ and are called test ports (TITAN
specific!)

Communication ports

Presenter
Presentation Notes
The components are interconnected via test ports. TTCN-3 defines the port communication model through which messages are exchanged (message based ports) or procedures are called (procedure based ports). The interconnection is called mapping between System and components and connecting between components.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 100

Port communication
model
• The port communication is full duplex

– the direction of certain message and signature types (in, out,
inout) can be restricted in the port type definition

• Incoming data is stored in the FIFO queue of the port until the owner

component processes them

• Outgoing data is transmitted immediately (without buffering)

• Communication can be realized only between peer ports
– Internal (component-to-component) communication
 between connected ports → Communication Operations

– External (component-to-system) communication
 between mapped ports → Communication Operations
 test ports to be added

Presenter
Presentation Notes
Information (messages, procedure calls or both) are exchanged between associated communication ports of the components. Internal (component-to-component) communication happens between connected ports whereas external (component-to-system) communication happens between mapped ports.Ports are bidirectional, but have a list enumerating the allowed messages together with their direction (in, out, inout).The infinite FIFO queue stores the incoming messages or procedure calls until they are processed by the component owning that port. A queue overflow (in a real implementation a queue is never infinite) is treated as a test case error.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 101

Communication Port
type definition

•in: list of message types and/or
signatures allowed to be
received;

•out: list of message types and/or
signatures allowed to be sent;

•inout: shorthand for in + out
containing the same members

[with
{ extension ”internal” }]

 type port <identifier_PT>
 (message | procedure)
 {

 }

inout <types/signatures>

out <outgoing types>

in <incoming types>

This optional TITAN-specific with-
attribute indicates that all instances of

this port type will be used only for
internal communication!

Presenter
Presentation Notes
When defining a message based port type, the messages allowed to pass that port must be listed together with their direction. When defining a procedure based port type, the procedure signatures allowed must be listed. A mixed port a shorthand notation for two ports, i.e. a message-based port and a procedure-based port with the same name.The attributes defined with the keyword with may define e.g. the coding rules used for the messages passing the port. Such a rule may be for example whether the most os the less significant bit should be sent first through the port.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 102

Port Type Definition
(example)

// Definition of a message-based port
type port MyPortType_PT message
{
 in ASP_RxType1, ASP_RxType2;
 out ASP_TxType;
 inout integer, octetstring;
}

Instances of this port
type can only handle

messages.

integer and octetstring
type messages can be both

sent and received.
ASP_TxType

messages can
only be sent.

These messages
are expected (but

not sent).

Presenter
Presentation Notes
A message based port is defined by enumerating the allowed message types together with their direction.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 103

• Test components are the building blocks of test configurations
• Components execute test behavior
• Three types of test components:

– Main Test Component (MTC)
– Test System Interface (or shortly system)
– Parallel Test Component (PTC)

• Exactly one MTC and one system component are always
generated automatically in all test configurations (as the first two
components)

• The (runs on clause of) test case defines the component type
used by MTC and system components

• Any number of PTCs can be created and destroyed on demand

Test Components

Presenter
Presentation Notes
The abstract test configuration consists of components. The components are interconnected by means of ports. In the course of the test, the components themselves may emerge and disappear, their interconnection vary, in other words, the test configuration is dynamic. Within every test configuration there shall be one (and only one) main test component (MTC) created automatically at the start of each test case execution. Parallel test components (PTCs) can dynamically be created during execution of a test case by the explicit use of the create operation.The tested implementation (IUT, Implementation Under Test) is considered a black box, i.e., its internal structure is hidden from the tester. A special test component, called the test system interface (or System for short) interfaces the ports of the real world to the abstract world of components.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 104

Component type definitions
• in module definitions part
• describe TTCN-3 test

components by defining their
ports
• may contain

variable/timer/constant
definitions – visible in all
components of this type

Component type
definition

type component
<identifier_CT>
{

}

Communication
port definitions

Component
variable/timer/constant

definitions

port <PortTypeRef> <PortIds>;

Presenter
Presentation Notes
A test configuration consists of a set of inter-connected test components with well-defined communication ports.Test component type definitions shall be made in the module definitions part. The actual configuration of components is achieved by performing create operations within the test case behavior.The component type defines which ports are associated with a component. The port names in a component definition are local to that component i.e. another component may have ports with the same names.It is possible to define constants, variables and timers local to a particular component.A component type definition is used to define the test system interface, too because, conceptually, component type definitions and test system interface definitions have the same form (both are collections of ports defining possible connection points).It does not make sense to define timers, variables or constants in the system component as the latter serves as an image of the physical world.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 105

Component Type
definition (example)

// Definition of a test component type
type component MyComponentType_CT
{// ports owned by the component:
 port MyPortType_PT PCO;
 port MyPortType_PT PCO_Array[10];
 // component-wide definitions:
 const bitstring c_MyConst := ’1001’B;
 var integer v_MyVar;
 timer T_MyTimer := 1.0;
 }

Instances of this
component type
have ten ports

These definitions are visible in each
instance of this component type (local
copies in each component instance)

Presenter
Presentation Notes
The component type MyComponentType_CT owns a port called PCO and a port array PCO_Array containing 10 ports of type MyPortType_PT.In each component instance of this type local copies of the ports, the variable (v_MyVar) and the timer (T_MyTimer) are generated, and the constant (c_MyConst) will be visible.

Overview of functions
Function definitions

Parameterization
Predefined functions
Testcase definitions

Verdict handling
Controlling test case execution

IX. FUNCTIONS AND
TESTCASES

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 107

• Describe test behavior, organize test execution and
structure computation

About functions

• Can be defined:
– within a module ↔ externally
– with reference to a component ↔ without it

• May have multiple parameters (value, timer, template, port);
– parameters can be passed by value or by reference

• May return a value at termination

Presenter
Presentation Notes
In TTCN-3, functions are used to specify and probe behavior and to structure computation in a module. Usually, a function is defined in TTCN-3 (using the keyword function) but may be defined as an external function (using the keyword external) implemented in one or more C++ source files.A function must be defined with reference to a component (“runs on”) if the function uses variables, constants, timers and ports that are defined in a component type definition.Parameter passing mechanism (by value or by reference) can be chosen for each parameter separately. Parameters passed by value are read-only parameters. Those passed by reference may even be altered by the function.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 108

Function definition

function

{

}

Program part

Local definitions
he

ad
er

[return <returnValueType>]

[runs on <ComponentType>]

([formal parameter list])

<f_identifier> • The optional runs on clause
restricts the execution of the
function onto the instances of a
specific ComponentType

– BUT: local definitions of
ComponentType (ports!! etc.)
can be used

• Local definitions may contain
constants, variables and timers
visible in the function

• The optional return clause
specifies the type of the value
that the function must explicitly
return using the return
statement

Presenter
Presentation Notes
The function header:contains the list of formal parameters of the function. When no parameters are used, empty brackets must be written;the usually optional runs on clause must be present if the function uses variables, constants, timers and ports that are defined in a component type definition;the keyword return is only used if the function returns a parameter. A function can only return a single value of a given type.The local definitions are optional. When present, the constants, variables and timers defined here are only visible within the function.The keyword return must conclude the program part. It must be followed by an expression resulting in the same type as defined in the header when the return keyword was used in the header. Notice that the bold and underscored “return” keyword has two different meanings!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 109

• The type, number and order of actual parameters shall be the
same as of the formal parameters;

• All variables in the actual parameter list must be bound:

• Empty parentheses indicate in both definition and invocation if
formal parameter list is empty:

Function invocation
(1)

function f_MyF_1 (integer pl_1, boolean pl_2) {};
f_MyF_1(4, true); //function invocation

function f_MyF_2() return integer { return 28 };
var integer v_two := f_MyF_2(); //function invocation

Presenter
Presentation Notes
The formal parameters of the function f_MyF_1 are pl_1 and pl_2. Their types are integer and boolean, respectively. When invoking the function, the actual parameter list contains the parameters of the corresponding type in the same order as defined.�By the way: the program part of the function defined is empty, in other words, the function does not do anything.The formal parameter list of the function f_MyF_2 is empty thus it is invoked with two brackets after the function name standing for an empty parameter list. The program always return the integer value 28 (see the code between the curly brackets). The returned values is of integer type (cf. the function definition) and that’s why it can be assigned to the variable v_two, the latter being of the same type.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 110

Function invocation (2)

function f_3(boolean pl_b) return integer {
 if(pl_b) { return 2 } else { return 0 }
};
control {
 var integer i := 2 * f_3(true) + f_3(2 > 3); // i==4
}

function f_MyF_4() runs on MyCompType_CT {
 P1_PCO.send(4);
 P2_PCO.receive(’FA’O)
}

The function below uses the ports defined in MyCompType_CT

Operands of an expression may invoke a function:

Presenter
Presentation Notes
Functions with a return value may be invoked in expressions. On the slide above, the function f_3 returns the value 2 if the parameter is true, otherwise the value returned will be 0. �The first summand has the value of two times two, the second summand equals zero, thus, the variable i results in four.The function f_4 is defined with reference to a component (MyCompType_CT) because it makes use of the ports having been defined in that component.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 111

Parameters passed by
value and by reference
function f_0()
{
 var integer v_int:=0;

function f_1(in integer pl_i)
{ var integer j;
 j := pl_i; //j == 0
 pl_i := 1

}
 . . .
f_1(v_int);
 //v_int ==0
. . .

0

x

 . . .
f_2(v_int);
 //v_int
. . .

function f_2(out integer pl_i)
 { var integer
j;

 j := pl_i; //j undef!
 pl_i := 2
}

x

2

. . .
 f_3(v_int);

 //v_int
 . . .

}

function f_3
 (inout integer pl_i)

 { var integer
j;
 j := pl_i; //j == 2

 pl_i := 3
}

2

3

Presenter
Presentation Notes
By default, parameters are passed by value (optionally denoted by the keyword in). To pass parameters by reference, the keywords out or inout shall be used.In parameters may only be read inside the parameterized function, i.e., the parameter is only allowed on the right-hand side of an assignment. Out parameters may only be written inside the parameterized function, i.e., the parameter is only allowed on the left-hand side of an assignment. Inout parameters may only be both read and written inside the parameterized function, i.e., the parameter is only allowed on the both sides of an assignment.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 112

•in parameters may have default values
• at invocation

– “-” (hyphen) skips the parameter with default value
– simply leaving out (if it is the last, or all the following have default values)
– default value may be overwritten

Default values

function f_MyFDef (integer i, integer j:=2, integer k){}
function f_MyFDef2 (integer i, integer j:=2, integer k:=3){}

// invocation
f_MyFDef(1,-,3); // f_MyFDef(1,2,3);
f_MyFDef(1,5,3); // f_MyFDef(1,5,3);
f_MyFDef2(1,5,7);// f_MyFDef2(1,5,7);
f_MyFDef2(1,5); // f_MyFDef2(1,5,3);
f_MyFDef2(1); // f_MyFDef2(1,2,3);

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 113

Predefined functions

Length/size functions

Return length of string value in appropriate unit lengthof(strvalue)

Return number of elements in array, record/set of sizeof(ofvalue)

String functions
Return part of str matching the specified pattern regexp(str, RE, grpno)

Return the specified portion of the input string substr(str,idx, cnt)

Replace specified part of str with repl replace(str,idx, cnt, rpl)

Presence/choice functions

Determine if an optional record or set field is present ispresent(fieldref)

Determine the chosen alternative in a union type ischosen(fieldref)

Other functions

Generate random float number rnd([seed])

Returns the name of the currently executing test case testcasename()

Presenter
Presentation Notes
The functions lengthof resp. sizeof give the length of a string respective the number of elements in the referenced constructed type.The functions regexp and substr return a specific part of the referenced string.The function ischosen returns the Boolean value true if the element given in the parameter is selected in the union. The parameter contains the the reference to the union element in dot notation format.The function ispresent returns the Boolean value true if the optional field given in the parameter is present in the record or set. The parameter contains the the reference to the record or set field in dot notation format.The rnd function returns a pseudorandom float number r where 1 > r ≥ 0. The function may optionally be initialized by a seed value. The same seed value results in the same sequence of pseudorandom numbers.The testcasename function returns the unqualified name of the actually executing test case.The detailed description of predefined functions is given in annex C of the ETSI standard ES 201 873-1.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 114

Predefined
conversion functions

To \ From integer float bitstring hexstring octetstring charstring Universal
charstring

integer float2int bit2int hex2int oct2int
char2int
str2int

unichar2int

float int2float str2float

bitstring int2bit hex2bit oct2bit str2bit

hexstring int2hex bit2hex oct2hex str2hex

octetstring int2oct bit2oct hex2oct
char2oct
str2oct

charstring int2char
int2str

float2str bit2str hex2str
oct2char
oct2str

universal
charstring

int2unichar

log2str; enum2int

Presenter
Presentation Notes
Conversion functions span the gap between different simple variable types.A function at the intersection of a given column and a row has an in parameter indicated in the column header and returns the value type indicated in the row header.The detailed description of predefined functions is given in annex C of the ETSI standard ES 201 873-1.Green letters indicate TITAN extensions, not included in the standard.Difference between functions with 'str' and 'char' in their names is explained with the following examples:int2char (66) = "B", int2str (66) = "66".

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 115

› log2str(log-arguments)return charstring
Returns formatted output of arguments instead of placing them to log file
(TITAN)

› enum2int(enumeration-reference)return integer
Gives integer value associated with enumeration item

› isvalue(inline-template)return boolean

Returns true if argument template contains specific value or omit

New predefined
functions

// Save output of log statement instead of
var charstring str
str := log2str(”Value of v is:”, v);

type enumerated E { zero, one, two, three };
var E e := one;
integer i := enum2int(one); // i == 1

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 116

• A special function, which is always executed (runs) on the
MTC;

• In the module control part, the execute() statement is

used to start testcases;

• The result of test case execution is always of verdicttype

– with the possible values: none, pass, inconc, fail or error;

•testcases can be parameterized.

A testcase

Presenter
Presentation Notes
The Main Test Component (MTC) and Test System Interface (TSI or System for short) are implicitly instantiated (created) when the test case is started. TSI may be omitted if only the MTC is instantiated during test execution. In this case, MTC type defines the TSI ports implicitly. A testcase has no return clause, must not use the return statement. Instead, the result of the test case execution is done in a verdict type variable. This internal verdict variable is associated with each component instance and the MTC determines the final verdict based on the verdicts returned by the Parallel Test Components and the Main Test Component.TC can be started directly from control part, or from a function running on the control part (i.e., MTC is not yet created) using the execute() statement.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 117

testcase definition

Program part

Local definitions
he

ad
er

[system <TSIcompType>]
runs on <MTCcompType>

([formal parameter list])
testcase

{

}

<tc_identifier>

• Local constant, variable and timer
definitions are visible in the test
case body only

• The program part defines the
testcase behavior

• Can be parameterized similarly to
functions

• Component type of MTC is defined
in the header’s mandatory runs on
clause

• Test System Interface (TSI) is
modeled by a component in the
optional system clause

Presenter
Presentation Notes
The testcase header:contains the list of formal parameters of the test case. When no parameters are used, empty brackets must be written;the mandatory runs on clause specifies the Main Test Component which the test case is running on. This makes the test ports visible to the MTC;the keyword system is only used if a distinct Test System Interface (TSI) is used. Otherwise, MTC type defines the TSI ports implicitly. the local definitions are optional. When present, the constants, variables and timers defined here are only visible within the test case.the program part (test case body) defines the behavior of the Main Test Component (MTC)

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 118

testcase definition
(example)
module MyModule {
// Example 1: MTC & System present in the configuration
 testcase tc_MyTestCase()
 runs on MyMTCType_CT
 system MyTestSystemType_SCT
 { /* test behavior described here */ }

}

// Example 2: Configuration consists only of an MTC
 testcase tc_MyTestCase2()
 runs on MyMTCType_CT
 { /* test behavior described here */ }

Presenter
Presentation Notes
The first example shows a configuration where both the Main Test Component (here: MyMTCType_CT) and the Test System Interface (here: MyTestSystemType_SCT) are present. The second example shows a configuration where only the Main Test Component is present.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 119

• The execute statement initiates test case execution
– mandatory parameter: testcase name;
– optional parameter: execution time limit;
– returns a verdict (none, pass, inconc, fail or error).

• A test case terminates on termination of Main Test
Component

– the final verdict of a test case is calculated based on the final local
verdicts of the different test components.

Running test cases

 vl_MyVerdict := execute(tc_TestCaseName(), 5.0);

Presenter
Presentation Notes
Timer may be used to supervise the execution of a test case. This may be done using an explicit timeout in theexecute statement. If the test case does not end within this duration, the result of the test case execution shall be anerror verdict and the test system shall terminate the test case. The timer used for test case supervision is a system timerand need not be declared or started.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 120

Controlling test case
execution - examples

control {
// Test cases return verdicts:
var verdicttype vl_MyVerdict := execute(tc_MyTestCase());

 // Test case execution time may be supervised:
 vl_MyVerdict := execute(tc_MyTestCase2(), 0.5);

 // Test cases can be used with program statements:
for (var integer x := 0; x < 10; x := x+1)
{ execute(tc_MyTestCase()) };

 // Test case conditional execution:
if (vl_SelExpr) { execute(tc_MyTestCase2()) };
 } // end of the control part

Presenter
Presentation Notes
The module control part describes the execution order of the actual test cases.The instruction after the first comment executes the test case (tc_MyTestCase) and stores the resulting verdict in a variable (vl_MyVerdict).The next instruction shows how to put an optional time limit (here: 0.5 second) on the test case execution time. When the time limit expires without a returned verdict, the final verdict is set to "error" and the test components are stopped.The third program statement executes the test case (tc_MyTestCase) ten times.In the last example the test case (tc_MyTestCase) is only executed when the variable vl_SelExpr has the value true.

Verdicttype vs. Built-in verdict
Operations for built-in verdict management

Verdict overwriting logic

X. VERDICTS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 122

•verdicttype
– is a built-in TTCN-3 special type
– can be the type of constant, module parameter or variable

• Constants, module parameters and variables of verdicttype
get their values via assignment

•verdicttype variables
– usually store the result of execution
– can change their value without restriction

verdicttype

var verdicttype vl_MyVerdict := fail, vl_TCVerdict;
vl_MyVerdict := pass; // vl_MyVerdict == pass

// save final verdict of test case execution
vl_TCVerdict := execute(tc_TC());

Presenter
Presentation Notes
Local variables of type verdicttype can be used to store verdicts. The value of such a variable can be manipulated using common assignments. Assigning a different value to a verdicttype variable always overwrites the existing value.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 123

• MTC and all PTCs have an instance of built-in verdict object
containing the current verdict of execution

• initialized to none at component creation
• Manipulated with setverdict() and getverdict operations

according to the “verdict overwriting logic”

Built-in verdict

testcase tc_TC0() runs on MyMTCType_CT {
var verdicttype v := getverdict; // v == none
setverdict(fail);
v := getverdict; // v == fail
setverdict(pass);
v := getverdict; // v == fail

}

Presenter
Presentation Notes
MTC and PTCs each have a built-in or local verdict. The test case author can alter local verdict during test case execution in each component using the following operations.The setverdict operation is used to set local verdict in test cases, altsteps and functions. The operation may be applied several times in a component resulting in a final local verdict determined according the rules shown on the next slide. "Local" means local to a component.The getverdict operation returns current value of the built-in verdict of the component.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 124

Verdict overwriting
logic

Result Partial verdict

Former value of
verdict none pass inconc fail error

none none pass inconc fail error

pass pass pass inconc fail error

inconc inconc inconc inconc fail error

fail fail fail fail fail error

Presenter
Presentation Notes
The verdict overwriting logic determines the resulting verdict in function of the former verdict every time the operation setverdict is applied in a module. The verdict only can change for the worse, i.e., the following sequence alone is possible: none > pass > inconc > fail > error.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 125

• Each test component has its own local verdict initialized to none at its
creation; the verdict is modified later by setverdict()

• Global verdict returned by the test case is calculated from the local
verdicts of all components in the test case configuration.

Verdict overwriting rules
in parallel test
configurations

MTC PTC1 PTC2 V

setverdict(pass)

Global verdict returned by
the test case at termination

V

setverdict(fail)

V V

setverdict(inconc)

V V

Presenter
Presentation Notes
Test case (global) verdict is computed based on the local verdicts of involved test components. The execute statement returns the global verdict following the test case termination.

Creating and starting of components
Addressing and supervising components
Connecting and mapping of components

Port control operations
Example

XI. CONFIGURATION
OPERATIONS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 127

• Test configuration in TTCN-3 is DYNAMIC:
– MUST be explicitly set up at the beginning of each test case;
– MTC is the only test component, which is automatically generated in

test configurations; it takes the component type as specified in the
”runs on” clause of the testcase;

– PTCs can be created or destroyed on demand;
– ports can be connected and disconnected at any time when needed.

• Consequences:
– connections of a terminated PTC are automatically released;
– sending messages to an unconnected/unmapped port results in

dynamic test case error;
– disconnected or unmapped ports can be reconnected while their owner

Parallel Test Component is running;

Dynamic nature of
test configurations

Presenter
Presentation Notes
Dynamic nature of test configurations means that parallel test components may be created and destroyed as needed. The same is valid for the connections between components.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 128

var CompType_CT vc_CompRef;

vc_CompRef := CompType_CT.create;

// vc_CompRef holds the unique component reference

• Parallel Test Components (PTCs) must be created as needed using the
create operation.

• The create alive operation creates an alive PTC (an alive component
can be restarted after it is stopped)

• The create operation creates the component and returns by the unique
component reference of the newly created component

– this reference is to be stored in a Component Type (address) variable
• The ports of the component are initialized and started.

The component itself is not started.
• Sample code:

Creating parallel
components

Presenter
Presentation Notes
Ports and components are used to set up test configurations. Components are the owner of the ports. Test components are working concurrently, they can be created and destroyed.The MTC is the only test component which is automatically created when a test case starts. All other test components (the PTCs) shall be created explicitly at any point in a behavior description by any other (running) component using the create operation. A component is created with its full set of ports and empty input queues. All component variables and timers are reset to their initial value (if any) and all component constants are reset to their assigned values.The create operation shall return the unique component reference of the newly created instance. The unique reference to the component will typically be stored in a variable and can be used for connecting instances and for communication purposes such as sending and receiving. Variables holding component references shall be of a a previously defined component type (and not one of the built-in component type).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 129

• ~ can be specified at component creation

• Name:

– appears in printout and log file names (meta character %n)
– can be used in test port parameters, component location constraints and

logging options of the configuration file
• Location:

– contains IP address, hostname, FQDN or refers to a group defined in
groups section of configuration file

Component name and
location

// Specifying component name
ptc1 := new1_CT.create(”NewPTC1”);
// Specifying component name and location
ptc2 := new1_CT.create(”NewPTC2”, ”1.1.1.1”);
// Name parameter can be omitted with dash
ptc3 := new1_CT.create(-, ”hostgroup3”);

Presenter
Presentation Notes
Fully Qualified Domain Name (FQDN)

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 130

• Referencing components is important when setting up connections or
mappings between components or identifying sender or receiver at
ports, which have multiple connections

• Components can be addressed by the component reference obtained
at component creation:

• MTC can be referred to using the keyword mtc
• Each component can refer to itself using the keyword self
• The system component’s reference is system.

var ComponentType_CT vc_CompReference;
vc_CompReference := ComponentType_CT.create;

Referencing
components

Presenter
Presentation Notes
When defining a variable to store a component reference, care must be taken to use the same component type as has the component to be created.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 131

vc_A := A_CT.create; // vc_A: component reference

vc_B := B_CT.create; // vc_B: component reference

connect(vc_A:A_PCO, vc_B:B_PCO); // A_PCO: port name

• Connecting components means connecting their ports;
• The connect operation is used to connect component ports;
• A connection to be established is identified by referencing the

two components and the two ports to be connected;
• A port may be connected to several ports (1-to-N connection).

Connecting components

vc_A

A_CT

A_PCO
vc_B

B_CT

B_PCO

Presenter
Presentation Notes
A connection can forward messages, procedure calls or both depending on the operation type of the involved ports. The direction of the message flow (in: incoming, out: outgoing, inout: both ways) can be limited at port definition.The connect operation can only connect consistent ports of test components. It means that on outgoing port may only be connected to an incoming port and vice versa. Another condition is that the messages defined for both ports must match, i.e., the incoming port must be able to receive all outgoing messages from the connected port. A connection can be set up between a pair of running ports at any time.Limitations: A port owned by component A shall not be connected with two or more ports owned by A or component B. If a port has more than 1 connections then all outgoing messages must be explicitly addressed.Connections between two test components can be manipulated by a 3rd component as well.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 132

vc_C := C_CT.create; // vc_C: component reference

map(vc_C:C_PCO, system:SYS_PCO); // SYS_PCO: port ref.

• The map operation is used to establish a connection between a port of the
system and a port of a component;

– Test port must be added
• A mapping to be established is identified by referencing the two components

(one of them must be the system component) and the two ports to be
connected;

• Only one-to-one mapping is allowed.

Mapping a test system
interface port to a
component

vc_C

C_CT

C_PCO
system

system_CT

SYS_PCO

Presenter
Presentation Notes
Mappings carry data between Test System and the Implementation (or System) Under Test (IUT/SUT).Mappings and connections are equivalent from the abstract communication’s point of view. It is not allowed, however, to connect to a mapped port or to map to a connected port.Connections ("loop back") within the test system interface are not allowed.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 133

Basic examples for
valid connections

B

A

C

B A B A

A A

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 134

Valid mappings

A

system system

B A A

system

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 135

Invalid connections
and mappings

B A

A

system

A

system system

A A

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 136

• Creating or destroying connection between two ports
of different parallel test components

• Creating or destroying connection between a port of SUT
and a port of a TTCN-3 test component

• Where vc_A, vc_B are component references, A1_PCO and B1_PCO
are port references

dynamic test
configuration

map(system:SYS_PCO, vc_B:B1_PCO);
unmap(system:SYS_PCO, vc_B:B1_PCO);

connect(vc_A : A1_PCO, vc_B : B1_PCO);
disconnect(vc_A : A1_PCO, vc_B : B1_PCO);

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 137

• The start() operation can be used to start a TTCN-3 function
(behavior) on a given PTC

• The argument function:
– shall either refer (clause “runs on”) to the same component type as the

type of the component about to be started or shall have no runs on clause
at all;

– can have in ("value") parameters only;
– shall not return anything

• Non-alive type PTCs can be started only once
• Alive PTCs can be started multiple times

Starting components

function f_behavior (integer i) runs on CompType_CT
{ /* function body here */ }

 vc_CompReference.start(f_behavior(17));

Presenter
Presentation Notes
Once a component has been created and connected, the execution of its behavior has to be started. This is done by using the start operation. Every component can only be started once. The function start() is non-blocking, execution continues immediately.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 138

• MTC terminates when the executed testcase finishes
• PTC terminates when the function that it is executing has finished

(implicit stop) or the component is explicitly stopped/killed using the
stop/kill operation

• PTCs cannot survive MTC termination: the RTE kills all pending PTCs
at the end of each test case execution.

• The stop operation releases all resources of a ephemeral PTC;
alive PTC resources are suspended but remain preserved

• The kill operation releases all resources of the PTC

Terminating
components

 self.kill; // suicide of a test component
 vc_A.stop; //terminating a component with reference vc_A
 all component.stop; //terminating all parallel components

Presenter
Presentation Notes
Using the all component keyword, all (parallel) components may only be stopped from the Main Test Component (MTC).stop self.stop

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 139

• The done operation
– blocks execution while a PTC is running;
– does not block otherwise (finished, failed, stopped or killed)

• The killed operation
– blocks while the referred PTC is alive
– does not block otherwise
– is the same as done on normal PTC

WAITing for a PTC TO
TERMINATE

 vc_A.done; // blocks execution until vc_A terminates

 all component.done; // blocks the execution until all
 // parallel test components terminate

 vc_B.killed; // wait until vc_B alive component is killed

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 140

• The running operation returns
– true if PTC was started but not stopped yet
– false otherwise (if PTC was not started or already finished)

• The alive operation checks if PTC is currently alive or not:

– true if a normal PTC was created but not stopped or
if an alive PTC was created but not killed yet

– false otherwise (PTC does not exist any more)

Checking the state of
a parallel component

 if(vc_A.running) { /*do something if vc_A is active!*/ }
 while(any component.running) { /* do something if at least
 one component is running */ }

if(not vc_B.alive) { /*do something if vc_B not alive*/ }
vc_B.killed; // wait until vc_B alive component is killed

Presenter
Presentation Notes
The running operation returns a Boolean value depending on the active or passive state of the referenced component. The done operation blocks the execution until the referenced component has terminated when used as a stand-alone statement. (It can also be used as an alternative in an alt statement.)Components can be in following states: non-existing or not created (running == error, done == error)created but not yet started (running == false, done blocks execution)started and running (running == true, done blocks execution)finished execution or stopped or a test case error occurred (running == false, done does not block)When the all component keyword is used instead of a component reference in the running operation (allowed only in the Main Test Component [MTC]), it will return true if all PTCs started but not stopped explicitly by another component are executing their behavior. When the any component keyword is used instead of a component reference in the running operation (allowed only in the MTC), it will return true if at least one PTC is executing its behavior.When the all component keyword is used instead of a component reference in the done operation (allowed only in the MTC), execution continues if no one PTC is executing its behavior or if no PTC has been created or started.When the any component keyword is used instead of a component reference in the done operation (allowed only in the MTC), execution continues if at least one PTC has terminated or stopped.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 141

PTC state machine

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 142

Alive PTC state machine

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 143

MTC state machine

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 144

• The running, alive, done, killed and stop operations
can be combined with the special any component or all
component as well as with the self and mtc keywords

YES* = from MTC only! YES# = from PTCs only!

Special features of
component handling

Operation any component all component self mtc system

running
alive YES* YES* YES# NO NO

done
killed YES* YES* YES# NO NO

stop
kill NO YES* YES YES NO

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 145

Relationship between
component type,
role, reference
type port Interface_PT message { inout PDU; }
type port StdIO_PT message { inout charstring; }

type component MTC_CT {
 port Interface_PT p;
 port StdIO_PT io;
} type component SYSTEM_SCT {

 port Interface_PT p;
}

testcase tc_1() runs on MTC_CT system SYSTEM_SCT {
 map(mtc:p, system:p)
}

system
SYSTEM_SCT

p mtc

MTC_CT

p

io
reference

reference

Presenter
Presentation Notes
The mtc and system components are automatically created in the beginning of test case execution and destroyed when the test execution finishes. The test case itself is executed on the mtc. The system component does not run any behavior as it acts as a logical model of the IUT.The runs on clause of the executed test case determines the component type of the mtc, while the system clause specifies the component type used for system.The component type definition enlists the resources of a particular type component, e.g. how many and what kind of interfaces the component has.The port type definition declares operation mode of the interface (message=asynchronous, procedure=synchronous) and enlists the type of messages (or signatures at a procedural port), which can traverse the port.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 146

1) Create PTCs (ports of components are created and started
automatically) – create

2) Establish connections and mappings – connect or map
3) Start behavior on PTCs – start
4) Wait for PTCs to complete – done or all component.done

Elementary steps of
setting up the test
configuration

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 147

vc_A := A_CT.create; P1 and P2 ports of vc_A are initialized and started by RTE! vc_B := B_CT.create; P1 and P2 ports of vc_B are initialized and started by RTE! connect(vc_A:P1, vc_B:P1); connect(vc_A:P2, vc_B:P2);

Example test
configuration

 vc_A vc_B

A_CT B_CT

P1

P2 P2

P1

vc_A.start(f1()); vc_B.start(f2());

f2() f1()

vc_A.done;

>< ><

vc_B.done;

mtc system
tc()

Presenter
Presentation Notes
Elementary steps of setting up the test configuration:Create PTCs (ports of components are created and started automatically)Establish connections and mappingsStart behavior on PTCs remotelyWait for PTCs to complete

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 148

• Reuse of existing component type definitions:
– “Derived” component type inherits all resources (ports, timers,

variables, constants)of extended “parent” component type(s)
• Restrictions:

– no cyclic extensions
– avoid name clashes between different definitions

Extending component
types

type component new_CT extends old1_CT, old2_CT {
 port NewPortType R; // includes P,Q,R,i and T!
}

type component old1_CT {
 var integer i;
 port MyPortType P;
}

type component old2_CT {
 timer T;
 port MyPortType Q;
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 149

• Function/altstep/testcase with “runs on” clause referring to an extended
component type can also be executed on all derived component types

“Runs on-
compatibility”

function f() runs on old1_CT {
 P.receive(integer:?) -> value i;
}

ptc := new1_CT.create;
ptc.start(f()); // OK: new1_CT is derived from old1_CT

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 150

• In component member definitions
– public functions/testcases/altsteps running on that component can access

the definition
– private only the functions/testcases/altsteps runs on the component type

directly can access the definition which
– friend modifier is not available within component types.

Visibility Modifiers

type component old1_CT {
 var integer i;
 public var charstrings v_char;
 private var boolean v_bool;
 port MyPortType P;
}

type component new_CT extends old1_CT
{};

function f_set_int() runs on new_CT
{ i := 0 } //OK

function f_set_char() runs on new_CT
{ v_char := "a"} //OK

function f_set_bool() runs on new_CT
{v_bool := true }

 //NOK, v_bool is private

Presenter
Presentation Notes
The scope unit is the region of the TTCN-3 source within which (constant, timer, variable, etc.) definitions may have effect, within which multiple definitions of the same name are prohibited, and outside of which definitions inside the unit do not have effect. Definitions made in the module definition part but outside of other scope units are globally visible in the module. So are imported identifiers.Definitions made in the module control part have local visibility, i.e. can be used within the control part only.Definitions made in a test component type may be used only in functions, test cases and altsteps referencing that component type by a runs on-clause.Functions, altsteps and test cases are individual scope units without any hierarchical relation between them, i.e. definitions made at the beginning of their body have local visibility.Definitions within block of statements (e.g. for, if-else, while, do-while, alt, interleave) have local visibility within the statement concerned.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 151

• Ports are automatically started at component creation and stopped when
the component terminates (implicit stop)

• The stop operation shuts down the port (input queue contents are
inaccessible) connections are NOT released!

• The halt operation blocks new incoming messages, but the messages in
port queue remain intact and receivable

• The clear operation clears the port queue
• The start operation clears the queue and restarts the port

Port control
operations

A_PCO.halt; //no new messages can get into port queue
A_PCO.stop; //no more activity on A_PCO
A_PCO.clear; //removes all messages from port queue
A_PCO.start; //clears port queue and restarts port

Presenter
Presentation Notes
Ports are already running when the component is started. All ports are automatically stopped by the run-time environment when their owner component has finished execution.None of the above operations affect connections and mapping of ports.Receiving operations block on stopped ports until the port is restarted (provided no defaults are active).The contents of port queue can still be matched and read on halted ports.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 152

Summary of configuration
operators (1)
Operation Keyword
Crete new parallel test component CT.create
Create an alive component CT.create alive
Connect two components connect(c1:p1,c2:p2)
Disconnect two components disconnect(c1:p1,c2:p2)
Connect (map) component to system map(c1:p1,c2:p2)
Unmap port from system unmap(c1:p1,c2:p2)
Get MTC address mtc
Get test system interface address system
Get own address self
Start execution of test component ptc.start(f())

Where CT is a component type definition; ptc is a PTC; f() is a function;
c, c1, c2 are component references and p, p1, p2 are port identifiers

Presenter
Presentation Notes
Configuration operations are used to set up and control test components. These operations shall only be used in test cases, functions and altsteps (i.e. not in the module control part).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 153

Summary of configuration
operators (2)

Operation Keyword
Check termination of a PTC ptc.running
Check if a PTC is alive ptc.alive
Stop execution of test component c.stop
Kill an alive component c.kill
Wait for termination of a test component ptc.done
Wait for a PTC to be killed ptc.killed
Start or restart port (queue is cleared!) p.start
Stop port and block incoming messages p.stop
Pause port operation p.halt
Remove messages from the input queue p.clear

Where c is a component reference; ptc is a PTC and p is a port identifier

Presenter
Presentation Notes
Configuration operations are used to set up and control test components. These operations shall only be used in test cases, functions and altsteps (i.e. not in the module control part).

Introduction to templates
Template matching mechanisms

Inline templates
Modified templates

Parameterized templates
Parameterized modified templates

Template hierarchy

XII. DATA TEMPLATES

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 155

 Message to send Acceptable answer

Template concept

TYPE: REQUEST

ID: 23

FROM: 231.23.45.4

TO: 232.22.22.22

FIELD1: 1234

FIELD2: ”Hello”

TYPE: RESPONSE

ID: SAME as in REQ.

FROM: 230.x – 235.x

TO: 231.23.45.4

FIELD1: 800-900

FIELD2: Do not care

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 156

• A template is a pattern that specifies messages.

• A template for sending messages
– may contain only specific values or omit;
– usually specifies a message to be sent (but may also be received when

the expected message does not vary).

• A template for receiving messages
– describes all acceptable variants of a message;
– contains matching attributes; these can be imagined as extended

regular expressions;
– can be used only to receive: trying to send a message using a receive

template causes dynamic test case error.

Data Templates

Presenter
Presentation Notes
Template: something that establishes or serves as a pattern. Templates are used either to test whether a set of received values matches the template specification or to transmit a set of distinct values.Templates used to receive messages have the advantage that all valid message variants may be described in a single template. When a message arrives, the program can decide whether it is a valid one or not. This procedure is called matching.Templates used to send messages are advantageous because they can be parameterized, thus, reused. All fields of these templates must have a determined value at the point when a message is sent using them. These templates may be used to receive messages as well, but only when all fields of the expected message are fixed and known beforehand.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 157

Template matching
procedure

RTE template

Match
Successful

Taken out of queue

No match
Unsuccessful

Remains in queue

message

Does the message match
this template?

detailed
description of the
expected message

Presenter
Presentation Notes
The runtime environment (RTE) compares the received message with the predefined template describing all valid message variants. When the message is one of the valid messages (it fits into the template), the match is successful.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 158

• <type> can be any simple or structured type;
• <body> uses the assignment notation for structured types, thus,

it may contain nested value assignments;
• the optional formal parameter list contains a fixed number of

parameters; the formal parameters themselves can be templates
or values;

• the optional modifies keyword denotes that this template is
derived from an existing <base template identifier> template;

• constants, matching expressions, templates and parameter
references shall be assigned to each field of a template.

Template syntax

template <type> <identifier> [formal parameter list]
[modifies <base template identifier>] := <body>

Presenter
Presentation Notes
Type determines the structure of the template, i.e., its fields.Identifier is the name of the template. It is used when we want to refer to the template.The formal parameter list provides the list of the parameters of the template. These optional parameters are used to alter the template at every invocation.The keyword modifies denotes derived template where only some of the fields of the original template are changed. Both templates have the same fields.The template body lists the permitted values for all fields.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 159

• Syntax is similar to variable definition
– but not only concrete values, but also matching mechanisms may

stand at the right side of the assignment

Sample template
type record MyMessageType {
integer field1 optional,
charstring field2,
boolean field3 };

template MyMessageType tr_MyTemplate
(boolean pl_param) //formal parameter list
:= { //template body between braces
 field1 := ?,
 field2 := (”B”, ”O”, ”Q”),
 field3 := pl_param
}

Presenter
Presentation Notes
First, we define a record (MyMessageType) containing three fields, the first one being optional. The type of the template will be the one just defined. The template we'll define is called tr_MyTemplate. In the template name prefix, 't' stands for 'template' and 'r' for receiving.The template accepts the following messages: the first field must be present, but its content is don't care. The second field may have the value B, O or Q. The value of the last field must be in function of the parameter pl_param either true or false.The template can be used for receiving only, because it contains an undefined field (the first one).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 160

• Determination of the accepted message variants is done on a
per field basis.

• The following possibilities exist on field level:
– listing accepted values;
– listing rejected values;
– value range definition;
– accepting any value;
– "don't care" field.

• The following possibilities exist on field value level:
– matching any element;
– matching any number of consecutive elements.
– using the function regexp()

Matching mechanisms

Presenter
Presentation Notes
Matching checks whether the received message fits in the set of accepted messages. The check is done for each field of the template independently. A message is accepted ("matches") when all fields contain accepted values. The matching mechanisms are depicted in the annex B.1 of ETSI ES 201 873-1.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 161

• Contains constant values or omit for optional fields
• Template consisting of purely specific values is equivalent to a

constant → use the constant instead!
• Applicable to all basic and structured types
• Can be sent and received

Specific value
template

// Template with specific value and the equivalent constant
template integer Five := 5;
const integer Five := 5; // constant is more effective here

// Specific values in both fields of a record template
template MyRecordType SpecificValueExample := {
 field1 := omit,
 field2 := false
};

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 162

• Value list template enlists all accepted values.
• Complemented value list template enlists all values that will not be

accepted.
• Syntax is similar to that of value list subtype definition.
• Applicable to all basic and structured types.

Value list and
complemented value list
templates

// Value list template
template charstring tr_SingleABorC := (”A”, ”B”, ”C”);

// Complemented value list template for structured type
template MyRecordType tr_ComplementedTemplateExample := {
 field1 := complement (1, 101, 201),
 field2 := true // this is a specific value template field
};

Presenter
Presentation Notes
The simplest template lists all discrete message values that will be accepted. Complemented values list lists the values which will not be accepted.Both lists refer to fields of the template, i.e., both notations may be mixed in different fields of the same template.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 163

• Value range template can be used with integer, float and (universal)
charstring types (and types derived from these).

• Syntax of value range definition is equivalent to the notation of the value
range subtype:

• Lower and upper boundary of a (universal) charstring value range
template must be a single character string

– Determines the permitted characters

Value range template

// Value range
template float tr_NearPi := (3.14 .. 3.15);
template integer tr_FitsToOneByte := (0 .. 255);
template integer tr_GreaterThanZero := (1 .. infinity);

// Match strings consisting of any number of A, B and C
template charstring tr_PermittedAlphabet := ("A" .. "C");

Presenter
Presentation Notes
Range indicates the upper and the lower boundaries of acceptable values. An expression evaluating to a specific integer or float value can be used when setting the boundaries.The lower boundary (written after the left parenthesis) must be less than the upper boundary (written before the right parenthesis).

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 164

• Value list template can be combined with value range template.
• The value range can be specified as an element of a value list:

Intermixed value list and
value range template

// Intermixed value list and range matching
template integer tr_Intermixed := ((0..127), 200, 255);

// Matches strings consisting of any number of capital
// letters or "Hello"
template charstring tr_NotThatGood :=
 (("A".."Z"), "Hello");

Presenter
Presentation Notes
Note: The syntax differs from the intermixed value list and value range subtype construction’s notation:type integer Intermixed (0..127,255);

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 165

• Matches all valid values for the concerned template field type;
• Does not match when the optional field is omitted;
• Applicable to all basic and structured types.
• A template containing ? field can NOT be sent.

Any value template – ?

// Any value template
template integer tr_AnyInteger := ?;

// Any value template for structured type fields
template MyRecordType tr_ComplementedTemplateExample := {
 field1 := complement (1, 101, 201),
 field2 := ?
};

Presenter
Presentation Notes
The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is acceptable. It can be used on values of all types. A template field that uses the any value mechanism matches the corresponding incoming field if, and only if, the incoming field evaluates to a single element of the specified type.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 166

• Matches all valid values for the concerned template field type;
• can only be used for optional fields: accepts any valid value

including omit for that field;
• applicable to all basic and structured types.
• A template containing * field can NOT be sent.

Any value or none
template – *

// Any value or none template
template bitstring tr_AnyBitstring := *;

// Any value or none template for structured type fields
template MyRecordType tr_AnyValueOrNoneExample := {
 field1 := *, // NOTE: This field is optional!
 field2 := ? // NOTE: This field is mandatory!
};

Presenter
Presentation Notes
The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value, including omission of that value, is acceptable. It can be used on values of all types, provided that the template field is defined as optional.A template field that uses this symbol matches the corresponding incoming field if, and only if, either the incoming field evaluates to any element of the specified type, or if the incoming field is absent.Note: The template tr_AnyBitstring can only be used as an optional field of another template.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 167

•? matches an arbitrary element,
* matches any number of consecutive elements;

• applicable inside bitstring, hexstring, octetstring, record of,
set of types and arrays;

• not allowed for charstring and universal charstring:
– pattern shall be used instead! (see next slide)

Matching inside
values

// Using any element matching inside a bitstring value
// Last 2 bits can be '0' or '1'
template bitstring tr_AnyBSValue := ’101101??’B;

// Any elements or none in record of
// '2' and '3' must appear somewhere inside in that order
template ROI tr_TwoThree := { *, 2, 3, * };

Presenter
Presentation Notes
The matching symbol "?" is used to indicate that it replaces single elements of a string (except character strings), a record of, a set of or an array. It shall be used only within values of string types, record of types, set of types and arrays.The matching symbol "*" is used to indicate that it replaces none or any number of consecutive elements of a string (except character strings), a record of, a set of or an array. The "*" symbol matches the longest sequence of elements possible, according to the pattern as specified by the symbols surrounding the "*".

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 168

• Provides regular expression-based pattern matching for
charstring and universal charstring values.

• Format: pattern <charstring>
where <charstring> contains a TTCN-3 style regular expression.

• Patterns can be used in templates only.

charstring matching –
pattern

// Matches charstrings with the first character "a"
// and the last one "z"
template charstring tr_0 := pattern "a*z";

// Match 3 character long strings such as AAC, ABC, …
template charstring tr_01 := pattern "A?C";

Presenter
Presentation Notes
Character patterns can be used in templates to define the format of a required character string to be received.TTCN-3 pattern expressions have little common with standard regular expressions! Note: pattern matching for universal charstring is not implemented in TITAN yet!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 169

› ? Matches any single character
› * Matches any number of any character
› #(n,m) Repeats the preceding expression at least n but at most m times
› #n Repeats the preceding expression exactly n times
› + Repeats the preceding expression one or several times (postfix); the same as #(1,)
› []Specifies character classes: matches any char. from the specified class
› - Hyphen denotes character range inside a class
› ^ Caret in first position of a class negates class membership

e.g. [^0-9] matches any non-numerical character
› () Creates a group expression
› | Denotes alternative expressions
› {} Inserts and interprets the user-defined string as a regular expression
› \ Escapes the following metacharacter, e.g. \\ escapes \
› \d Matches any numerical digit, equivalent to [0-9]
› \w Matches any alphanumeric character, equivalent to [0-9a-zA-Z]
› \t TABULATOR, \n NEWLINE, \r CR, \” DOUBLE QUOTE
› \q{<group>, <plane>, <row>, <cell>}
› Matches the universal character specified by the quadruple

pattern
metacharacters

Presenter
Presentation Notes
In addition to literal characters, character patterns allow the use of meta-characters. If it is required to interpret any metacharacter literally it should be preceded with the metacharacter '\'.“-” means a range, if before and after there is no space!inside [] char set may be defined e.g. [a f t] --- a or f or t[a d -] a or d or – (- can be only at the LAST position!)

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 170

• Set expression

• Reference expression

• Multiple match

Sample patterns

// Matches any charstring beginning with a capital letter
template charstring tr_1 := pattern "[A-Z]*";

// Matches 3 characters long charstrings like "AxB"
var charstring cg_in := "?x?";
template charstring tr_2 := pattern "{cg_in}";

// Matches a string containing at least 3 at most 5 capitals
template charstring tr_4 := pattern "[A-Z]#(3,5)";

// Matches any ASN.1 type name
template charstring tr_3 :=
 pattern "[A-Z](-#(,1)\w#(1,))#(,)";

Presenter
Presentation Notes
The pattern used in template tr_3 explained: it begins with a capital letter, followed by (zero or more hyphen and at least one letter or number) and the section inside the parentheses may be repeated several times.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 171

› function regexp(<input-string>, <regexp>, <group-number>)
› return <type of input-string>;
• returns a substring of <input-string>, which is the content of
› (<group-number> + 1)th group matching the <regexp>
• <input-string> type can be any (universal) charstring
• the type of returned value equals to the type of the input string

The function regexp()

control {
 var charstring v_string := "0036 (1) 737-7698";
 var charstring v_regexp :=
 "0036 #(,)\((\d#(1,))\) #(,)[\d-]#(1,)";
 var charstring v_result := regexp(v_string, v_regexp, 0);
} // v_result contains the number in parentheses, i.e. 1

Presenter
Presentation Notes
The function is used to extract a substring from the input string (on the slide: v_string). It is used mainly with textual protocols.The substring to be extracted is the one matching the regular expression (on the slide: v_regexp). The last argument of the function (on the slide: 0) denotes the cardinal number of the group in the regexp, 0 being the first match. A group is enclosed in parentheses, where the first parenthesis must not be preceded by a '#' or a '\'.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 172

• Value attributes on field level:
– length restriction;
– ifpresent modifier.

• Special matching for set of types:

– subset and superset matching.
• Special matching for record of types:

– permutation matching.

• Predefined functions operating on templates:
– match()
– valueof()

Matching mechanisms
(2)

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 173

• Matches values of specified length – length can be a range.
• The unit of length is determined by the template’s type.
• Permitted only in conjunction with other matching mechanism

(e.g. ? or *)
• Applicable to all basic string types and record-of/set-of types

Length restriction

// Any value template with length restriction
template charstring tr_FourLongCharstring := ? length(4);
// type record of integer ROI;
template ROI tr_One2TenIntegers := ? length(1..10);

// Standalone length modifier is not allowed!
template bitstring tr_ERROR := length(3); // Parse error!!!

Presenter
Presentation Notes
The length restriction attribute is used to restrict the length of string values and the number of elements in a set of, record of or array structure.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 174

• Used together with an other matching mechanism for constraining,
ifpresent can be applied only to optional fields.

• Operation mode:
– Absent optional field (omit) → always match
– Present optional field → other matching mechanism decides matching

• Presence attribute makes sense with all matching mechanisms except
? and * (* is equivalent to ? ifpresent)

Presence attribute –
ifpresent

// Presence attribute with structured type fields
template MyRecordType tr_IfpresentExample := {
 field1 := complement (1, 101, 201) ifpresent,
 field2 := ?
};

Presenter
Presentation Notes
A template field that uses ifpresent matches the corresponding incoming field if, and only if:the incoming field matches according to the associated matching mechanism, orif the incoming field is absent.Not to be confused with the predefined function ispresent() which checks whether an optional field is present in the actual instance of the referenced data object.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 175

• Applicable to set of types only.
•subset matches if all elements of the incoming field are defined

in the subset

•superset matches if all elements of the defined superset can be found
in the incoming field

Subset and superset
templates

type set of integer SOI;
template SOI tr_SOIb := subset (1, 2, 3);
// Matches {1,3,2} and {1,3}
// Does not match {4,3,2} and {0,1,2,3,4}

template SOI tr_SOIp := superset (1, 2, 3);
// Matches {1,3,1,2} and {0,1,2,3,4}
// Does not match {1,3}(2 is missing) and {4,3,2}(1 is missing)

Presenter
Presentation Notes
A field that uses SubSet matches the corresponding incoming field if, and only if, the incoming field contains only elements defined within the SubSet, and may contain less.A field that uses SuperSet matches the corresponding incoming field if, and only if, the incomingfield contains at least all of the elements defined within the SuperSet, and may contain more.value set of : value subset: For all value in set of such that value is a subset of subset.In the superset example, the group {4,3,2} does not match because '1' is missing. The excess '4' would not hinder the match.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 176

• Applicable to record of types only
•permutation matches all permutations of enlisted elements

(i.e. the very same elements enlisted in any order)

Permutation

type record of integer ROI;
template ROI tr_ROIa := { permutation (1, 2, 3) };
// Matches {1,3,2} and {2,1,3}
// Does not match {4,3,2}, {0,1,2,3} and {1,2}(3 is missing)

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 177

What kind of matching mechanisms are
applicable to which types?

Y = permitted

N = not applicable

Specific value, om
it

Value list,
com

plem
ented

Any value, any value
or none

R
ange

Subset, superset

Perm
utation

Any elem
ent, any

elem
ents or none

Length restriction

ifpresent

boolean Y Y Y N N N N N Y

integer, float Y Y Y Y N N N N Y

bitstring, octetstring, hexstring Y Y Y N N N Y Y Y

charstring,
universal charstring Y Y Y Y N N Y Y Y

record, set, union, enumerated Y Y Y N N N N N Y

record of Y Y Y N N Y Y Y Y

set of Y Y Y N Y N Y Y Y

Matching and types

Presenter
Presentation Notes
Specific value template, mentioned in the first column, matches the corresponding incoming field value if, and only if, the incoming field value has exactly the same value as the value to which the expression in the template evaluates. Thus, it cannot be regarded as a veritable matching mechanism, as it only accepts a fixed value.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 178

› function match (<value>, <template>) return boolean;
• The match() predefined function can be used to check, if the

specified <value> matches the given <template>.
•true is returned on success

The match()
predefined function

// Use of match()
control {
 var MyRecordType v_MRT := {
 field1 := omit, field2 := true
 };
 if(match(v_MRT, tr_IfPresentExample)) { log("match") }
 else { log("no match") }
} // "match" has been written to the log

Presenter
Presentation Notes
The function can be interpreted as an extended 'equality' operation. It compares the value of a variable with a template and returns 'true' if the template matches the value of the variable as it is the case in the example on the slide.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 179

› function valueof(<template>) return <type of template>;
• The valueof() predefined function can be used to convert a specific

value <template> into a value.
• The returned value can be saved into a variable whose type is

equivalent to the <type of template>.
• Permitted for specific value templates only!

The valueof()
predefined function

// Use of valueof()
control {
 var MyRecordType v_MRT;
 v_MRT := valueof(t_SpecificValueExample); // OK
 v_MRT := valueof(tr_IfPresentExample); // dynamic error!!
}

Presenter
Presentation Notes
Specific values template means that each field of the template shall resolve to a single value.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 180

• Value types in TTCN-3

• Specific value templates vs. general (receive) templates

• Comparing values with values or templates

templates Are not
values

c == 1 and c == mp and mp == v // true: all values
t1 == c // error: comparing template with a value
valueof(t1) == v // true: t1 may be converted to a value
valueof(t2) == v // error:t2 cannot be converted to a value
match(mp,t2) == true // true: mp matches t2

1 // literal value
const integer c := 1; // constant value
modulepar integer mp := 1; // module parameter value
var integer v := 1; // variable value

template integer t1 := 1; // specific value template
template integer t2 := ?; // receive template

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 181

• Inline templates
• Inline modified templates

• Template modification

• Template parameterization

• Template hierarchy

Template variants

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 182

• Defined directly in the sending or receiving operation
• Syntax:

• Usually ineffective, recommended to use in simple cases only
(e.g. receive any value of a specific type)

Inline Templates

// Ex1: receive any value of a given type

 port1_PCO.receive(BCCH_MESSAGE:?);

// Ex2: value range of integer
 port1_PCO.receive((0..7));

// Ex3: compound types (nesting is possible)

 port1_PCO.receive(MyRecordType:{ field1 := *,
 field2 := ? });

[<type> :] <matching>

Presenter
Presentation Notes
Inline templates do not have identifiers and are valid for that single operation. Inline templates must not have parameters.The type identifier may be omitted when the value unambiguously identifies the type, see Ex2 on the slide.The typical use is depicted in Ex1. It is used mainly for value redirect and sender redirect.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 183

Modified Templates
 // Parent template:
template MyMsgType t_MyMessage1 := {
 field1 := 123,
 field2 := true
}

 // Modified template:
template MyMsgType t_MyMessage2 modifies t_MyMessage1 :=
{
 field2 := false
}

// t_MyMessage2 is the same as t_MyMessage3 below
template MyMsgType t_MyMessage3 := {
 field1 := 123,
 field2 := false
}

Presenter
Presentation Notes
Instead of specifying a new template, it is possible to modify an existing template when only a few fields change. The modifies keyword denotes the parent template from which the new, or modified template shall be derived.This parent template may be either an original template or a modified template.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 184

• Defined directly in the communication operation
• Valid only for that one operation (No identifier, no reusability)
• Can not be parameterized
• Usually ineffective, not recommended to use!

Inline modified
templates

template MyRecordType t_1 := {
 field1 := omit,
 field2 := false
}
control {
 …
 port_PCO.receive(modifies t_1 := { field1 := * });
 …
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 185

• Value formal parameters accept as actual parameter:
– literal values
– constants, module parameters & variables

Template
parameterization (1)

// Value parameterization
template MyMsgType t_MyMessage
(integer pl_int, // first parameter
 integer pl_int2 // second parameter
) :=
{ // template body follows
 field1 := pl_int,
 field2 := t_MyMessage1 (pl_int2, omit)
}

// Example use of this template
P1_PCO.send(t_MyMessage(1, vl_integer_2))

Presenter
Presentation Notes
Templates for both sending and receiving operations can be parameterized. On the slide, the first one is appearing. This slide shows the use of value parameters. The message sent on P1_PCO will have the following structure:the 1st field is integer, its value equals to 1;�the 2nd field is structured (MyMsgType) and has two subfields: its 1st subfield is integer, its value is determined by the variable vl_integer_2;� its 2nd subfield is not present.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 186

• Parameterizing modified templates
– The formal parameter list of the parent template must be included;
– additional (to the parent list) parameters may be added

Template
parameterization (2)

template MyMsgType MyMessage4
(integer par_int, boolean par_bool) :=

{
 field1 := par_int,
 field2 := par_bool,
 field3 := ’00FF00’O
} // and
template MyMsgType MyMessage2
 (integer par_int, boolean par_bool, octetstring par_oct)
 modifies MyMessage4 :=
{
 field3 := par_oct
}

Formal parameter
list of the parent
template must be

fully repeated here!

Presenter
Presentation Notes
It is not allowed to modify a field, which is parameterized in the parent template. Thus, in the example on the slide field1 and filed2 cannot be modified while field3 can.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 187

• Template formal parameters can accept as actual parameter:
– literal values
– constants, module parameters & variables, omit
+ matching symbols (?, * etc.) and templates

Template
parameterization (3)

// Template-type parameterization
template integer tr_Int := ((3..6), 88, 555));
template MyIEType tr_TemplPm(template integer pl_int) :=
{ f1 := 1, f2 := pl_int }

// Can be used:
P1_PCO.send(tr_ TemplPm(5));
P1_PCO.receive (tr_ TemplPm(?));
P1_PCO.receive (tr_ TemplPm(tr_Int));
P1_PCO.receive (tr_ TemplPm((3..55)));
P1_PCO.receive (tr_ TemplPm(complement (3,5,9));

Note the
template
keyword!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 188

Templates can be restricted to
– (omit) evaluate to a specific value

or omit
– (present) evaluate to any template

except omit
– (value) specific value (i.e. the

entire template must not be omit)

Applicable to any kind of templates
(i.e. template definitions, variable
templates and template formal
parameters)

t
e
m
p
l
a
t
e

(
o
m
i
t
)

t
e
m
p
l
a
t
e

(
p
r
e
s
e
n
t
)

t
e
m
p
l
a
t
e

(
v
a
l
u
e
)

omit Ok error error

Specific value
template

Ok Ok Ok

Receive
template

error Ok error

Restricted templates

function f_omit(template (omit) integer p) {}
function f_present(template (present) integer p) {}
function f_value(template (value) integer p) {}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 189

Restricted template
examples
// omit restriction
function f_omit(template (omit) integer p) {}
f_omit(omit); // Ok
f_omit(integer:?); // Error
f_omit(1); // Ok
// present restriction
function f_present(template (present) integer p) {}
f_present(omit); // Error: omit is excluded
f_present(integer:?); // Ok
f_present(1); // Ok
// value restriction
function f_value(template (value) integer p) {}
f_value(omit); // Error: entire argument must not be omit
f_value(integer:?); // Error: not value
f_value(1); // Ok

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 190

• Templates can be stored in so called template variables
• Template variable

– may change its value several times
– assignment and access to its elements are permitted

(e.g. reference and index notation permitted)
– must not be an operand of any TTCN-3 operators

Template variables

control {
 var template integer vt := ?;
 var template MySetType vs :=
 { field1:= ?, field2 := true};

 vt := (1,2,3); // Ok
 vs.field1 := 2; // Ok
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 191

• Practical template structure/hierarchy depends on:
– Protocol: complexity and structure of ASPs, PDUs
– Purpose of testing: conformance vs. load testing

• Hierarchical arrangement:
– Flat template structure – separate template for everything
– Plain templates referring to each other directly
– Modified templates: new templates can be derived by modifying an existing

template (provides a simple form of inheritance)
– Parameterized templates with value or template formal parameters
– Parameterized modified templates

• Flat structure → hierarchical structure
– Complexity increases, number of templates decreases
– Not easy to find the optimal arrangement

Template hierarchy

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 192

modified template

parametrized template

template parameter

Template hierarchy –
typical situations

1 15 20

* omit (10..20)

Asynchronous communication
Send, receive, check and trigger operations
Port control operations (start, stop, clear)

Value and sender redirects
Send to and receive from operations

Synchronous communication

XIII. ABSTRACT
COMMUNICATION

OPERATIONS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 194

Asynchronous
Communication

non- blocking blocking

send receive

PTC MTC

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 195

• <PortId>.send(<ValueRef>)

where <PortId> is the name of a message port containing an out or
inout definition for the type of <ValueRef> and <ValueRef> can be:

– Literal value; constant, variable, specific value template (i.e. send template)
reference or expression

• <PortId>.receive(<TemplateRef>) or <PortId>.receive

where <PortId> is the name of a message port containing an in or
inout definition for the type of <TemplateRef> and <TemplateRef>
can be:

– Literal value; constant, variable, template (even with matching mechanisms)
reference or expression; inline template

send and receive
syntax

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 196

• Send and receive operations can be used only on connected ports
– Sending or receiving on a port, which has neither connections nor mappings

results in test case error

• The send operation is non-blocking
• The receive operation has blocking semantics

(except if it is used within an alt or an interleave statement!)
• Arriving messages stay in the incoming queue of the destination port
• Messages are sent and received in order
• The receive operation examines the 1st message of the port’s queue,

but extracts this only if the message matches the receive operation’s
template

Send and receive
operations

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 197

Send and receive
examples

RNC AXE
NBAP

MSG MSG

NBAP

“Hello!”

MSG.send("Hello!");

RNC AXE
NBAP

MSG MSG

NBAP

“Hello!”

“Hi!”

MSG.receive("Hello!");

MSG.send ("Hi!");
MSG.receive("Hello!");

“Hello!”

MSG.send("Hello!");

Blocked!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 198

• Check-receive operation blocks until a message is present in the port’s
queue, then it decides, if the 1st message of the port’s queue matches our
template or not;
The message itself remains untouched on the top of the queue!

– Usage:
<PortId>.check(receive(<TemplateRef>));
<PortId>.check;
any port.check;

• Trigger operation blocks until a message is arrived into the port’s queue
and extracts the 1st message from the queue:

– If the top message meets the matching criteria → works like receive
– Otherwise the message is dropped without any further action
– Usage:
– <PortId>.trigger(<TemplateRef>);
– <PortId>.trigger; (equivalent to <PortId>.receive;)

Check-receive and
trigger vs. receive

Presenter
Presentation Notes
<PortId>.check; checks if there is anything waiting in the queue

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 199

Trigger examples

RNC AXE
NBAP

MSG MSG

NBAP

“Hello!”

MSG.send("Hello!");

RNC AXE
NBAP

MSG MSG

NBAP

“Hello!”

“Hi!”

MSG.trigger("Hello!");

MSG.send ("Hi!");
MSG.trigger("Hello!");

“Hello!”

MSG.send("Hello!");

“Hello!”

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 200

• Value redirect stores the matched message into a variable
• Sender redirect saves the component reference or address of the

matched message’s originator
• Works with both receive and trigger

Value and sender
redirect

template MsgType MsgTemplate := { /* valid content */ }

var MsgType MsgVar;
var CompRef Peer;
// save message matched by MsgTemplate into MsgVar
PortRef.receive(MsgTemplate) -> value MsgVar;
// obtain sender of message
PortRef.receive(MsgTemplate) -> sender Peer;
// extract MsgType message and save it with its sender
PortRef.trigger(MsgType:?) -> value MsgVar sender Peer;

Presenter
Presentation Notes
// obtain sender of message in queue w/o removing itPortRef.check(receive(MsgTemplate) -> sender Peer);

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 201

//send a reply for the previous message
p.receive (Request_Msg) -> sender CompVar;
p.send(Msg) to CompVar;

• Components A, B, C are of the same type
• P has 2 connections and 1 mapping in

component A
• How does component A tell to the RTE that it

waits for an incoming message from
component B?

 p.receive(TemplateRef) from B;

• How does component A send a message to
system?

 p.send(Msg) to C;

send to and receive from

B

A

C

p

p p

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 202

Examples of Asynchronous
Communication Operations

MyPort_PCO.send(f_Myf_3(true));

MyPort_PCO.receive(tr_MyTemplate(5, v_MyVar));

MyPort_PCO.receive(MyType:?) -> value v_MyVar; // !!

MyPort_PCO.receive(MyType:?) -> value v_MyVar sender Peer;

any port.receive;

MyPort_PCO.check(receive(A < B)) from MyPeer;

MyPort_PCO.trigger(5) -> sender MyPeer;

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 203

Summary of Asynchronous
Communication Operations

Operation Keyword

Send a message send

Receive a message receive

Trigger on a given message trigger

Check for a message in port queue check

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 204

Synchronous
Communication

call getcall

blocking blocking

getreply or
catch exception

reply or
raise exception

MTC PTC

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 205

Examples of Synchronous
Communication Operations
signature MyProc3 (out integer MyPar1, inout boolean MyPar2)
 return integer
 exception (charstring);
// Call of MyProc3
MyPort.call(MyProc3:{ -, true }, 5.0) to MyPartner {
 [] MyPort.getreply(MyProc3:{?, ?}) -> value MyResult param
 (MyPar1Var,MyPar2Var) { }

 [] MyPort.catch(MyProc3, “Problem occured”) {
 setverdict(fail); stop; }
 [] MyPort.catch(timeout) {
 setverdict(inconc); stop; }
}
// Reply and exception to an accepted call of MyProc3
MyPort.reply(MyProc3:{5,MyVar} value 20);
MyPort.raise(MyProc3, “Problem occured”);

Presenter
Presentation Notes
signature MyProc3 (out integer MyPar1, inout boolean MyPar2) // signature definition		return integer		exception (charstring);// Call of MyProc3MyPort.call(MyProc3:{ -, true }, 5.0) to MyPartner { //5.0 – guarding timer, after expiration timeout exception generated// after call, return value (getreply) and exception (catch) MUST be handled	[] MyPort.getreply(MyProc3:{?, ?}) -> value MyResult // return value is stored in MyResult				param (MyPar1Var,MyPar2Var) { } // values of the out/inout parameters stored in MyPar1Var,MyPar2Var	[] MyPort.catch(MyProc3, “Problem occured”) { // catch user defined exception			setverdict(fail); stop; } 	[] MyPort.catch(timeout) {	//catch timeout exception (5.0s in this concrete case)			setverdict(inconc); stop; }}// Reply and exception to an accepted call of MyProc3MyPort.reply(MyProc3:{5,MyVar} value 20); // replyMyPort.raise(MyProc3, “Problem occured”); // exception

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 206

Summary of synchronous
Communication Operations

Operation Keyword

Invoke (remote) procedure call call

Reply to a (remote) procedure call reply

Raise an exception raise

Accept (remote) procedure call getcall

Handle response from a previous call getreply

Catch exception (from called entity) catch

Check reply or exception check

Sequential behavior
Alternative behavior

Alt statement, snapshot semantics
Guard expressions, else guard

Altsteps
Defaults

Interleave statement

XIV. BEHAVIORAL
STATEMENTS

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 208

• Program statements are executed in order
• Blocking statements block the execution of the component

– all receiving communication operations, timeout, done, killed

• Occurrence of unexpected event may cause infinite blocking

Sequential execution
behavior features

// x must be the first on queue P, y the second
P.receive(x); // Blocks until x appears on top of queue P
P.receive(y); // Blocks until y appears on top of queue P
// When y arrives first then P.receive(x) blocks -> error

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 209

• Unable to prevent blocking operations from dead-lock
i.e. waiting for some event to occur, which does not happen

• Unable to handle mutually exclusive events

problems of
Sequential execution

// Assume all queues are empty
P.send(x); // transmit x on P -> does not block
T.start; // launch T timer to guard reception
P.receive(x); // wait for incoming x on P -> blocks
T.timeout; // wait for T to elapse
// ^^^ does not prevent eventual blocking of P.receive(x)

// x, y are independent events
A.receive(x); // Blocks until x appears on top of queue A
B.receive(y); // Blocks until y appears on top of queue B
// y cannot be processed until A.receive(x) is blocking

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 210

• Go for the alternative that happens earliest!
• Alternative events can be processed using the alt statement
• alt declares a set of alternatives covering all events, which …

– can happen: expected messages, timeouts, component termination;
– must not happen: unexpected faulty messages, no message received

› … in order to satisfy soundness criterion
• All alternatives inside alt are blocking operations

• The format of alt statement:

solution:
Alternative execution
– alt statement

alt { // declares alternatives
// 1st alternative (highest precedence)
// 2nd alternative
// …
// last alternative (lowest precedence)
} // end of alt

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 211

• Take care of unexpected event and timeout:

Alternative execution
behavior examples

P.send(req)
T.start;
// …
alt {
[] P.receive(resp) { /* actions to do and exit alt */ }
[] any port.receive { /* handle unexpected event */ }
[] T.timeout { /* handle timer expiry and exit */ }
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 212

1. Take a snapshot reflecting current state of test system
2. For all alternatives starting with the 1st:

a) Evaluate guard: false → 2
b) Evaluate event: would block → 2
c) Discard snapshot; execute statement block and exit alt → READY

3. → 1

Snapshot semantics

alt {

}

guard1
[]

 (event1)
port1.receive (t_A)

guard2
[a==b]

 (event1)
port2.receive

guardn
[tsp_X]

 (event1)
timer_x.timeout

 block of statements1
{ ; ; }
 block of statements2
{ }

 block of statementsn
{ ; ; }

Presenter
Presentation Notes
The execution of alt starts with taking a “snapshot”. The snapshot represent the current state of the test system including timers, port queues, components, etc. The alternatives enlisted within the alt statement are evaluated on the contents of the snapshot.When none of the alternatives are successful, the run-time environment takes a new snapshot and the execution resumes with the first alternative.The execution proceeds until a single successful alternative is found or when the run-time environment can determine that no alternative can ever be successful. In the former case the statement block of the successful alternative is executed. Then, the next statement following the alt is executed. In the latter case the execution terminates with dynamic test case error.The snapshot is only valid until the execution gets to the statement block! That is why the alt statement can be nested.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 213

• Guard condition enables or disables the alternative:
– Usually empty: [] equivalent to [true]
– Can contains a condition (boolean expression): [x > 0]
– Occasionally the else keyword: [else] → else branch

› but it makes the semantics completely different!
• Blocking operation (event):

– Any of receive, trigger, getcall, getreply, catch, check,
timeout, done or killed

– altstep invocation → altstep
– May be empty only in [else] guard

• Statement block:
– Describes actions to be executed on event occurrence
– Optional: can be empty (i.e. {} or ;)

Format of
alternatives

Presenter
Presentation Notes
The alt statement consists of alternatives. Alternatives normally consist of guard, event and statement block. The event used in alt can only be a receiving (or blocking) event. The semantics of these blocking statements change when used within the alt statement!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 214

• Alternatives are processed according to snapshot semantics
– Alternatives are evaluated in the same context (snapshot) such that

each alternative event has “the same chance”
•alt waits for one of the declared events to happen then

executes corresponding statement block using sequential
behavior!

– i.e. only a single declared alternative is supposed to happen
•alt quits after completing the actions related to the event that

happened first
• First alternative has highest priority, last has the least
• When no alternatives apply → programming error (not sound) →

dynamic testcase error!

alt statement
execution semantics

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 215

Nested alt statement

alt {
[] P.receive(1)
 {
 P.send(2)
 alt { // embedded alt
 [] P.receive(3) { P.send(4) }
 [] any port.receive { setverdict(fail); }
 [] any timer.timeout { setverdict(inconc) }
 } // end of embedded alt
 }
[] any port.receive { setverdict(fail); }
[] any timer.timeout { setverdict(inconc) }
}

Presenter
Presentation Notes
The repeat keyword can appear only as the last statement within statements blocks of alt statements. Then, istead of jumping to the next statement following the alt, the execution is continued from the beginning of the alt with a new snapshot.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 216

• Takes a new snapshot and re-evaluates the alt statement
• Can appear as last statement in statement blocks of statements

• Can be used for example to filter “keep alive” messages :

The repeat statement

P.send(req)
T.start;
// …
alt {
[] P.receive(resp) { /* actions to do and exit alt */ }
[] P.receive(keep_alive) { /* handle keep alive message */
 repeat }

[] any port.receive { /* handle unexpected event */ }
[] T.timeout { /* handle timer expiry and exit */ }
}

Presenter
Presentation Notes
The repeat keyword can appear only as the last statement within statements blocks of alt statements. Then, istead of jumping to the next statement following the alt, the execution is continued from the beginning of the alt with a new snapshot.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 217

• Guard contains else and blocking event is absent
• Execution continues with the else branch, when none of the previous

alternatives satisfied at first snapshot
• Consequently, an alt with else:

– takes only a single snapshot → never blocks execution
– does not wait for any declared event to happen
– goes on immediately with the actions of the event, which happened before

taking the snapshot or jumps to statement block of else branch

The else guard

alt { // 1 snapshot is taken here
[] A.receive(x) { /* extract x if available in A */ }
[] any port.receive { /* remove anything */ }
[else] { /* continue here when none of above applied */ }
} // end of alt

Presenter
Presentation Notes
The else guard does not have an accompanying event because it is always successful.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 218

• Collection of a set of
“common” alternatives

• Run-time expansion
• Invoked in-line, inside alt

statements or activated as
default Run-time
parameterization

• Optional runs on clause
• No return value
• Local definitions deprecated

Structuring alternative
behavior – altstep

[with { <Attributes> }]

altstep <as_identifier>

{

}

[guard1] event1 { behaviour1 }

[guardn] eventn { behaviourn }

Local Definitions

he
ad

er

[runs on <ComponentType>]
([Formal parameter list])

Presenter
Presentation Notes
Local definitions within altsteps are deprecated. When initializing a local variable with a function having side-effect (I.e. doing something else in addition to initializing the variable) then this side-effect may be executed multiple times. Consequently, variables should be initialized with constant only!Side-effect is for instance the sending of a message. In the above situation we could not know how many times this message is sent!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 219

• Direct invocation:
– Expands dynamically to an alt statement

• Dynamic invocation from alt statement:

– Attaches further alternatives to the place of invocation

• Default activation:
– Automatic attachment of activated altstep branches to the end of

each alt/blocking operation

Three ways to use
altstep

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 220

Using altstep – Direct
invocation
// Definition in module definitions part
altstep as_MyAltstep(integer pl_i) runs on My_CT {
[] PCO.receive(pl_i) {…}
[] PCO.receive(tr_Msg) {…}
}
// Use of the altstep
testcase tc_101() runs on My_CT {
 as_MyAltstep(4); // Direct altstep invocation…
}

// … has the same effect as
testcase tc_101() runs on My_CT {

alt {
[] PCO.receive(4) {…}
[] PCO.receive(tr_Msg) {…}
}

}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 221

using altstep –
invocation in alt

alt {

}

[guard1] port1.receive (cR_T) block of statements1

 block of statementsn

[guard2]

[guardn] timer_x.timeout

 optional block of statements2 as_myAltstep ()

+
as_myAltstep () {

}

[guardX] port2.receive block of statementsX
 block of statementsY [guardY] port3.receive

optional local definitions

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 222

using altstep –
invocation in alt

alt {

}

[guard1] port1.receive (cR_T) block of statements1

 block of statementsn

[guard2]

[guardn] timer_x.timeout

+

block of statements2
block of statements2

as_myAltstep () {

}

[guardX] port2.receive block of statementsX
 block of statementsY [guardY] port3.receive

optional local definitions

[guardX] port2.receive block of statementsX
block of statementsY [guardY] port3.receive

local definitions ! (is equivalent to…)

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 223

• Error handling at the end of each alt instruction
– Collect these alternatives into an altstep
– Activate as default
– Automatically copied to the end of each alt

Motivation - defaults

alt {
[] P.receive(1)
 {
 P.send(2)
 alt { // embedded alt
 [] P.receive(3) { P.send(4) }
 [] any port.receive { setverdict(fail); }
 [] any timer.timeout { setverdict(inconc) }
 } // end of embedded alt
 }
[] any port.receive { setverdict(fail); }
[] any timer.timeout { setverdict(inconc) }
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 224

Using altstep –
activated as default

alt {

}

[guard1] port1.receive (cR_T) block of statements1

 block of statementsn [guardn] port2.receive(cR2_T)

as_myAltstep () {

}

[guardX] any port.receive block of statementsX
 block of statementsY [guardY] T.timeout

optional local definitions

[guardX] any port.receive block of statementsX
 block of statementsY [guardn] T.timeout

local definitions !

component
instance

defaults
as_myAltstep;

var default def_myDef := activate(as_myAltstep());

alternatives of
activated defaults

are also evaluated
after regular
alternatives

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 225

• Altsteps can be used as default operations:
– activate: appends an altstep with given actual parameters to the current default

context, returns a unique default reference
– deactivate: removes the given default reference from the context

• Defaults can be used for handling:
– Incorrect SUT behavior
– Periodic messages that are out of scope of testing

• There are only dynamic defaults in TTCN-3
• The default context of a PTC can be entirely controlled run-time
• Defaults have no effect within an alt, which contains an else guard!

Activation of altstep
to defaults

altstep as1() runs on CT {
[] any port.receive { setverdict(fail)}
[] any timer.timeout { setverdict(inconc)}
}

var default d1:= activate(as1());
 ...
deactivate(d1);

Presenter
Presentation Notes
Defaults have no effect within an alt, which contains an else guard!

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 226

• Default context contains a list of altsteps that is implicitly appended:
– At the end of all alt statements except those with else branch
– After all stand-alone blocking receive/timeout/done … operations (!!)

• Any standalone receiving statement (receive, check, getcall,
getreply, done, timeout) behaves identically as if it was embedded
into an alt statement!

• … is equivalent to:

Standalone receiving
statements vs. alt

alt {
[] MyPort_PCO.receive(tr_MyMessage) {}

}

MyPort_PCO.receive(tr_MyMessage);

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 227

• Activated default branches are appended to standalone
receiving statements, too!

• … is equivalent to:

Standalone receiving
statements vs. default

alt {
[] MyTimer.timeout {}

 [] MyPort.receive(MyTemplate(2))
 { MyPort.send(MyAnswer); repeat }
 [] MyPort.receive
 { setverdict(fail) }
}

var default d := activate(myAltstep(2));
MyTimer.timeout;

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 228

• Default branches are appended in the opposite order of their
activation to the end of alt, therefore the most recently activated
default branch comes before of the previously activated one(s)

Multiple defaults

altstep as1() runs on CT {
[] T.timeout { setverdict(inconc) }
}
altstep as2() runs on CT {
[] any port.receive { setverdict(fail) }
}
altstep as3() runs on CT {
[] PCO.receive(MgmtPDU:?) {}
}
var default d1, d2, d3; // evaluation order
d1 := activate(as1()); // +d1
d2 := activate(as2()); // +d2+d1
d3 := activate(as3()); // +d3+d2+d1
deactivate(d2); // +d3+d1
d2 := activate(as2()); // +d2+d3+d1

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 229

• Specifies the interleaved handling of events
• Alternative events can occur in any order but exactly once
• Can be modeled with a number of alt statements

Interleaved behavior

interleave

alternatives

Presenter
Presentation Notes
The number of alt statements used for modeling a single interleave statement grows exponentially with the number of blocking operations used within the interleave statement.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 230

• Difference from alt:
– All events must happen exactly once
– Alternative execution (i.e. snapshot semantics) applies within statement

block as well
– Execution may continue on different branch when an operation blocks

the actual one and resume later from the same place

Sample interleave
statement

interleave {
[] P.receive(1) { Q.receive(2); R.receive(3) }
[] Q.receive(4) { P.send(a); R.receive(5) }
[] R.receive(6)
 { P.receive(7); Q.send(b); Q.receive(8) }
[] T.timeout { R.send(c); P.receive(9) }
} // end of interleave

Presenter
Presentation Notes
Execution segments are shown with arrows. Alternative segments are evaluated using snapshot semantics and executed interleaved.

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 231

• Guard must be empty
• No control statements (for, while, do-while,
goto, stop, repeat, return) permitted in interleave
branches
• No activate/deactivate, no altstep invocation
• No call of functions including communication operations

Interleave
restrictions

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 232

Overview of behavioral
control statements

Statement Keyword or symbol

Sequential behaviour …; …; …

Alternative behaviour alt { … }

Interleaved behaviour interleave { … }

Activate default activate

Deactivate default deactivate

Returning control return

Repeating an alt, altstep or default repeat

Test purpose in MSC
Test configuration

Multiple implementations

XV. SAMPLE TEST
CASE

IMPLEMENTATION

contents

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 234

• Single component test
configuration

• Test purpose defined by MSC:

– Simple request-response protocol
– Answer time less than 5 s
– Result is pass for displayed operation,

otherwise the verdict shall be fail

Sample test case
implementation

mtc system
P P

CT CT

tester IUT
A
X
B
Y
C
Z

T < 5.0

T < 5.0

T < 5.0

pass

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 235

• Test case test1 results error
verdict on incorrect IUT behavior →
test case is not sound!

• Lower case identifiers refer to valid
data of appropriate upper case type!

First Implementation
without timing constraints

testcase test1() runs on CT {
map(mtc:P, system:P);
P.send(a);
P.receive(x);
P.send(b);
P.receive(y);
P.send(c);
P.receive(z);
setverdict(pass);

}

tester IUT
A
Z

error

type port PT message {
out A, B, C;

 in X, Y, Z;
}
type component CT {

port PT P;
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 237

• This test case works fine, but its
operation is hard to follow
between copy/paste lines!

Sound implementation
testcase test2() runs on CT {

timer T:=5.0; map(mtc:P, system:P);
P.send(a);

 P.send(b);

P.send(c);

}

alt {
[] P.receive(y) {setverdict(pass)}
[] P.receive {setverdict(fail)}
[] T.timeout {setverdict(inconc)}
}

T.start;

alt {
[] P.receive(z) {setverdict(pass)}
[] P.receive {setverdict(fail)}
[] T.timeout {setverdict(inconc)}
}

alt {
[] P.receive(x) {setverdict(pass)}
[] P.receive {setverdict(fail)}
[] T.timeout {setverdict(inconc)}
}

T.start;

T.start;

type port PT message {
out A, B, C;

 in X, Y, Z;
}
type component CT {
 port PT P;
}

TTCN-3 Course - Presentation material | Public | © Ericsson AB 2002-2015 - All rigths reserved. | 2015-07-31 | Page 238

• This example demonstrates one specific use of defaults
• Compact solution employing defaults for handling incorrect IUT behavior

Advanced
implementation
testcase test3() runs on CT {
 var default d := activate(as());

map(mtc:P, system:P);
P.send(a); T.start;

 P.receive(x);
 P.send(b); T.start;
 P.receive(y);
 P.send(c); T.start;
 P.receive(z);

 deactivate(d);
 setverdict(pass);
}

altstep as() runs on CT {
[] P.receive {setverdict(fail)}
[] T.timeout {setverdict(inconc)}
}

type port PT message {
out A, B, C;
in X, Y, Z;

}

type component CT {
timer T := 5.0;
port PT P;

}

	TTCN-3 COURSE
	�Copyright © Ericsson AB 2002-2013 - All rights reserved.�
	Contents
	I. PROTOCOLS AND TESTING
	Protocol
	Communications ProtocolS
	Protocol technology
	Testing
	Formal techniques in conformance assessment
	Test types
	Test cases in�black-box test
	Independence and structure of abstract test cases
	Requirements on test suites
	Phases of black-box (functional) testing
	Abstract Test Suite design
	Test execution
	II. INTRODUCTION�TO TTCN-3
	History of TTCN
	TTCN-2 to TTCN-3 migration
	TTCN-3 Standard Documents
	TTCN-3 Presentation Formats
	Example in Core Language
	Example in Tabular Format
	Example in GFT Format
	Interworking with other languages
	TTCN-3 is a procedural language�(like most of the programming languages)
	Test arrangement and its ttcn-3 model
	III. TTCN-3 MODULE STRUCTURE
	TTCN-3 syntactical rules and notational Conventions
	TTCN-3 Modules
	Module Definitions Part
	Module Control part
	Modules can import definitions from other modules
	Importing definitions
	Version information
	An example: “Hello, World!” in TTCN-3
	IV. TYPE SYSTEM
	TTCN-3 Type System
	Simple basic types
	Basic string types
	Basic string types continued
	Special types (1)
	Special types (2)
	Special types (3)
	Overview of structured type syntax
	Structured types – record, set
	Difference between �record and set types
	Value assignment notation
	Value list notation
	Structured types – nested values
	field references
	Structured types – union
	Structured types – union (example)
	Structured types – record of, set of
	Structured types – nested types
	Indexing
	Not-used, omit and unbound
	Structured types – enumerated
	Structured types – enumerated (examples)
	Sub-typing
	Sub-typing: value range restrictions
	Sub-typing: value list restrictions
	Sub-typing: length restrictions (1)
	Sub-typing: length restrictions (2)
	Sub-typing: patterns
	Sub-typing: type alias
	Overview of subtype constructs �for TTCN-3 types
	Type compatibility in TITAN
	Predefined conversion functions
	V. CONSTANTS, VARIABLES, MODULE PARAMETERS
	Constant definitions
	Constant definitions (2)
	Variable definitions
	Variable definitions (2)
	Arrays
	Arrays (2)
	Module parameters
	Scopes
	Visibility Modifiers
	VI. PROGRAM STATEMENTS AND OPERATORS
	Expressions, assignments, �log, action and stop
	Program control statements
	break and continue
	Operators (1)
	Operators (2)
	Operator precedence
	Sample program statements and expressions
	VII. TIMERS
	Timer declaration
	Starting timers
	Supervising timers
	Expiration of timers
	Other timer operations: �RUNNING, Read
	VIII. TEST CONFIGURATION
	Test Configuration
	Test arrangement and its ttcn-3 model – tester is a peer entity of IUT
	TTCN-3 view of testing – �distributed tester
	Graphical representation of components and ports
	Communication ports
	Port communication model
	Communication Port type definition
	Port Type Definition (example)
	Test Components
	Component type definition
	Component Type definition (example)
	IX. FUNCTIONS AND TESTCASES
	About functions
	Function definition
	Function invocation (1)
	Function invocation (2)
	Parameters passed by value and by reference
	Default values
	Predefined functions
	Predefined conversion functions
	New predefined functions
	A testcase
	testcase definition
	testcase definition (example)
	Running test cases
	Controlling test case execution - examples
	X. VERDICTS
	verdicttype
	Built-in verdict
	Verdict overwriting logic
	Verdict overwriting rules in parallel test configurations
	XI. CONFIGURATION OPERATIONS
	Dynamic nature of test configurations
	Creating parallel components
	Component name and location
	Referencing components
	Connecting components
	Mapping a test system interface port to a component
	Basic examples for valid connections
	Valid mappings
	Invalid connections and mappings
	dynamic test configuration
	Starting components
	Terminating components
	WAITing for a PTC TO TERMINATE
	Checking the state of a parallel component
	PTC state machine
	Alive PTC state machine
	MTC state machine
	Special features of component handling
	Relationship between �component type,�role, reference
	Elementary steps of setting up the test configuration
	Example test configuration
	Extending component types
	“Runs on-compatibility”
	Visibility Modifiers
	Port control operations
	Summary of configuration operators (1)
	Summary of configuration operators (2)
	XII. DATA TEMPLATES
	Template concept
	Data Templates
	Template matching procedure
	Template syntax
	Sample template
	Matching mechanisms
	Specific value template
	Value list and complemented value list templates
	Value range template
	Intermixed value list and value range template
	Any value template – ?
	Any value or none template – *
	Matching inside values
	charstring matching – pattern
	pattern metacharacters
	Sample patterns
	The function regexp()
	Matching mechanisms (2)
	Length restriction
	Presence attribute – ifpresent
	Subset and superset templates
	Permutation
	Matching and types
	The match() predefined function
	The valueof() predefined function
	templates Are not values
	Template variants
	Inline Templates
	Modified Templates
	Inline modified templates
	Template parameterization (1)
	Template parameterization (2)
	Template parameterization (3)
	Restricted templates
	Restricted template examples
	Template variables
	Template hierarchy
	Template hierarchy – �typical situations
	XIII. ABSTRACT COMMUNICATION OPERATIONS
	Asynchronous Communication
	send and receive syntax
	Send and receive operations
	Send and receive examples
	Check-receive and trigger vs. receive
	Trigger examples
	Value and sender redirect
	send to and receive from
	Examples of Asynchronous Communication Operations
	Summary of Asynchronous Communication Operations
	Synchronous Communication
	Examples of Synchronous Communication Operations
	Summary of synchronous Communication Operations
	XIV. BEHAVIORAL STATEMENTS
	Sequential execution behavior features
	problems of Sequential execution
	solution:�Alternative execution �– alt statement
	Alternative execution behavior examples
	Snapshot semantics
	Format of alternatives
	alt statement execution semantics
	Nested alt statement
	The repeat statement
	The else guard
	Structuring alternative behavior – altstep
	Three ways to use altstep
	Using altstep – Direct invocation
	using altstep – invocation in alt
	using altstep – invocation in alt
	Motivation - defaults
	Using altstep – activated as default
	Activation of altstep to defaults
	Standalone receiving statements vs. alt
	Standalone receiving statements vs. default
	Multiple defaults
	Interleaved behavior
	Sample interleave statement
	Interleave restrictions
	Overview of behavioral control statements
	XV. SAMPLE TEST CASE IMPLEMENTATION
	Sample test case implementation
	First Implementation �without timing constraints
	Sound implementation
	Advanced implementation
	Slide Number 260

