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1. INTRODUCTION

Formal methods are mathematical techniques, often supported by tools, for developing
software and hardware systems. Mathematical rigor enables users to analyze and verify
these models at any part of the program life-cycle: requirements engineering, specifi-
cation, architecture, design, implementation, testing, maintenance, and evolution.

The vital first step in a high-quality software development process is requirements
engineering. Formal methods can be useful in eliciting, articulating, and represent-
ing requirements [George and Vaughn 2003]. Their tools can provide automated sup-
port needed for checking completeness, traceability, verifiability, and reusability, and
for supporting requirements evolution, diverse viewpoints, and inconsistency manage-
ment [Ghose 2000].

Formal methods are used in specifying software: developing a precise statement of
what the software is to do, while avoiding constraints on how it is to be achieved.
Examples of these methods include ASM [Börger and Stärk 2003], B [Abrial 1996],
and VDM [Jones 1990]. A specification is a technical contract between programmer
and client to provide them both with a common understanding of the purpose of the
software. The client uses the specification to guide application of the software; the pro-
grammer uses it to guide its construction. A complex specification may be decomposed
into subspecifications, each describing a subcomponent of the system, which may then
be delegated to other programmers, so that a programmer at one level becomes a client
at another (design by contract [Meyer 1991]).

Complex software systems require careful organisation of the architectural struc-
ture of their components: a model of the system that suppresses implementation de-
tail, allowing the architect to concentrate on the analyses and decisions that are most
crucial to structuring the system to satisfy its requirements [Allen and Garlan 1992;
van Lamsweerde 2003]. WRIGHT is an example of an architectural description language
based on the formalisation of the abstract behaviour of architectural components and
connectors [Allen 1997].

Formal methods are used in software design. Data refinement involves state machine
specification, abstraction functions, and simulation proofs; see the early paper by Hoare
[1972], its central role in methods like VDM [Jones 1990], and in program refinement
calculi [Dijkstra 1975; Morris 1987; Morgan 1988; Back and von Wright 1990].

At the implementation level, formal methods are used for code verification. Every
program-specification pair implicitly asserts a correctness theorem that, if certain
conditions are satisfied, the program will achieve the effect described by its documen-
tation. Code verification is the attempt to prove this theorem, or at least to find out
why the theorem fails to hold. The inductive assertion method of program verification
was invented by Floyd and Hoare [Floyd 1967; Hoare 1969], and involves annotating
the program with mathematical assertions, which are relations that hold between the
program variables and the initial input values, each time control reaches a particular
point in the program. Code can also be generated automatically from formal models;
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examples include the B-method [Abrial 1996] and SCADE [Berry 2008], both discussed
in Sects 4.2 and 4.5.

It is natural that formal methods should underlie principled testing methods, and
Gaudel has established this as an important research topic [Gaudel 1995]. Hoare de-
scribes the use of formal assertions in Microsoft, not for program proving, but for test-
ing [Hoare 2002a]. A survey of current research in formal aspects of testing is in Hierons
et al. [2008]. Formal methods are used in software maintenance [Younger et al. 1996]
and evolution [Ward and Bennett 1995]. Perhaps the widest application of formal meth-
ods is in the maintenance of legacy code: in some of Microsoft’s most successful products,
every tenth line is an assertion [Hoare 2002b].

In this article, we assess the current state of the art in the industrial application
of formal methods, concentrating on their increasing use at the earlier stages of spec-
ification and design. We first revisit several influential surveys of the use of formal
methods and verification technology in industry (Section 2). We then present the re-
sults of a new survey of industrial practice in Section 3; this is the most comprehensive
survey ever published, and gives us a view of how industrial application has changed
over the last 20 years. In Section 4, we describe selected industrial projects from the last
20 years, representing a cross-section of applications including national infrastructure,
computer microcode, electronic finance, and security applications. Section 5 contains
our observations about the current state of the art, based on the survey findings and
highlighted projects. A weakness in the current situation is lack of a substantial body
of technical and cost-benefit evidence from applications of formal methods and ver-
ification technology; in Section 6, we describe the Verified Software Repository that
is being built in response to this challenge. Finally, in Section 7, we draw some con-
clusions about current practice and experience. A list of acronyms is provided as an
appendix.

2. SURVEYS OF FORMAL METHODS PRACTICE

The transfer of formal methods technology into industry has been an objective for
researchers and practitioners for several decades. The potential benefits for reduced
defect densities in specifications, designs, and code have to be achieved at reasonable
cost and within the constraints of real industrial settings. By the early 1990s, ques-
tions were being asked about whether formal methods could ever be viable parts of
industrial development processes. Several significant surveys from that time identified
challenges to verification practice and experience that subsequent research has sought
to address. We briefly review some of the major publications surveying the state of
industrial application.

Hall’s defense of formal methods as an engineering approach identifies seven “myths”
about formal methods [Hall 1990]. Wing explained the underlying concepts and princi-
ples for formal methods to newcomers [Wing 1990]. Thomas presented evidence for the
cost effectiveness of industrial use of formal methods from a CEO’s perspective [Thomas
1992]. Austin carried out a survey into the industrial use of formal methods, in or-
der to discover the reasons for their rather low acceptance in industry [Austin and
Parkin 1993]. Austin used a questionnaire to assess the uses made of formal meth-
ods in both research and application, and to gather opinions on the barriers to wider
industry adoption. A majority of responses analyzed (126) reported on the use of model-
oriented formalisms (such as VDM) and concentrated on specification rather than
verification.

Craigen and his colleagues surveyed the application of formal methods, aiming at
providing an authoritative record of the applications of formal methods [Craigen et al.
1993a, 1933b]. Their survey covered 12 case studies, each based on an application of
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formal techniques in an industrial setting. A combination of questionnaires, litera-
ture reviews, and interviews was used to derive information on each application. The
range of formalisms included model-oriented approaches, a process calculus (CSP), and
verification environments. None of the studies addressed systems bigger than around
300 KLOC, and the majority were much smaller (mostly high-integrity applications).
The survey came to positive conclusions about the improving maturity of formal meth-
ods and the fact that they had been applied to significant systems. Regulatory support
for enhanced software engineering practices was important in providing increased mo-
tivation for adoption. They observed that “Tool support, while necessary for the full
industrialisation process, has been found neither necessary nor sufficient for success-
ful application of formal methods to date.” Nevertheless, Bloomfield noted that the
immaturity of theories and tool bases meant that some successful applications require
a “heroic” level of effort, that tools are developed but not transferred across platforms or
research groups, and that tools are not always accompanied by advances in methodology
or theory [Bloomfield and Craigen 1999].

Rushby [1993] produced a technical report for NASA, explaining to stakeholders from
the aerospace domain what formal methods are and how they can be applied in the de-
velopment and certification of critical systems. The perception of a long-term crisis in
software development motivated a wider interest in the potential of verification [Gibbs
1994; Cuadrado 1994]. Bowen and Hinchey’s article [Bowen and Hinchey 1995] is sim-
ilar to Hall [1990], but in a humorous fashion, stating commandments that shall be
followed when applying formal methods; this was revisited in Bowen and Hinchey
[2006]. They also edited a book containing a collection of 15 different applications of
formal methods using different formalisms [Hinchey and Bowen 1995]. Hinchey and
Bowen [1996] felt that standards, tools, and education would “make or break” industrial
adoption, while Glass [1996] saw a chasm between academics who “see formal methods
as inevitable” and practitioners who “see formal methods as irrelevant”. Other articles
cite weaknesses in notations, tools and education as challenges to wider acceptance of
formal methods technology.

In spite of the optimistic conclusions of some surveys, a round-table article in
IEEE Software in 1996 [Saiedian 1996] showed the divergence of opinion on whether
formal methods were delivering hoped-for improvements in practice. Clarke and Wing’s
article was the output of a working group, and it gave a brief introduction to the notions
in formal methods, listed notable industrial applications, and recommended future di-
rections for the formal methods community [Clarke and Wing 1996]. Kelly’s technical
reports were orchestrated by NASA and formed a guidebook on the use of formal meth-
ods for specification and verification of software and computer systems [NASA 1998,
1997].

Bloomfield’s wide-ranging review [Bloomfield and Craigen 1999] includes evaluations
of research programmes, major conferences, and industrial application areas. A lead-
ing point is the suggestion that models of technology diffusion should consciously be
applied to formal methods adoption. Although they saw significant take-up in critical
application domains, the authors identified several reasons for the general failure to
adopt formal techniques.

The surveys take very different viewpoints. Some, such as Craigen’s, base conclusions
on analyses of a selected group of applications. Others, such as Austin’s, have a wider
ranging view of industry and academia. Still others, such as Bloomfield’s, use reviews
of whole research programmes. In spite of the differences in approach, there is some
agreement on significant challenges to successful industrial adoption.

In the next section, we present a new quantitative survey of industrial practice in
formal methods. In Section 5, we compare the results of the new survey with the major
finding of the previous surveys.
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Fig. 1. Application domains.

3. A SURVEY OF CURRENT USE AND TRENDS

In order to help gain further understanding of trends and advances against the chal-
lenges identified in the papers described above, we undertook a survey to gather in-
formation in a consistent format from a number of industrial projects known to have
employed formal techniques. We sent an open invitation to as many communities as we
could to participate in our survey. This may have biased it towards those with whom we
have the strongest contacts; we have, for instance, few contributions on model checking.
In spite of this, the uniform way in which the data was collected does allow comparisons
between projects, and gives some insight into current practice and long-term trends in
the use of formal methods.

Using a structured questionnaire, data was collected between November 2007 and
December 2008 on 62 industrial projects known from the published literature, mail-
ing lists, and personal experience to have employed formal techniques. The projects
surveyed came (in decreasing order) from Europe, Northern America, South America,
Australia, and Asia. If an individual had experience of more than one project, then
separate questionnaires were completed for each project. In 56 of the projects, data was
collected directly from individuals who had been involved those projects, and in the
remaining six cases we used information available in the literature.

3.1. Data Collected

Figure 1 presents the application areas to which the projects related. The largest sin-
gle application domain was transport, followed by the financial sector. Other major
sectors were defence, telecommunications, and office and administration. Other ar-
eas with only one or two responses were: nuclear, health care, consumer electronics,
space, semantic web, resource planning, automated car parking, embedded software,
engineering, and manufacturing. Some 20% of responses additionally indicated that
the projects related to software development tools themselves, such as operating sys-
tems, compilers, and CASE tools, and a further 10% related to computing applications
within the domain, such as high-performance computing, runtime code optimisation,
file system replication, access control, communications protocols, and microcomputer
design.
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Fig. 2. Application types.

0

2

4

6

8

10

12

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Number of projects by year

Fig. 3. Project start date.

The types of applications are presented in Figure 2. The largest groups were real-time
applications, distributed applications, transaction processing and high data volume.
Others included parallel programming, hardware, control engineering, HCI, service-
oriented computing, and graphics. Certification standards were indicated as apply-
ing in 30% of responses, notably the International Electrotechnical Commission’s IEC
61508, and the Common Criteria and UK Level E6 for Information Technology Security
Evaluation. Others included CENELEC EN50128 for railways, DO-178B Level A for
avionics, UK MoD software Defence Standards 00-55 and 00-56, and IEEE Standard
754 for Floating Point Numbers.

Figure 3 presents the start dates of the projects. After taking account of the fact
that ongoing projects are unlikely to be represented in the survey, it would seem that
the frequency of projects is higher in recent years, although this could simply be a
reflection of the way that the data was collected, with more recent projects being more
responsive.
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Fig. 5. Techniques used.

As shown in Figure 4, 50% of respondents gave an indication of the size of the software
in terms of lines of code. Of these, the split was roughly equal on a logarithmic scale
between 1–10 KLOC, 10–100 KLOC, and 100–1000 KLOC.

Figure 5 presents the rates of use of various techniques, such as specification and
modelling, execution (specification interpretation and testing), inspection (of specifica-
tion and model).

We looked for dependencies between application domain and type of software de-
veloped, but found only one significant correlation, which was a high representation
of transaction processing software in the financial domain (Fisher’s exact test, dou-
ble tailed, p < 0.01).1 Without comparison to general data relating software type and

1Fisher’s exact test is a statistical significance test used in the analysis of the relationship between two or
more variables, where sample sizes are small.
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Fig. 6. Did the use of formal techniques have an effect on time, cost, and quality?

application domain, this may be assumed to reflect a trend in software as a whole,
rather than being related to the application of formal techniques. Similarly, no signifi-
cant dependencies at all were found between the techniques used for different applica-
tion domains, and only a few, reasonably mild, correlations were observed between the
techniques used for different types of software. These latter correlations demonstrate
a higher than average use of model checking in consumer electronics and of inspection
in transaction processing software (Fisher’s Exact Test, double tailed, p = 0.03 for
each).

On the other hand, on correlating the techniques used against the project date, we
found that the use of model checking has increased greatly from 13% in the 1990s to
51% in this decade. This is a highly significant change (Fisher’s exact test, double tailed,
p = 0.003). In contrast, no significant change was found in this period for the use of
proof, refinement, execution or test case generation.

When asked to indicate which roles were part of the project team from a predefined
list (product management, program management, development, user experience, tester,
release management, architect, other), the largest responses were “tester” (50%) and
“architect” (46%) with all other responses being under 10%. Regarding previous ex-
pertise in the techniques used, 40% reported “considerable previous experience”, 45%
reported “some previous experience”, and 22% reported “no previous expertise”. The to-
tal adds up to more than 100% because some respondents reported mixed teams of more
than one category. Of those reporting “no previous expertise”, one half were in a mixed
team with more experienced colleagues; the others were introducing techniques to
a team not previously experienced in these techniques. Regarding training, 33% re-
ported “no training given”, 54% reported “some training given”, and 5% reported “con-
siderable training given”.

3.2. Outcomes—the Effect on Time, Cost, and Quality

Figure 6 shows the overall effect of the use of formal techniques on time, cost, and
quality. The effect on time taken to do the work was on average beneficial. Three times as
many reported a reduction in time, rather than an increase. Many responses indicated
that it was difficult to judge the effect on time taken, although several noted increased
time in the specification phase, which may or may not have been compensated for by
decreasing time later. For example:
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Fig. 7. Overall satisfaction with the used of formal techniques.

“Difficult to judge but extensive specification phase probably added elapsed time, although it may have
saved time later.”

“Long specification phase probably added to elapsed time.”

“Modest increase in time spent during early design. . . was recovered many times over during system
integration and testing.”

Of cases expressing a view, five times as many projects reported reduced costs as those
that reported increased costs. Some notable comments with respect to the effect on cost
include:

“We observed a substantial improvement in productivity once the code generation subsystem of the tool
had been bootstrapped, due to the use of code generation from specifications. . . ”

“The cost increase was largely due to the lack of precise, complete information about the required exter-
nally visible behavior of the software product. . . Once the code was implemented the required behavior
was clear, and applying formal specification and formal verification was relatively straightforward. The
one expensive part of the code verification process was the annotation of the code with pre- and post-
conditions. Once the annotated code was available, showing the correspondence between the annotated
code and the abstract specification of the required behavior was straightforward. This latter process
included adding more annotations and correcting annotations that were incorrect. During this process,
the abstract specification and the required security properties changed very little.”

In contrast, the use of formal techniques is believed by respondents to have improved
quality, with 92% of all cases reporting an increase in quality compared to other tech-
niques, and no cases reporting a decrease in quality. Most were related to the detection
of faults (36%). Other common reasons given for improvement were: improvements
in design (12%), increased confidence in correctness (10%), improved understanding
(10%), and early identification of faults or other issues (4%).

3.3. Respondents’ Conclusions

As shown in Figure 7, respondents have generally been positive about the successful
use of formal methods, although, due to the bias in selection described above, one would
expect stakeholders that did not see value in the use of formal methods to be under-
represented among the responses. Figure 8 illustrates that the respondents in general
were satisfied with the formal techniques used in their projects, whereas Figure 9
shows that in 9% of the projects, the tools applied have not fully been able to live up to
expectations. Finally, Figure 10 demonstrates that a majority of the respondents wish
to use a similar technology again on new projects.

3.4. Discussion on the Results of the Survey

Take-up by users. The survey shows that the take up of formal techniques is distributed
across a wide range of application domains, including a considerable number related
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to the production of the software development tools themselves. This reflects the fact
that many of the tools used are general-purpose, as programming languages are, so
research on generic methods (that is independent of application area) is still relevant
and should proceed alongside development of more special-purpose generators.

Tools and techniques. Some projects undertook extensive and comprehensive analysis,
significant manual intervention in the formal analysis, and therefore a major change
to existing informal techniques. On the other hand, some projects managers were more
interested in broad rather than deep analysis, hoping for some benefit from little or no
manual effort.

It is clear that Moore’s law has had a very significant impact on the availability of
computational power over the two decades spanned by the projects reported in the
survey, with typical desktop computing and storage resources increasing by perhaps
some 10,000 times in that period. Together with significant theoretical advances, this
has had a major impact on the scale of problem that can be addressed by automated
techniques, such as model checking, and would seem to indicate a continuing increase
in the level of automation and move towards formal methods disappearing “under the
hood” in due course (see Tiwari et al. [2003] for a discussion of this movement). Such
a trend is epitomised by the following quote from a project that employed significant
levels of model checking:

“To be useful during product development, formal methods needs to provide answers in seconds or min-
utes rather than days. Model-checking can do this very effectively when applied to the right kinds of
system designs. To take advantage of this, model-checking has to be tightly integrated into the commer-
cial design and verification tools that developers are already using.”

To what degree, and in what timescale, will mathematical proof succumb to Moore’s
law? One respondent reflected on the tools available as follows:

“Tools for formal methods are still very weak compared with what is theoretically possible.”
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The effect on time, cost, and quality. Of those expressing an opinion, significantly more
projects are seen to have reduced timescales and costs and improved quality by using
formal techniques. But it is perhaps surprising that in a majority of projects surveyed,
there is no data available on relative time and costs. On the other hand, the overall
satisfaction with their use among the respondents is clear (Figures 7 and 10).

“No precise measurements have been done. By rule-of-thumb it was estimated that the design effort ex-
ceeded a conventional effort by about 10%. Presumably maintenance costs were reduced drastically. But
this judgement is based only on hypothetically assumed fault rates of software developed conventionally.”

4. HIGHLIGHTED PROJECTS

We present a series of industrial formal methods projects, chosen to show a cross-section
of work over the last two decades. The emphasis is on developing verified systems cost-
effectively, and the applications include microcode and firmware, railways, national in-
frastructure, smart cards, and a biometric-based security application. From Section 4.1
onwards, each project is included in the survey described in the last section, but we start
with a review of the range of verification tools reported in the literature as having been
used in industry.

There is a trade-off between the level of automation achievable in verification and the
complexity of the analysis performed. At one end of the range there are static analysers
that identify potential program defects, such as variable use before definition, constant
conditions, and possibly out-of-range expressions. Examples include heuristic tools such
as the 30-year-old UNIX utility lint [Johnson 1978], which flags potential defects in
C programs, and more recent tools such as Splint [Evans and Larochelle 2002], which
provides annotation-assisted lightweight static checking. These kinds of program anal-
ysis tools are in use in industry; see [Hoare 2002a] for a description of the instrumen-
tation of legacy Microsoft code with assertions for use in massive regression testing,
and [Larus et al. 2004] for a short survey of the use of tools within Microsoft. Modern
analysers such as PREfix [Bush et al. 2000] and PREfast can analyse multi-million-line
C and C++ programs for potential null-pointer dereferences, improper memory alloca-
tion and deallocation, uninitialised variable use, simple resource-state errors, improper
library use, and problematic programming idioms. Such tools often use formally un-
sound analytical techniques and so may produce false positives (identifying spurious
errors), although efforts are made to minimise these. The SLAM tool on the other hand
can certify a program free from a particular kind of error [Ball and Rajamani 2002]
by checking that API usage follows certain sequencing rules given by the user. It has
been used to find many bugs in Windows device drivers, and is distributed as the Static
Driver Verifier, part of the Windows development kit. The ESP tool [Das et al. 2002]
is similar to SLAM, but trades precision against large-scale tractability for analysing

ACM Computing Surveys, Vol. 41, No. 4, Article 19, Publication date: October 2009.



19:12 J. Woodcock et al.

huge code bases; it has been used to find buffer over-runs in large-scale system code
and to validate an OS kernel’s security properties.

Further along the verification spectrum there are tools such as model checkers and
abstract interpreters. The SPIN automata-based model checker has been used to find
logical design errors in distributed systems, such as those used on the Deep Space 1,
Cassini, Mars Exploration Rovers, and Deep Impact space missions [Holzmann 2004].
SPIN checks the logical consistency of a specification, reporting on deadlocks, unspec-
ified message receptions, incompleteness, race conditions, and unwarranted assump-
tions about the relative speeds of processes. An example of an abstract interpreter is the
ASTRÉE real-time embedded-software static analyser [Blanchet et al. 2003], which tries
to prove the absence of all run-time errors in a C program. It does this completely au-
tomatically for the primary flight-control software for the Airbus A340 and the electric
flight-control codes for the A380.

At the furthest end of the verification spectrum, theorem provers can verify arbitrary
conjectures in a given logic with varying degrees of automation. For example, Vampire
is an automatic theorem prover for first-order classical logic [Riazanov and Voronkov
2002]. KIV, on the other hand, is an interactive theorem prover with a user-definable
object logic [Balser et al. 2000], and it has been used in a wide range of applications,
from verifying protocols for medical procedures [Hommersom et al. 2007] to verifying
protocols for smart cards [Haneberg et al. 2008].

4.1. The Transputer Project

The Transputer series of microprocessor chips were designed specifically for parallel
processing [Inmos Ltd 1988b]. Gibbons describes the development of one of the Trans-
puters: the T800 floating-point unit [Gibbons 1993], which combined a 32-bit reduced
instruction set CPU, some memory, four bidirectional communications links, and a
floating-point arithmetic unit on a single chip. Its successor, the T9000, was rather
more sophisticated, with richer connectivity, memory model, and pipelined processor. A
Transputer based on T9000 technology, the ST20, is still very widely used in chip-sets
for set-top box and GPS applications. The programming language for the Transputer is
Occam [Inmos Ltd 1988a; Jones and Goldsmith 1988], a simple, low-level, executable
subset of CSP [Hoare 1985].

Inmos started to develop the T800 in 1986, using a conventional approach that re-
quired months of testing, since floating-point units are notoriously complex devices and
prone to design bugs. As the extent of the required testing became clear, work started
on the formal development of a correct-by-construction floating-point unit [Shepherd
1988; Barrett 1987, 1989; Shepherd and Wilson 1989; Barrett 1990; May et al. 1992].
The natural language IEEE 754 standard for floating-point arithmetic [IEEE 1985]
was formalized in Z [Spivey 1989; Woodcock and Davies 1996]. The specification is
described in Barrett [1987, 1989], and revealed some problems in the standard. For
example, the standard requires that diagnostic information about the results of in-
valid operations (such as the square root of a negative number) be propagated through
further operations. But this is not always possible. The next task was to show that a
floating-point package written in Occam and used in previous Transputers was a cor-
rect implementation of IEEE 754. The attempted verification using Hoare logic [Hoare
1969] revealed errors in rounding and remainder operations. Barrett later remarked
to Gibbons that “it was only a very small class of test vectors that would have shown
up the errors” [Gibbons 1993]. With corrections in place, the Occam package was ver-
ified correct and used as an intermediate representation of the functionality of the
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required microcode. It was too abstract to be directly useful for hardware design, so
the Occam transformation system [Goldsmith et al. 1987] was used to apply the laws
of Occam programming [Roscoe and Hoare 1988] to produce an equivalent microcode
program.

The development of the floating-point unit, from natural language to silicon, was at
least three months faster than the alternative informal development that ran con-
currently [Barrett 1990]. Each month’s delay in production was estimated to cost
US$1M [Barrett 1990]. Gibbons [1993] reports that exactly two bugs have been found
in the floating-point microcode. The first was introduced by the translation program
that converted the micro-level Occam into assembly code for the chip; the second was
introduced by a hand optimization of this assembly code. Oxford University and Inmos
jointly received a Queen’s Award for Technological Achievement in 1990 “to recognise
and encourage outstanding achievements advancing process or product technology in
the UK”.

4.2. Railway Signalling and Train Control

In 1988, GEC Alsthom, MATRA Transport, and RATP (the Parisian public trans-
port operator) started working on a computerised signalling system for controlling
the RER regional express network commuter trains in Paris (reported in Bowen and
Stavridou [1993]). The objective of the project was to increase network traffic by 25%,
while preserving existing safety levels. The resulting SACEM system with embed-
ded hardware and software was delivered in 1989 and has controlled the speed of all
trains on RER Line A in Paris, involving seven billion passenger journeys, since its
introduction.

The SACEM software consists of 21,000 lines of Modula-2 code, of which 63% is
regarded as safety-critical and has been subjected to formal specification and verifica-
tion [Guiho and Hennebert 1990; Hennebert and Guiho 1993]. The specification was
constructed in B [Abrial 1996] and the proofs were done interactively using automati-
cally generated verification conditions for the code. The validation effort for the entire
system (including non-safety-critical procedures) was about 100 man-years. Guiho and
Hennebert [1990] claim that the system is safer as a result of the formal specifica-
tion and verification exercise. The project team reported a difficulty in communication
between the verifiers and the signalling engineers, who were not familiar with the
B-method. This was overcome by providing the engineers with a French description
derived manually from the formal specification. The SACEM system is further de-
scribed in Guiho and Hennebert [1990], which presents various dependability require-
ments and their implementation. Techniques to ensure safety include on-line error
detection, software validation, and fault tolerance of the onboard-ground compound
system.

Abrial (the creator of B) reports on two further railway projects carried out using
B [Abrial 2007]: Line 14 of the Paris Métro, a system in use since October 1998 [Behm
et al. 1999]; and the driverless Paris Roissy Airport shuttle, in use since 2007 [Badeau
and Amelot 2005]. Only the safety-critical parts were developed using B, representing
one-third of each software system. Table I (taken from Abrial [2007]) shows the main
characteristics of the two systems. Since Line 14 is completely automatic, the safety-
critical part concerns the running and stopping of trains and the opening and closing
of train and platform doors. No unit tests were performed for the Line 14 or Roissy
Shuttle projects; they were replaced by some global tests that were all successful. This
reduced the overall costs significantly.
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Table I. Statistics for the Paris Métro Line 14 and Roissy Shuttle Projects
Paris Métro Line 14 Roissy Shuttle

Line length (km) 8.5 3.3
Number of stops 8 5
Inter-train time (s) 115 105
Speed (km/hr) 40 26
Number of trains 17 14
Passengers/day 350,000 40,000
Number of lines of Ada 86,000 158,000
Number of lines of B 115,000 183,000
Number of proofs 27,800 43,610
Interactive proof percentage 8.1 3.3
Interactive proof effort (person-months) 7.1 4.6

4.3. Mondex Smart Card

In the early 1990s, the National Westminster Bank and Platform Seven developed
a smartcard-based electronic cash system, Mondex, suitable for low-value cash-like
transactions, with no third-party involvement, and no cost per transaction. A discus-
sion of the security requirements can be found in Stepney et al. [2000] and Woodcock
et al. [2008]; a description of some wider requirements can be found in Aydal et al.
[2007]. It was crucial that the card was secure, otherwise money could be electronically
counterfeited, so Platform Seven decided to certify Mondex to one of the very highest
standards available at the time: ITSEC Level E6 [ITSEC 1991], which approximates to
Common Criteria Level 7 [CCRA 2006]. This mandates stringent requirements on soft-
ware design, development, testing, and documentation procedures. It also mandates
the use of formal methods to specify the high-level abstract security policy model and
the lower-level concrete architectural design. It requires a formal proof of correspon-
dence between the two, in order to show that the concrete design obeys the abstract
security properties. The evaluation was carried out by the Logica Commercial Licenced
Evaluation Facility, with key parts of the work subcontracted to the University of York
to ensure independence.

The target platform smartcard had an 8-bit microprocessor, a low clock speed, lim-
ited memory (256 bytes of dynamic RAM, and a few kilobytes of slower EEPROM), and
no built-in operating system support for tasks such as memory management. Power
could be withdrawn at any point during the processing of a transaction. Logica was
contracted to deliver the specification and proof using Z [Spivey 1989; Woodcock and
Davies 1996]. They had little difficulty in formalizing the concrete architectural design
from the existing semi-formal design documents, but the task of producing an abstract
security policy model that both captured the desired security properties (in particular,
that “no value is created” and that “all value is accounted for”) and provably corre-
sponded to the lower-level specification, was much harder. A very small change in the
design would have made the abstraction much easier, but was thought to be too expen-
sive to implement, as the parallel implementation work was already well beyond that
point. The 200-page proof was carried out by hand, and revealed a small flaw in one
of the minor protocols; this was presented to Platform Seven in the form of a security-
compromising scenario. Since this constituted a real security problem, the design was
changed to rectify it. The extensive proofs that were carried out were done manually,
a decision taken at the time to keep costs under control. Recent work (reported below)
has shown that this was overly cautious, and that Moore’s Law has swung the balance
further in favour of cost-effective mechanical verification.

Platform Seven is a software house spun out from NatWest; it is now owned by DataCard, a major shareholder
in Gemplus, another smart-card company.
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In 1999, Mondex achieved its ITSEC Level E6 certificate: the very first product ever
to do so. As a part of the ITSEC E6 process, the entire Mondex development was ad-
ditionally subject to rigorous testing, which was itself evaluated. No errors were found
in any part of the system subjected to the use of formal methods.

Mondex was revived in 2006 as a pilot project for the Grand Challenge in Verified Soft-
ware (see Section 6). The main objective was to test how the state of the art in mechani-
cal verification had moved on in ten years. Eight groups took up the challenge using the
following formal methods (with references to a full discussion of the kinds of analysis
that were performed in each case): Alloy [Ramananandro 2008], ASM [Haneberg et al.
2008], Event-B [Butler and Yadav 2008], OCL [Kuhlmann and Gogolla 2008], Perfect-
Developer, π -calculus [Jones and Pierce 2007], Raise [George and Haxthausen 2008],
and Z [Freitas and Woodcock 2008]. The cost of mechanizing the Z proofs of the original
project was 10% of the original development cost, and so did not dominate costs as ini-
tially believed. Interestingly, almost all techniques used in the Mondex pilot achieved
the same level of automation, producing similar numbers of verification conditions and
requiring similar effort.

4.4. AAMP Microprocessors

Miller reports experiences from several projects at Rockwell Collins [Miller 1998]. One
of their earliest experiments was to specify and refine a micro Real Time Executive
μRTE in the RAISE notation, RSL [RAISE Language Group 1992; RAISE Method
Group 1995]. This was not a successful project: the language was thought to be too
complex and required substantial training, and the only tools available were syntax
and type checkers, with no support for developing and managing proofs.

A subsequent experiment with SRI International, sponsored by NASA [Miller and
Srivas 1995; Srivas and Miller 1995], formally verified the microcode for the AAMP5
microprocessor using PVS [Owre et al. 1992]. The AAMP5 is a proprietary micropro-
cessor widely used in Rockwell Collins products. It has a stack-based architecture, a
large instruction set, makes extensive use of microcode, has a pipelined architecture,
and complex processing units. It contains approximately 500,000 transistors with per-
formance between an Intel 386 and 486. Rockwell Collins specified the AAMP5 at both
the register transfer and instruction set level, with a retrieve relation between the
two to prove the correctness of microcode instructions. The main lesson learned from
the AAMP5 project was that it was technically possible to prove the correctness of
microcode, and that their engineers could read and write formal specifications.

Two errors were found in the AAMP5 microcode while creating the specification, and
this convinced them that there is value in just writing a formal specification. But they
also convinced themselves that mechanical proofs of correctness provide a very high
level of assurance. They did this by seeding two very subtle errors in the microcode
that they delivered to SRI, and then waiting to see if they would find them. SRI did
indeed discover the errors using a systematic process: the only way not to have found
the errors would have been to fail to carry out the proofs.

The biggest problem for the AAMP5 project was that the cost was too high: more
than 300 hours per instruction. This figure appears to have been inflated for a va-
riety of reasons, including the steep learning curve using PVS for the first time and
the need to develop many supporting application-oriented theories. They knew their
costs would drop dramatically the next time around, but they could not predict by how
much, so they undertook a second experiment [Miller et al. 1996], the verification of the
microcode in the AAMP-FV, again sponsored by NASA and with SRI. The goal was to
demonstrate dramatic reduction in cost through reuse of the AAMP5 infrastructure and
expertise.
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Significantly, the AAMP-FV project confirmed that the expertise gained on the
AAMP5 project could be exploited to dramatically reduce the cost of formal verifica-
tion. Of the 80 AAMP-FV instructions, 54 were proven correct, and the cost of their
verification dropped by almost an order of magnitude from that of the AAMP5 project.
But as more complex instructions were attempted, proof techniques first developed on
the AAMP5 project broke down and new approaches had to be devised. This phase
progressed more as an exploratory project, with a steep learning curve and unexpected
delays. One of the main contributions of the AAMP-FV project was the development of
methods to handle complex microcode.

The latest project involves the AAMP7 processor, which has a separation kernel built
into the micro-architecture. Rockwell carried out a proof in ACL2 that a line-by-line
model of the microcode adheres to a security policy about how partitions are allowed
to communicate [Wilding et al. 2001; Greve and Wilding 2002]. What is hard about
proofs of this kind is the complexity of dealing with pointer-laden data structures.
The work received National Security Agency certification as a Multiple Independent
Levels of Security device for use in cryptographic applications, at EAL-7 of the Common
Criteria.

4.5. Airbus

Airbus have used SCADE for the last ten years for the development of DO-178B Level A
controllers for the A340-500/600 series, including the Flight Control Secondary Com-
puter and the Electric Load Management Unit. A summary of these and other industrial
applications is described in Berry [2008]. Esterel Technologies reports the following
benefits: (i) A significant decrease in coding errors: for the Airbus A340 project, 70% of
the code was generated automatically. (ii) Shorter requirements changes: the SCADE
tool suite manages the evolution of a system model as requirements change, and in
the Airbus A340 project, requirements changes were managed more quickly than be-
fore, with improved traceability. (iii) Major productivity improvement: Airbus reported
major gains, in spite of the fact that each new Airbus project requires twice as much
software as its predecessor.

Having achieved significant savings on the overall design cycle, Airbus adopted
SCADE for A380 projects, where most on-board computers developed by Airbus and
its suppliers benefit from SCADE technology. The SCADE Suite is used for the devel-
opment of most of the A380 and A400M critical on-board software, and for the secondary
flying command system of the A340-500/600 aircraft, in operational use since August
2002. The A380 and A400M Cockpit Control and Display System and the On-board Air-
port Navigation System Display have been developed using SCADE Display, oriented
towards the specification of graphical interfaces.

4.6. The Maeslant Kering Storm Surge Barrier

The Maeslant Kering is a movable barrier protecting the port of Rotterdam from flood-
ing as a result of adverse weather and sea conditions. The decision to deploy and to
reopen the barrier is made on the basis of meteorological data by a computer system.
In terms of the international standard IEC 61508 [IEC 1997], the application was
placed at Safety Integrity Level 4, for which the use of formal methods is “highly rec-
ommended”. The developers (CMG) were deliberately cautious in defining goals for a
formal methods deployment [Kars 1997; Tretmans et al. 2001; Wijbrans et al. 2008].
Refinement technology was not felt to be feasible for a system of this scale. It was also
felt to be too high-risk an option to introduce several new techniques in one project. The
approach was therefore to integrate modelling and verification technology within the
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normal design trajectory. The approach used formal modelling and verification in the
analysis, design and realisation phases of system development. The focus of the formal
work was the decision-making subsystem and its interfaces to the environment.

Data and operations were modelled in Z [Spivey 1989; Woodcock and Davies 1996],
and this was embedded into a Promela model describing control, and designs were
validated using the SPIN model checker [Holzmann 2004]. Promela and SPIN were
selected because of the developers’ prior experience with the tool and a perceived ease
of use, meaning that the CMG engineers could perform most of the modelling and
analysis work without having to bring in outside assistance. The Promela/Z linkage
was ad hoc and did not itself have a formal semantics.

The final detailed design specified 29 programs with 20,000 lines of Z. Implementa-
tion was done via systematic coding in a safe subset of C++. There was no formal code
verification. The final implementation was 200 KLOC for the operational system and
250 KLOC of supporting code (simulators, test systems, etc.). Informal but systematic
test derivation from the Z model resulted in 80–90% code coverage for black box testing,
with the remainder covered by white box tests. The problems raised during the process
were logged; about 85% of them arose during development phases and around 15%
during reliability and acceptance test. The residual faults have been minor. About half
the faults detected during development were in code or design, the remainder being
weaknesses in test specifications, configuration parameters or documentation.

The experience was largely positive, its report [Tretmans et al. 2001] deliberately
echoing Hall’s Seven Myths [Hall 1990]. The software was believed by the developers
to be of significantly better quality than would otherwise have been achieved, and that
this quality benefit would hold for noncritical systems also. A significant shift was
noted in effort and cost towards specification and design phases. The authors noted
that abstraction skills were an essential part of the modeling process and that the ease
of constructing formal models should not seduce engineers away from devoting effort
to selecting appropriate abstractions.

No major defects have been reported in the system developed using formal techniques.
A mid-life upgrade was reported in 2008 [Wijbrans et al. 2008] and the development of
the successor application will continue to use formal techniques.

4.7. The Tokeneer Secure Entry System

The Tokeneer ID Station (TIS) project [Barnes et al. 2006], carried out by Praxis High
Integrity Systems in conjunction with SPRE Inc., under the direction of NSA (National
Security Agency), has shown that it is possible to produce high-quality, low-defect sys-
tems conforming to the Common Criteria requirements of Evaluation Assurance Level 5
(EAL5) [CCRA 2006]. The Tokeneer system was originally developed by the NSA to in-
vestigate various aspects of biometrics in access control, and consists of a secure enclave
with controlled physical entry. Within the secure enclave are a number of workstations
whose users have security tokens (e.g., smartcards) in order to gain access to the work-
stations. Users present their security tokens to a reader outside the enclave, which
uses information on the token to carry out biometric tests (e.g., fingerprint reading) of
the user. If the user passes these tests, then the door to the enclave is opened and the
user is allowed entry. At entry time, the system adds authorisation information to the
security token describing exactly the sort of access allowed for this visit to the enclave,
such as times of working, security clearance, and roles that can be taken on.

Praxis completed MULTOS, an important project using formal methods, in 2002
([Hall and Chapman 2002]. MULTOS is a Multi-Application Operating System that
allows several applications to reside on a single smart card. The success of this project
led to a proposal by the NSA for a demonstrator project in secure software engineering.
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Table II. Tokeneer: Size and Productivity

Size/source Lines Productivity
(LOC/day)

Ada
SPARK

annotations and
comments

During
coding overall

TIS core 9,939 16,564 203 38
Support software 3,697 2,240 182 88

Table III. Tokeneer: Breakdown by Project Phase

Project Phase Effort
%

Effort
Person-days

Project management 11 28.6
Requirements 10 26.0
System specification 12 31.2
Design Core functions 15 39.0
TIS Core code and proof 29 75.4
System test 4 10.4
Support software and integration 16 41.6
Acceptance 3 7.8
Total 100 260.0

Praxis undertook this development over nine months in 2003, and a conference paper
was eventually cleared for publication [Barnes et al. 2006]. The Tokeneer project ma-
terial [Tokeneer 2009] was released under an NSA Technology Transfer Agreement in
July 2008 as a contribution to the Verified Software Grand Challenge (see Section 6).

The TIS project re-developed one component of the Tokeneer system. To facilitate the
development, TIS device simulators implemented by the independent reliability consul-
tants (SPRE Inc.) were used in place of actual TIS devices. The core functionality of the
system was written in SPARK, a subset of Ada with an accompanying tool-set, which
was specifically designed for writing software for high-integrity applications [Barnes
2003]. The support software to interface it to simulated peripherals was written in full
Ada. Tables II and III, taken from Barnes et al. [2006], record the project’s size, pro-
ductivity, and effort. The project required 260 person-days of effort, comprising three
part-time staff working over nine months. The number of defects found in the system
during independent system reliability testing and since delivery in 2003 is two. One
was discovered by code inspection after the completion of the project (see Spinellis’s
blog for an account of finding this bug [Spinellis 2008]).

A second bug was found by Praxis when they examined an undischarged proof obli-
gation. It relates to code that validates integer values read from a file. These inte-
gers represent seconds, and are converted into tenths-of-seconds, which can cause an
overflow error. The SPARK tools were used to generate verification conditions for par-
tial correctness and run-time errors, but without side-conditions relating to Ada, Aos
Overflow Check because of limited capability to discharge such VCs. Following improve-
ments to the tools, the VCs were re-generated and checked, discovering the bug. The
developers note [Chapman 2008] that the defect was not discovered by any testing dur-
ing the original project, or any use or attempt to analyse the system since the initial
delivery.

Barnes et al. [2006] report that the testing team from SPRE Inc. actually discovered
two in-scope failures as part of their testing regime: both concerned missing items from
the user manual, rather than errors in the TIS Core. The entry in Table III for system
test does not include the testing contribution from SPRE Inc. Barnes et al. [2006]
estimate that a more representative figure might be 25%. The functional specification,
written in Z and explanatory English, consists of about 100 pages.
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The task set by NSA was to develop a system in conformance with the requirements
in the Common Criteria for EAL5. In fact, Praxis exceeded the EAL5 requirements
in a number of areas, because they found that it was actually cost-effective to use
some of the more rigorous techniques. Praxis met the EAL5 criteria in the main body
of the core development work, covering configuration control, fault management, and
testing. They exceeded EAL5, coming up to EAL6 or EAL7 levels, in the development
areas covering the specification, design, implementation, and correspondence between
representations. Other aspects were out of scope, such as delivery and operational
support.

4.8. The “Mobile FeliCa” IC Chip Firmware

“FeliCa” is a contactless IC card technology widely used in Japan, developed and pro-
moted by Sony Corporation. Mobile telephones with FeliCa chips can serve as electronic
purses, travel tickets, door keys, etc. FeliCa Networks Inc. decided to use VDM++ and
VDMTools [Fitzgerald et al. 2008] for the development of the firmware for a new gen-
eration IC chip containing new features but nevertheless operating to the strict timing
requirements provided by earlier generations.

The project lasted three years and three months, and involved 50 to 60 people with
an average age of a little over 30 years. No members had knowledge of or experience
with the formal method at the time of project launch. VDM++ training (in Japanese)
was provided for the development team by CSK. In addition an external VDM con-
sultant from CSK Systems was used throughout the project. The new version of the
firmware was subsequently released in millions of IC chips [Kurita et al. 2008; Larsen
and Fitzgerald 2007].

A large number of VDM++ test cases were developed and then executed using the
VDMTools interpreter. Using the VDMTools test coverage analysis facility, it was possi-
ble to display test coverage information on the VDM++ model after executing the entire
test suite. Here, 82% of the VDM++ model was covered, and the remaining parts of the
model were manually inspected. The main outputs included a 383-page protocol manual
written in Japanese, a 677-page external specification document written in VDM++
(approximately 100 KLOC including comments, of which approximately 60 KLOC are
test cases formulated in VDM++). The implementation was approximately 110 KLOC
of C/C++, including comments.

FeliCa Networks took the view that the application had been highly effective [Kurita
et al. 2008]. From a quality perspective, more errors were found in the early phases of
the development than in other similar projects at FeliCa Networks. In total 440 defects
were detected in the requirements and the specifications. Of these, 278 were found
directly a result of the use of VDM++. Of these, 162 were found by review of the model,
whereas 116 were discovered using the VDMTools interpreter with test cases against
the executable VDM++ model.

5. OBSERVATIONS

In spite of their successes, verification technology and formal methods have not seen
widespread adoption as a routine part of systems development practice, except, ar-
guably, in the development of critical systems in certain domains. Indeed, we expect
diffusion of rigorous verification and design technology to take place gradually, and not
result in their explicit adoption as a distinct technology [Butterfield 1997].

Previous surveys and our recent review indicate that there have been successes in the
application of verification and formal methods to problems of industrial scale and signif-
icance, and within industrial settings. Leading hardware developers continue to apply
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model checking and proof technology. In software, the exploitation of formal techniques
has provided some evidence of the potential for applications focused on particular do-
mains, including code verification. Application in the more traditional high-integrity
critical applications remains strong, and is largely performed by technical specialists.

In this section, we revisit concerns raised in previous surveys and identify progress,
trends, and remaining challenges in the light of more recent projects. We hope that
these challenges will be taken up by researchers willing to advance the current state
of the art in formal methods.

5.1. Lightweight and Heavyweight Formal Methods

The entry cost for formal methods must seem rather high to the hard-pressed software
project manager [Snook and Harrison 2001], although, as noted in Section 4.4, the cost
of repeated use can decrease dramatically. One of the main difficulties in engineering is
the cost-effective choice of what to do and where. No engineer gives the same attention
to all the rivets: those below the waterline are singled out; similarly, a formalism need
not be applied in full depth to all components of an entire product and through all
stages of their development, and that is what we see in practice. The various levels of
rigor include the following:

—Best efforts to point out likely generic errors. Examples range from lint [Johnson
1978] to Coverity Prevent (a commercial tool developed from the Stanford Checker).
The latter performs two sorts of analysis: inter-procedural data-flow analysis, which
describes function characteristics with implications for externally observable behav-
ior; and statistical analysis to detect important trends in the code suggesting anoma-
lies.

—Near-guarantee that all potential errors of a certain class have been flagged. A major
exemplar here is the extended static checking of ESC/Java2 [Chalin et al. 2006],
a system for automatically detecting at compile-time errors that are normally not
detected until run-time, such as: array-bound errors, null dereferences, and race
conditions and deadlocks in multi-threaded programs.

—Run-time checking of assertions and other redundant information supplied by the
programmer. See Clarke and Rosenblum [2006] for a historical perspective. Major
tools are based on JML [Burdy et al. 2005] and Spec# [Leino 2007].

—Contractual programming, with assertions at major interfaces. Examples include
Eiffel [Meyer 1991] and SPARK [Barnes 2003].

—Lightweight formal methods. This term has been applied to various forms of appli-
cation that do not entail such a deep application of the technology. For example,
Jones’s approach [Jones 1996] favors rigor over full formality, and the production
of human-readable proofs that could be formalized if the need arises. Jackson and
Wing [1996] suggest a focused application of nonetheless fully formal techniques to
partial problems.

All of these deserve targeted research, and the science behind all of them has much
in common. It is the duty of the engineer to determine at what places and how far
to exploit the science. Our review does not suggest that there is a single strategy for
the successful application of verification and formal methods technology. However, a
lightweight approach appears to underpin many recent industry applications. Fully
formal techniques are used, but are typically focused on specific subsystems and on the
verification of particular properties. The success of this approach depends on, and is
limited by, the quality of tool support.
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The significant developments in tools and tool chains might be expected to affect
the forms of deployment of formal techniques in future. Where the achievement of
certification is a significant driver, specialist practitioners may be used to construct for-
mal models, formulate conjectures for verification, and guide and interpret the results
of semi-automated formal analyses. However, the increasing capability of automated
formal analysis makes it possible to have an impact on larger-scale developments,
not necessarily critical, that are driven by the need to reduce time to market, defect
rates or costs of testing and maintenance. In such projects, we might expect to see
widespread use of enhanced static analysis tools incorporating model checking or proof
capabilities.

5.2. Tool Support

The case studies reported in Section 4 were predominantly applications of formal meth-
ods performed by technical specialists using tools that, with few exceptions, were not
felt to be rugged enough for wide-scale application. Almost all surveys in the area point
to the importance of producing tools that are well-enough supported to merit com-
mercial application. Particular challenges identified include: support for automated
deduction, especially where human interaction with a proof tool is required; common
formats for the interchange of models and analyses; and the lack of responsive support
for tools users in the case of the many tools offered on a “best efforts” basis. The devel-
opment of such robust tooling involves addressing practical issues such as providing
multi-language support, porting to a variety of platforms, version control, and assis-
tance for co-operative working by multiple engineers on single developments. Several
studies listed in Section 2 and around a quarter of the projects surveyed in Section 3
identify the lack of commercially supported or “ruggedised” tools as an impediment to
take-up of formal methods. In spite of the observation that tools are neither necessary
nor sufficient for an effective formal methods application [Craigen et al. 1993a], it ap-
pears almost inconceivable that an industrial application would now proceed without
tools.

The research community has focused considerable effort on the development of new
theories to underpin verification, the improvement of tools and, to a limited but in-
creasing extent, tools integration. The work on Mondex originally involved the manual
construction of proofs; its more recent revival gives an indication of the improvements
in the level of tool support in recent years, whether as a result of improved capability or
the underlying Moore’s Law increase in processing power. In more recent highlighted
projects, and in the new survey, there are examples of robust tools at industrial strength.
However, these have still had only limited take-up and there remain many interesting
challenges in the underpinning theories of verification as well as in user interaction
with verification tools. We must remark that some of the free comments received in the
new survey indicate that tools are still not usable, in the words of one respondent, “by
mere mortals”.

5.3. Increasing Automation

Rushby [2000], quoting Norman [1999], compares verification tools to early radio sets,
with “dozens of controls to adjust such arcane features as regeneration and filter band-
width, and operators were expected to understand the fundamentals of radio reception”.
A modern radio, on the other hand, is trivial to operate. Model checkers are following
this trend, where the goal is to finally become a push-button technology for certain
classes of software, such that the trade-off between precision and computational cost of
correctness analysis can be controlled by a few simple parameters [Clarke et al. 2008].
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Wherever possible, proof tools need to disappear, so that they are fully hidden behind
the other tools for analysis, testing, and design automation. Clarke and Wing [1996] an-
ticipate formal verification technology being applied by developers “with as much ease
as compilers”. Craigen et al. [1993a, 1993b] suggest that tools need to be integral parts
of development environments, that the gap between the tools and the standard pro-
duction process needs to disappear, and that certain analyses could be invoked within
existing development environments. There are strong arguments in favour of this ap-
proach as a means of moving formal verification technology from innovators to first
adopters [Bloomfield and Craigen 1999].

Research is moving towards tools that may be used to provide value-added analyses
“under the hood” of existing development environments. The SLAM and SDV experi-
ence (Section 4), for example, suggests that a targeted approach can yield significant
benefits on an existing code base, when the tools are carefully integrated with existing
development environments.

Successful take-up of formal verification technology involves “packing specific anal-
yses into easier to use but more restricted components” [Bloomfield and Craigen
1999]. Such automatic analyses must return results that are comprehensible to the
user [Arvind et al. 2008]. However, interactions with formal analysis engines must be
done at the level of the design language, not the formalism.

Successful integration requires that tools become decoupled components that can
be integrated into existing tools for design, programming or static analysis. The inte-
gration of multiple verification approaches has been pioneered in development envi-
ronments such as PROSPER [Dennis et al. 2003] and “plug-in” architectures such as
Eclipse have been successfully applied for tools supporting Event-B [RODIN-Project-
Members 2007] and VDM [Overture-Core-Team 2007]. Integrations between graphical
design notations and the mathematical representations required for formal analysis
are increasingly common. For example, the UML to B link [Snook and Butler 2006] al-
lows use of a familiar modelling notation to be coupled to a formal analytic framework,
and support for the verification of implementations of systems specified using control
law diagrams has been addressed using Z, CSP, and Circus [Cavalcanti et al. 2005].

Integration with existing development processes is also significant. The recent sur-
vey suggests that model checkers and test generators have significant application in
industry. We could speculate that this is because they can be integrated into existing
development processes with less upheaval than the adoption of a complete new design
or programming framework.

5.4. Cost Effectiveness

Austin and Parkin [1993] note the absence of a convincing body of evidence for the
cost-effective use of formal methods in industry as a major barrier to industrial adop-
tion, although they also suggest that it is a problem naturally associated with process
change. Craigen et al. [1993a] point to the lack of a generally accepted cost model as
the reason for this lack of evidence, although past surveys and highlighted projects
provide many anecdotes supporting the claim that formal techniques can be used to
derive low-defect systems cost effectively. In our survey, only half of the contributions
reported the cost consequences, either way, of using formal techniques. The picture is
complicated, even where costs are carefully monitored in trial applications of formal
methods. The Rockwell Collins work (Section 4.4) makes the point that the cost of a
one-off formal methods project is significantly greater than the cost of repeated projects
within a domain.

There have been some studies comparing developments with and without the use
of formal techniques, such as in the defence sector [Larsen et al. 1996]. Weaknesses
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were identified in the quantitative claims made for earlier projects [Finney and Fenton
1996], suggesting that strong empirical evidence is needed to encourage adoption.
Bloomfield and Craigen [1999] comment that the results of some scientific studies do
not scale to engineering problems, and that there has been over-selling and excessive
expectation.

Evidence on the technical and cost profiles of commercial applications may not be pub-
licly accessible, but nonetheless, it suggests that pilot studies in verification technology
are not always being conducted with a view to gathering information on subsequent
stages in technology adoption. Pilot applications of verification technology should be
observable and the observations made should be relevant to the needs of those making
critical design decisions. For example, the FeliCa networks study (Section 4.8) focused
on measuring queries against informal requirements documents that were attributable
to formal modelling and analysis, because this was seen as a significant feature in
a development process where the object was to improve specifications. The Deploy
project [Romanovsky 2008; Deploy 2009] explicitly addresses the movement from inno-
vators to early adopters by means of studies measuring the effects of verification tools
integrated into existing development processes.

The decision to adopt development technology is risk-based and convincing evidence
of the value of formal techniques in identifying defects (with as few false positives as
possible) can be at least as powerful as a quantitative cost argument. We would argue
for the construction of a strong body of evidence showing the utility of formal techniques
and ease of use at least as strongly as we would call for the gathering of more evidence
regarding development costs.

6. THE VERIFIED SOFTWARE REPOSITORY

In 2003, Tony Hoare proposed the Verifying Compiler as a Grand Challenge for Com-
puter Science [Hoare 2003]. As the proposal started to gain the support of the com-
munity, it became the Grand Challenge in Verified Software [Hoare and Misra 2008]
and then the Verified Software Initiative, which was officially launched at the 2008
Conference on Verified Software: Theories, Tools, and Experiments [Shankar and Wood-
cock 2008]. The UK effort is in the Grand Challenge in Dependable Systems Evolution
(GC6), and current work includes building a Verified Software Repository [Bicarregui
et al. 2006].

The Repository will eventually contain hundreds of programs and program modules,
amounting to several million lines of code. The code will be accompanied by full or par-
tial specifications, designs, test cases, assertions, evolution histories, and other formal
and informal documentation. Each program will have been mechanically checked by
one or more tools, and this is expected to be the major activity in the VSI. The eventual
suite of verified programs will be selected by the research community as a realistic
representative of the wide range of computer applications, including smart cards, em-
bedded software, device routines, modules from a standard class library, an embedded
operating system, a compiler for a useful language (possibly Java Card), parts of the
verifier itself, a program generator, a communications protocol (possibly TCP/IP), a
desk-top application, parts of a web service (perhaps Apache). We emphasise the aca-
demic role of the repository in advancing science, but this does not preclude parts of
the repository containing reusable verified components directed towards real-life ap-
plication domains.

The notion of verification will include the entire spectrum, from avoidance of specific
exceptions like buffer overflow, general structural integrity (or crash-proofing), conti-
nuity of service, security against intrusion, safety, partial functional correctness, and
(at the highest level) total functional correctness [Hoare and Misra 2008]. Similarly, the
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notion of verification will include the entire spectrum, from unit testing to partial ver-
ification through bounded model checking to fully formal proof. To understand exactly
what has been achieved, each claim for a specific level of correctness will be accompa-
nied by a clear informal statement of the assumptions and limitations of the proof, and
the contribution that it makes to system dependability. The progress of the project will
be marked by raising the level of verification for each module in the repository. Since
the ultimate goal of the project is scientific, the ultimate level achieved will always be
higher than what the normal engineer and customer would accept.

In the following sections, we describe five early pilot projects that will be used ini-
tially to populate the repository. The verified file-store in Section 6.1 is inspired by a
space-flight application. FreeRTOS in Section 6.2 is a real-time scheduler that is very
widely used in embedded systems. The bidding process for the Radio Spectrum Auc-
tions described in Section 6.3 has been used with bids ranging from several thousands
of dollars to several billions. The cardiac pacemaker in Section 6.4 is a real system,
and is representative of an important class of medical devices. Finally, Microsoft’s hy-
pervisor in Section 6.5 is based on one of their future products. The topics of two other
pilot projects have been described above: Mondex, in Section 4.3, is a smart card for
electronic finance; and Tokeneer, in Section 4.7, is a security application involving bio-
metrics. These seven pilot projects encompass a wide variety of application areas and
each poses some important challenges for verification.

6.1. Verified File Store

Pnueli first suggested the verification of the Linux kernel as a pilot project. Joshi and
Holzmann suggested a more modest aim: the verification of the implementation of a sub-
set of the POSIX file store interface suitable for flash-memory hardware with strict fault-
tolerant requirements to be used by forthcoming NASA missions [Joshi and Holzmann
2007]. The space-flight application requires two important robustness requirements for
fault-tolerance: (i) no corruption in the presence of unexpected power-loss; and (ii) re-
covery from faults specific to flash hardware (e.g., bad blocks, read errors, bit corruption,
wear-leveling, etc.). In recovery from power loss in particular, the file system is required
to be reset-reliable: if an operation is in progress when power is lost, then on reboot,
the file system state will be as if the operation either has successfully completed or has
never started.

The POSIX file-system interface [Josey 2004] was chosen for four reasons: (i) it is a
clean, well-defined, and standard interface that has been stable for many years; (ii) the
data structures and algorithms required are well understood; (iii) although a small
part of an operating system, it is complex enough in terms of reliability guarantees,
such as unexpected power-loss, concurrent access, or data corruption; and (iv) mod-
ern information technology is massively dependent on reliable and secure information
availability.

An initial subset of the POSIX standard has been chosen for the pilot project. There is
no support for: (i) file permissions; (ii) hard or symbolic-links; or (iii) entities other than
files and directories (e.g., pipes and sockets). Adding support for (i) is not difficult and
may be done later, whereas support for (ii) and (iii) is more difficult and might be beyond
the scope of the challenge. Existing flash-memory file-systems, such as YAFFS2, do not
support these features, since they are not usually needed for embedded systems.

6.2. FreeRTOS

Richard Barry (Wittenstein High Integrity Systems) has proposed the correctness of
their open source real-time mini-kernel as a pilot project. FreeRTOS is designed for
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real-time performance with limited resources, and is accessible, efficient, and popular.
It runs on 17 different architectures and is very widely used in many applications. There
are over 5,000 downloads per month from SourceForge, making it the repository’s 250th
most downloaded code (out of 170,000 codes). It is less than 2,500 lines of pointer-rich
code. This makes it small, but very interesting.

There are really two challenges here. The first is to analyse the program for structural
integrity properties. The second is to make a rational reconstruction of FreeRTOS,
starting from an abstract specification, and refining down to working code, with all
verification conditions discharged with a high level of automation. These challenges
push the current state of the art in both program analysis and refinement of pointer
programs.

6.3. Radio Spectrum Auctions

Robert Leese (Smith Institute) has proposed the management of Radio Spectrum Auc-
tions as a pilot project. The radio spectrum is an economically valuable resource, and
OfCom, the independent regulator and competition authority for the UK communi-
cations industries, holds auctions to sell the rights to transmit over particular wave-
lengths. The auction is conducted in two phases: the primary stage is a clock auction
for price discovery; the supplementary stage is a sealed-bid auction. Both are imple-
mented through a web interface. These auctions are often combinatorial, offering bun-
dles of different wavelengths, which may then also be traded in secondary markets. The
underlying auction theory is still being developed, but there are interesting computa-
tional problems and challenges to be overcome in getting a trustworthy infrastructure,
besides the economic ones.

6.4. Cardiac Pacemaker

Boston Scientific has released into the public domain the system specification for a
previous generation pacemaker, and are offering it as a challenge problem. They have
released a specification that defines functions and operating characteristics, identifies
system environmental performance parameters, and characterises anticipated uses.
This challenge has multiple dimensions and levels. Participants may choose to sub-
mit a complete version of the pacemaker software, designed to run on specified hard-
ware, they may choose to submit just a formal requirements documents, or anything in
between.

McMaster University’s Software Quality Research Laboratory is putting in place a
certification framework to simulate the concept of licensing. This will enable the Chal-
lenge community to explore the concept of licensing evidence and the role of standards
in the production of such software. Furthermore, it will provide a more objective basis
for comparison between putative solutions to the Challenge.

6.5. Hypervisor

Schulte and Paul initiated work within Microsoft on a hypervisor (a kind of separation
kernel), and it has been proposed by Thomas Santen as a challenge project. The Euro-
pean Microsoft Innovation Center is collaborating with German academic partners and
the Microsoft Research group for Programming Languages and Methods on the formal
verification of the new Microsoft Hypervisor to be released as part of Windows Server
2008. The Hypervisor will allow multiple guest operating systems concurrently on a
single hardware platform. By proving the mathematical correctness of the Hypervisor,
they will control the risks of malicious attack.
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7. CONCLUSIONS

In this article we have presented what is perhaps the most comprehensive review ever
made of formal methods application in industry. We see a resurgence of interest in
the industrial applications, as shown by the recent emergence of the Verified Software
Initiative. In most current applications of formal methods, tools and techniques are
being used that have been around for some time, although significant advances in
verification technology have yet to filter through to more widespread use. We conclude
our paper with some observations on the vitality of formal methods and the maturity of
its underlying theory and supporting tools. We discuss how to conduct experiments in
this area. Finally, we describe future studies in formal methods, practice and experience.

7.1. Vitality of Formal Methods

Formal methods continue to be a very active research area. There are several special-
ist journals, including Formal Aspects of Computing and Formal Methods in System
Design, both of which emphasise practical applications as well as theory. The major
conferences include the Formal Methods Symposium and Computer-Aided Verification,
both of which have very competitive submissions processes. There was a World Congress
in 1999, which will be repeated in 2009. Other important conferences include Princi-
ples of Programming Languages (POPL), Logic in Computer Science (LICS), and the
Conference on Automated Deduction (CADE). There are very many smaller, specialised
conferences and workshops. Some of these are focused on tools and techniques, such as
ABZ, which covers the Alloy, ASM, B, and Z notations, and the Refinement Workshop.
Others tackle specific theoretical issues, such as Integrated Formal Methods, whilst
others cover specific application areas, such as Formal Methods for Open Object-based
Distributed Systems and Formal Methods for Human-Computer Interaction.

The DBLP Computer Science Bibliography [DBLP 2009] contains references to over
one million papers, indexed by metadata that is searchable by keywords, and Table IV
presents the results of a few searches (dated 9 March 2009). It is interesting to see that
there appear to be as many papers published in the general area of verification (23,877
papers, 2,038/year) as there are in testing and validation (24,323 papers, 2,096/year).
Verification represents 2% of all papers recorded in DBLP, and verification and vali-
dation together account for 4%. At the bottom of the table, we include some keywords
from other areas of computer science as a contrast. For example, there are as many
papers published in the tools and techniques we have listed as there are in UML; there
is twice as much academic interest in JML as in eXtreme Programming; verification
and validation each have as many papers as databases, although the latter is a de-
clining area, judging by the rate of publication. Of course, all these figures are rather
imprecise, relying on unvalidated metadata.

It is difficult to say precisely how many researchers there are in verification and
formal methods, perhaps because these areas have reached a level of maturity that
they underpin other areas, with verification being an enabling activity in, say, knowl-
edge acquisition or adaptive systems. It has been estimated that there are 1,000 re-
searchers in verification in the USA (N. Shankar 2009, personal communication) with
perhaps 300 professors, 200 graduate students, about 250 industrial researchers at
places like Microsoft, Intel, Cisco, IBM, Cadence, Synopsys, and Mentor Graphics, and
50 government researchers in NASA, NSA, NRL, and another 200 or so people doing
verification-related work in industry. The UK Engineering and Physical Science Re-
search Council [EPSRC 2009] currently funds about 400 research projects in Software
Engineering and the Fundamentals of Computing, with a combined value of £144 mil-
lion (US$200 million) (it also funds many other topics in computer science, many of
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Table IV. DBLP Computer Science Bibliography
Keyword Number of Papers Papers/Year (2007)
Tools & techniques

“ACL2” 65 5
“ASM” 364 51
“Alloy” 322 38
“Isabelle” 967 91
“JML” 561 20
“PVS” 109 5
“SPIN model checker” 110 7
“VDM” 303 29
Verification-related keywords

“Correct” 4,610 387
“Formal methods” 1,473 94
“Model checking” 2,547 288
“Proof” 4,531 313
“Theorem proving” 709 19
“Verification” 10,007 937
Testing and validation

“Testing” 21,421 1,810
“Validation” 2,902 286
Other areas

“Compiler” 2,698 128
“Database” 23,333 1,236
“eXtreme programming” 192 5
“Java” 5,217 427
“Object orientation” 7,841 265
“Quantum computation” 2,799 367
“Requirements” 5,275 475
“UML” 2,819 271
“Vision” 8,969 790
Total number of papers in DBLP 1,177,462 118,566

which also rely on verification). Of the 144 projects, about 95 mention one of the verifi-
cation keywords in Table IV, with a combined value of £30 million ($40 million). These
projects have 75 different principal investigators with 300 research assistants, making
a total with accompanying graduate students of about 500 researchers. Similar rough
estimates have been offered for continental Europe (1,000), China (250), the Nordic
countries (500), Japan (250), and Australia, Brazil, Canada, New Zealand, Singapore,
and South Africa (1,000, collectively). This makes about 4,000 researchers. Of course
these figures are very rough, and a more rigorous analysis is needed.

7.2. Maturity of Tools and Advances in Theory

There were “heroic” efforts to use formal methods 20 years ago when few tools were
available (to use Bloomfield’s phrase [Bloomfield and Craigen 1999]). For example, in
the 1980s the application of the Z notation to the IBM CICS transaction processing
system was recognised as a major (award-winning) technical achievement [Houston
and King 1991], but it is significant that it used only very simple tools: syntax and type-
checkers. In the 1990s, the Mondex project (Section 4.3) was largely a paper-and-pencil
exercise, but it still achieved the highest level of certification. Our evidence is that times
have changed: today many people feel that it would be inconceivable not to use some
kind of verification tool. Whether they are right or not, there has been a sea-change
among verification practitioners about what can be achieved: people seem much more
determined to verify industrial problems. This change in attitude, combined with the
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increase in computing capacity predicted by Moore’s Law, and the dramatic advances
in research in verification technology (described elsewhere in this issue of Computing
Surveys) means that the time is right to attempt to make significant advances in the
practical application of formal methods and verification in industry. In certain areas,
there are collections of mature tools with broadly similar capabilities. For example,
the Mondex experiment also shows very similar results from the application of state-
based, refinement-oriented techniques and their tools. This suggests that there is scope
for convergence and inter-operation between tools.

There has been a move beyond the theory for verification of well-structured sub-
sets of a programming language, to deal with the more potentially undisciplined as-
pects of programming; for example, pointer swinging [O’Hearn et al. 2001] and con-
currency [Vafeiadis and Parkinson 2007]. The increasing popularity of design patterns
for disciplined use of these features [Krishnaswami et al. 2009] could support, and be
supported by, verification technology.

Satisfiability Modulo Theories (SMT) is a decision problem for logical formulas with
respect to combinations of background theories expressed in classical first-order logic
with equality [Barrett et al. 2008]. The range of theories include integers, real numbers,
lists, arrays, and bit vectors. The solvers can handle formulas in conjunctive normal
forms with hundreds of thousands of variables and millions of clauses. They make it
possible to apply classical decision procedures to domains where they were previously
applicable only in theory [Avigad 2007].

Research in automated theorem proving has made major advances over recent years,
particularly in first-order logic, which is expressive enough to specify many problems
conveniently. A number of sound and complete calculi have been developed, enabling
fully automated systems [TPTP 2009a]. More expressive logics, such as higher-order
and modal logics, allow the convenient expression of a wider range of problems than
first-order logic, but theorem proving for these logics is less developed. The advance-
ment of these systems has been driven by a large library of standard benchmarks, the
Thousands of Problems for Theorem Provers (TPTP) Problem Library [TPTP 2009b],
and the CADE ATP System Competition (CASC), a yearly competition of first-order
systems for many important classes of first-order problems [CADE 2009]. A major op-
portunity is to turn competition successes into practical application.

7.3. Experimentation

Many projects using formal methods demonstrate early phase benefits, but we were
surprised that many respondents to our questionnaire did not know the cost implica-
tions of their use of formal methods and verification. Formal methods champions need
to be aware of the need to measure costs. Through the Verified Software Initiative,
there are many experiments that use material that is realistic to industrial use, and
which promises to scale. The experience gained in these experiments contributes to the
development of theory, tools, and practice, and it is the tools that will be commercialised
to transfer the science and technology to industrial use.

The work reported at Rockwell Collins in Section 4.4 is that second and third use of a
formal technology and tool chain can lead to order-of-magnitude cost reductions. That
is why the first use should always be by scientists, and may be horrifically expensive
(we are pushing the boundaries); but even so, the experiment must record costs. This
is the experience of the human genome project. The first (composite) human genome
cost US$4 billion to sequence. It can now be done for an individual for $4,000. When it
gets to $400, the technique will be routinely applied in healthcare.

One of the goals of the VSR should be to set the standard for the well-designed exper-
iment. It should state clearly the hypothesis being tested and address the validity of the
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experiment as a means of testing the hypothesis. It should try to measure every aspect
of the work undertaken, and understand the validity of the measurements being made.
But not all experiments in software engineering are set up this way, and we believe
that for the Verified Software Repository there should be better appreciation of ex-
perimental method. Each experiment must be designed to make the next experiment
easier, by leaving a re-usable trail of theory and theorems, by abstracting specifica-
tions from a domain of related problems, and by suggesting improvements in the tools
used.

7.4. The Future

More details about our survey and its data can be found at VSR [2009]. We are con-
tinuing to collect further data on industrial formal methods projects. Anyone wishing
to contribute should contact any of the authors for further details. We are planning to
review the state of practice and experience in formal methods in five, 10, and 15 years’
time, as one way of assessing the industrial uptake of formal methods. Perhaps at the
end of this we will have hard evidence to support Hoare’s vision of a future world in
which computer software is always the most reliable component in any system which
it controls, and no one can blame the software any more [Hoare 2007].

ACRONYM LIST

ASM Abstract State Machine
CA Certification Authority
CADE Conference on Automated Deduction
CASE Computer Aided Software Engineering
CENELEC The European Committee for Electrotechnical Standardization
CICS Customer Information Control System
CSP Communicating Sequential Processes
EAL Evaluation Assurance Level
EMIC European Microsoft Innovation Center
FDR Failure Divergence Refinement
HCI Human Computer Interface
IEC International Electrotechnical Commission
ITSEC Information Technology Security Evaluation Criteria
KIV Karlsruhe Interactive Verifier
KLOC Kilo-Lines of Code
MBD Model Based Development
NSA National Security Agency
OCL Object Constraint Language
PROSPER Proof and Specification Assisted Design Environments
RODIN Rigorous Open Development Environment for Complex Systems
PVS Prototype Verification System
RTE Real Time Executive
RTOS Real Time Operating System
SCADE Safety Critical Application Development Environment
SDV Static Driver Verifier
SIL Safety Integrity Level
UML Unified Modelling Language
VDM Vienna Development Method
VSI Verified Software Initiative
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