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Abstract

It is well-known that projective invariants can be used to localize objects in a plan from
a single perspective image. In this paper, special attention is paid to the precision of the
result. A method is proposed to estimate the final uncertainty, and to minimize it. This
method may be adapted to volumic invariants, and may be useful when using invariants for
object recognition.

1 Introduction

Localizing objects in a 3D scene is an important topic in computer vision, because of its
industrial applications.

A classical approach is stereovision. It basically consists in computing the position of scene
points by triangulation. This requires the knowledge of the geometry of the adquisition system:
11 parameters for one camera, and at least the displacement to the other point of view. One of
the difficulties with this approach is that camera calibration may lead to numerical instabilities
[14]. Another problem is that the precision of the result strongly depends on the precision of
the camera parameters [10].

In contrast, a single perspective image may be enough to get useful information on the
geometry of the scene, even without knowing the imaging system parameters. For example,
human vision can be quite efficient at retrieving the relative positions and sizes of objects from
a single perspective photograph.

*Address for correspondance



Figure 1: ”Pin hole” camera model allows to compute some projective invariants, such as
invariants on the areas of triangles defined between coplanar points.

Such a process is mathematically settled in the case of central projection (”pin hole” camera
model), that gives various cross-ratio expressions invariant by projection: expressions based on
angles in a pencil of lines, on distances between aligned points, on areas of triangles between
coplanar points, or on volumes of tetrahedrons between points in the space (see for example
[5, 1, 13]). These invariants can be used to derive geometrical relations between objects in the
scene, from a single view and without any camera calibration.

Cross-ratios have been widely used by photo-interpreters to compute correspondances be-
tween photographs and maps [8]. Recently, computer vision scientists started to pay atten-
tion to projective invariants, and to use them for stereovision [4, 7] for object recognition
(1,2, 3,6,7,11, 12].

The present work is part of a project that aims at demonstrating that computer vision can
be a source of data for urban cartography [9]. The goal is to use an image to localize objects
in the street (traffic signs, bins, sewer covers...) with respect to few reference points found in
the database (such as the limits of buildings) (see figure 1).

Because cartographic information is essentally bidimensional, this paper will focus on the
localization of objects (or their projections) on a plane (the ground). Projective invariants
based on the area of triangles will be used to localize points on the ground, from a single
view. A method will be proposed to minimize and estimate the uncertainty of positions, and
results will be presented. This method can be extended to the utilization of volumic projective
invariants, and may be useful for object recognition based on projective invariants.



2 Localization in a plane with projective invariants

Let O, A, B, C and D be five coplanar points in the scene. These points define a pencil of
four lines meeting at the center point O. Provided that O, B and C on the one hand and O,
A and D on the other hand are not aligned, the projective invariant of the line pencil can be
defined as:

sin(A0C)sin(BOD) _ [DA,0C)[0B,0D)

; = — —_— — —_— — - (1)
sin(BOC) sin(AO D) [0B,0C)[0A,0D] -

7(0,A,B,C,D)=

where the determinant [Y X,Y Z] is twice the signed area of the triangle (XY Z). Let o, a, b, ¢
and d be the image points corresponding to O, A, B, C and D respectively by some (unknown)
central projection. Then the following equality holds:

7(0,A,B,C,D)=1(o0,a,b,c,d) - (2)

Let us suppose that the position of D in the plane of O, A, B, C' and D is unknown, and
that we want to obtain it from the image. Then the direction of line (OD) can be derived
from equality 2:

OD /| OB - k0, A,B,C,0,a,b,¢,d) OA (3)

with £(0, A, B,C,0,a,b,¢,d) = [o_fl’ic] [Ob’o__il] [O_BE’O_C,] (4)
[0b, 0b] [0a, 0d] [0 A,OC]

Projective invariance is a property of the line pencil; so it is not possible to derive the
position of D along the line (O D) from only one invariant. We need another pencil of lines
meeting in some other center point O’. This pencil can be chosen either from other reference
points, or from the same points used in the first cross-ratio, but taken in a different order (O’
must be different from Q); the image o’ off O"must not be aligned with o and d.

3 Computing the precision

An important issue for cartography is the localization précision. Input data is definitely
unprecise. Sub-pixel precision is hardly obtained in numerical images. The reference points
in the scene may have a good precision if their topographic coordinates are read from the
database; or may have poor precision if they result from some previous localization from
images. Knowing the precisions of input points, what is the final precision of localization
using projective invariants?

Llorens and Sanfeliu define the "sensibility” of the invariant Z relatively to the angles
between the pencil lines § € {40C, BOD, BOC, AOD} as [5, 11]:

AT/ 0 ]
T df/o  tand (5)

A global sensibility for all the four angles is then derived from the partial sensibilities 5.
Unfortunately, the invariant Z has 27 period with respect to each angle 8, but Sy has not; for
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example, Sp = 1 for § = 0, but Sy — Foo for § — 2w. More over, our input data consists
of reference and image points positions; consequently, working with angles requires inverse
trigonometric cmnputingq‘this gives poor insight to the influence of the error on each reference
point.

Morin and Mohr have used a differential method to estimate the uncertainty on the position
of a point computed by stereovision, with invariants on distances along a reference line [7].
Their differential approach will be applied to the surfacic inyariant of definition 1, in order to
estimate the uncertainty on the computed positions.

With the assumption that errors are small in comparaison to the distance.between the
points, the influence of error on each reference point can be computed as the scalar products
of the errors and the partial gradients (first order Taylor development of expression 4):

dk = S Vx (k). dX

X E{O |A131C10,a)byc|d}

where V,\'(/ci is the gradient of k(..., X,...) with respect to point X. To give an expression of
those gradients we need some preliminary results. )

Let 7 = (vg,vy)" be a vector in the reference plane in the scene, or in the image i)lane. Let
us note 7+ = (v, —v;). Let @ be another vector of the same plane. Then the gradient of the
determinant [i, 7] is:

V@, 0) = ot

We get from this:

I — EO R ——
— " —.l — 1

VA[(S_/},O_';] =0B

— 1

;. VB[0A,0B]) =A0 ; Vo|OA,0B]=BA
See figure 2 for a geometrical interpretation of those vectors.
These expressions can then be used to compute the vectors Vx(k;. For example:

L — L L

CA , DB _ CB B DA
[04,0C] [0B,0D] [0B,0C] [04,0D]

L

—s L

— 1
Valf=kl2¢ 9P
(04,0C] [0A,0D]

If we consider that uncertainty on X is the maximum error Ay that can occur, then the
maximumn error on & is:

Ay = > VX ll-Ax

X€{0,A,B,C,0,a,b,c,d}

where ||.|| stands for the vector modulus. Let’s note that Ay is the maximum error that may
occur on k, and thus is a pessimistic estimation of the precision of the result.

As an alternative, we might consider that the uncertainty on X is the standard deviation
ax of the distance between the true and estimated positions of X. As stated earlier, errors on
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Gradients of [0OA,0B]

Figure 2: Gradients of [0 A,OB] with respect to the points 0O, A and B. Each 5§ad,ient is
orthogonal to the triangle side opposed to the vertex it is relative to.

the reference points are supposed to be small. If we can assume furthermore that these errors
are independent, then the standard deviation of & is:

o = > (ax W)Z

Xe{0,A,B,Co,a,b,c,d}

Nervertheless, the hypothesis of independance of the reference points may be not valid if
some of them result from a former localization process. For this reason, in the rest of this
work, the uncertainty on k is taken as the maximum possible error Ay.

This value Ay is then classically used in conjunction with relation 3 to derive the maximum
possible error on the direction (OD).

4 Minimizing the uncertainty

To identify a polygon in a perspective image, Sanfeliu et al. used their expression of the
sensibility (5) to find out the combination of polygon vertices that produces the most precise
invariant [5, 11, 12, 3].

Given four reference points O, A, B and C' in a plane of the scene, and their respective
image positions o, ¢, b and ¢, the above process allows to backproject on that plane any point
d observed in the image. The result D is unique: it does not depend on the arbitrary order in
which the reference points are considered.

Nevertheless if ¢ happens to be aligned with two of the reference points, then one of the
determinants that appears in expressions 1 and 4 may happens to be null; thus Z and k may
have a null numerator or denominator. If d is not aligned with two reference points but is
close to one of the lines they form, then one or more determinant(s) may have a small absolute
value; thus their relative uncertainty will be large, depending on the computer precision. It
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Figure 3: Three combinations of points A, B, C' and D that produce expressions of the
invariant Z with the only three possible values of the relative uncertainties.

may be important to choose the role of the different reference points to avoid such situations,
independently of any consideration on the precision of input data.

Furthermore, the above computation of the maximum possible error Ay on k, and of the
uncertainty of the direction (O D) leads to a coarse majoration of the uncertainty that results
from the unprecision of the input data. Computing with different orders of the reference
points, thus, allows to keep only the smallest of those majorants.

Following this idea, the reference points A, B and C' (and the image points a, b and c resp.)
will be exchanged so that they give the best relative precision on the direction (OD). The
projective invariant Z is a combination of the signed areas of four triangles, all of them with the
center point O as a vertice. The two triangles at numerator (resp. denominator) have no other
vertice in common; the numerator and the denominator have no triangle in common; given
the four points a, b, ¢ and d, the choice of a triangle at numerator thus determines the other
triangle at numerator. Considering that: 1) changing the order of triangles at numerator
(resp. denominator) will not change the value of the invariant; 2) changing the order of
vertices in a triangle may only change the sign of the invariant; 3) exchanging numerator and
denominator would just give the inverse invariant; we finally obtain only three expressions of
the invariant with different relative uncertainties (see figure 3). So it is necessary to compute
the uncertainties only for those three configurations. Finally, the direction (OD) is computed
using the most precise configuration.

This process is repeated with A, B, C' considered as the center O’ of a new pencil of lines
defined by the other reference points. The direction of the line (O'D) and its uncertainty are
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Figure 4: Synthesis perspective image of the test scene. The two sets of reference points that
will be used are surrounded.

then computed.

Finally, all the pairs {(OD),(0'D)} are considered; their intersections are computed, as
well as their uncertainties. The intersection with the smallest uncertainty is retained as the
resulting position of the scene point D.

5 Experimental results

This method has been implemented and used to compute the scene positions of 30 points of a
synthetized image of a stone pavement (see figure 4). The scene is approximately 120 cm by
200 cm large, and the flagstones are 40 cm long and 25 cm wide, with an infinite precision. The
image size is 512 x 512 pixels, and the image (reference and/or unknown) points are considered
to be selected with a precision of 1 pixel.
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Figure 5: Localization of the scene points shown in figure 4; the reference points that were

used are shown in a box. The precision varies slowly between them.

Localizing the points in the scene was achieved with two sets of reference points. The
points of the first set (namely Qg, N5, @3 and Ps) are all around the scene, so that most of
the unknown points are inside their quadrilateral. The other 26 points were localized with a
computed uncertainty ranging from 1.1 to 2.8 cm. The maximum error observed is 1 cm (see

figure 5).
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Figure 6: Localization of the scene points shown in figure 4; the reference points that were
used are shown in a box. Precision decreases rapidly as the distance to the reference points
increases.

The points of the second set of reference points (namely O3, O4, P3 and Py) are all located
near the center of the scene, so that all the unknown points are out of their rectangle. The
other 26 points were localized with a computed uncertainty ranging from 1.2 to 26.9 cm. The
maximum error observed is 4.3 cm (see figure 6).

6 Conclusions

A method was proposed to compute the precision of localization using projective invariants.

In recognition applications, this technique allows to choose rapidly the configuration of
reference points that produces the smallest of the only three possible relative uncertainties.

Second, this method can be easily extended to compute the precision of volumetric inva-
riants: triangles are replaced with tetrahedrons, and gradients of determinants of two vectors
in the plans are replaced by gradients of determinants of three vectors in space, with an
interpretation similar to that on figure 2.

At last, projective invariants appear to be more precise than stereovision [10]. Morin et al.
point out that projective invariants (with infinitely precise reference points) provide the same
precision as a perfectely calibrated camera. '

This advantage on precision, plus the advantage of working with only one image, make
projective invariants a valuable tool for urban cartography when the visible part of the scene
contains enough reference points.
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