
1282 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 11, No

An Ontological Model of an Information System
Yair Wand and Ron Weber -”

Abstracf-Theoretical developments in the CS and IS disciplines have
been inhibited by inadequate formalization of basic constructs. IO this
paper we propose an ontological model of aa information system that
provides precise definitions of fundamental concepts like system, subsys-
tem, and coupling. We use this model to analyze some static and dynamic
properties of an information system and to examine the question of what
constitutes a “good” decomposition of an information system.

Index Terms-Cohesion, coupling, decomposition, hierarchy, level
structure, subsystem, system.

I . I N TRODUCTION

THE computer science (CS) and information systems (IS)
fields are replete with fundamental concepts that are poorly

defined. For example, concepts l ike system, subsystem, module,
object, interface, coupling, cohesion, hierarchy, input, output,
environment, and decomposition are central to many theories
in both fields, but inevitably they have not been articulated
rigorously. In the absence of carefully formulated foundations,
fields are unlikely to progress quickly. We concur with Pamas
[30, p. 191 who observes: “The use of . . . fuzzy terms (in
computer science) is not merely s loppy wording; i t prevents . . .
the systematic analyses made possible by precise definitions.”
Moreover, we believe the current debate on the status of both
the CS and IS f ields reflects that progress has been undermined
substantial ly by inadequate formalizat ion of basic constructs [9],
1251, 1431.

In this paper we propose a formal model of an information
system. We have three primary objectives. First, we seek to
define a set of core concepts that can be used to describe the
structure and behavior of an information system. Ultimately, we
hope these concepts will allow the similarities and differences
between many constructs used in the CS and IS fields to be
elucidated. Second, we seek to better understand the static and
dynamic properties of information systems. In this respect we are
viewing information systems as objects (ar t i facts) to be studied
in their own right, independently of the characteristics of their
users, the organizations in which they are employed, or the
technologies used to implement them [38], [43]. Third, we seek
to make predict ions about information systems based upon their
static and dynamic properties. For example, we have sought to
use our model to predict the behavior of information systems
based upon the characterist ics of al ternative decomposit ions of
the system [41] and to predict the consequences of changes to the
information system for the rel iabi l i ty of controls that have been
implemented in the information system [40]. In short, we have
the usual goals for any model: understanding and predict ion.

‘\
Manuscr ip t rece ived June 1 , 1989 ; rev ised June 6 , 1990 . Recommended by

hi. Deutsch. T h i s w o r k w a s s u p p o r t e d i n p a r t b y a n N S E R C o p e r a t i n g g r a n t
and by a grant from GWA Ltd.

Y. Wand is with the Faculty of Commerce and Business Administration,
U n i v e r s i t y o f B r i t i s h C o l u m b i a , V a n c o u v e r , B . C . V6T lY8, Canada .

R . W e b e r i s w i t h t h e D e p a r t m e n t o f C o m m e r c e , U n i v e r s i t y o f Q u e e n s l a n d ,
S t . L u c i a , Q u e e n s l a n d 4 0 6 7 , A u s t r a l i a .

IEEE Log Number 9038333.

Our approach is to model information systems within the
context of a theory of ontology that is a modification ar,d
extension of one developed by Bunge [5], [6]. Because ontology
is concerned with the structure of the real world, i ts relevance to
the CS and IS fields is twofold. First, since information systems
themselves are models of the real world, ontology identif ies the
basic things in the real world that information systems ought tr,
be able to model. Second, since information systems are ~
things in the real world, ontology provides a basis for modeling
information systems themselves [3], [4]. Elsewhere we have used
ontology in the former way [42]. In this paper, we use ontology
in the latter way.

Our approach differs from a number of other attempts to
provide formal bases for modeling CS and IS constructs. For
example, specification languages such as Z and VDM seek tp pro.
vide a formal notation that describes the propert ies an informatiorr
system must have without being constrained by implementatio,,
considerations [15], [181, [34]. Unlike our approach, however,
they do not seek to define a set of core constructs that underlie
the CS and IS fields. Users of formal specification languages
are assumed (implicitly) to know these constructs at the outset.
The languages can then be employed to express these constructs
precisely. While r igorous specif icat ion of information systems is
clearly an important goal, we see our objectives in modeling core
constructs as being more fundamental .

The remainder of the paper proceeds as follows. Section II
provides a brief review of some major types of information
systems formalisms that bear on our goals and their respective
strengths and weaknesses relative to our model. Section 111
articulates some of the fundamental notions that underlie our
model. Section IV uses these basic notions to examine the nature
of and some dynamics of system decompositions. Section V
provides several insights into the model’s predict ive power via
an analysis of some properties of good decompositions. In
particular, we show how our model formalizes the intuitive
notion that good decomposi t ions have subsystems that behave
relatively independently of one another. Finally, Section VI
presents s u g g e s t i o n s for further research and our conclusions.

II. PRIOR R E S E A R C H

The motivation to formalize system concepts is not just
confined to the CS and IS domains. It is common to fields
like engineering [ll], cybernetics [44], b io logy [23], physio logy
[36], architecture [l], and general systems theory (211. Bun@
[6] provides a brief review of the major types of system models
that have been proposed.

In the CS and IS fields, however, there now seems to be
widespread acceptance of formal models that view sy~km

(programs) in terms of their specifications: specifically, as a pair
of input and output assertions; or as a function mapping in@
states to output s tates; or as a relat ion between input and output
states [12], [20], [22], [24], [35]. In turn, stufees are conceived as
mappings between system (program) identif iers and values [131.

0098-5589/90/1100-1282$01.00 0 1990 IEEE G.:

AND WEBER: ONTOLOGICAL MODEL OF AN INFORMATION SYSTEM

$ While these types of models have provided valuable insights
‘into such problems as design decomposition and proofs of
$rogram correctness, they are essentially black-box models.
IAccordingly, they suffer the limitations of all black-box models
@ terms of our goals of understanding and predicting system
:&havior [6]. For example, since they do not model the internal

structure of a system, the relationship between the overall behav-
ior of the system and the behavior of i ts internal components is
diff icult , i f not impossible, to analyze.

To illustrate the problems of using these black-box models,
consider the object ive of at taining a good design decomposi t ion
during system implementat ion. If , say, the system to be designed
is conceived as a mapping between input and output states,
various design decomposit ion rules can be derived based upon
well-known mathematical resul ts for decomposit ion of functions
(141, [22]. The subfunctions that arise from the decomposition
can be conceived as subsystems of the system. A control hi-
erarchy can then be defined among the function (system) and

subfunct ions (subsystems) [141. Under this conceptualization, the
focus is on what the system is supposed to achieve rather than
bow i t achieves i t .

On the other hand, if the system is conceived as a hierarchy
;-of modules, our focus shifts to internal structural matters. A
bprogrammer, for example, spatially arranges the various compo-
-iaents of the system (e.g. , program instructions and variables) and
i~~nnects them via a control structure so they execute in part icular
:‘f@quences. Programmers are admonished to achieve objectives

like loose coupling between modules and t ight internal cohesion
_ Within a module [26], [46].

With current systems formalisms that we have available,
however, the mapping between the external view (what is to

.be accomplished) and the internal view (how it is to be accom-
“@shed) is not clear-cut. How do we know, for example, that
‘we have chosen and implemented subfunctions in such a way
that the resulting modules are internally cohesive and loosely

coupled? Indeed, as Bergland [2, p. 351 points out in his review
of decomposi t ion methodologies , “al l of the methodologies rely

v on some magic.”
We propose that the quali ty of the mapping between external

ad internal views of the system can only be examined and
evaluated when we have an integrated formalism for both views.

,.$urrently, we have well-developed formalisms for only the
-external view. However, formalisms that address the internal

view (e.g. , concepts l ike coupling) are poorly developed [2].
In summary, we argue that current CS/IS systems formal isms

for viewing systems are deficient in that they primarily use
black-box rather than white-box models. Unti l r igorous white-box
models of information systems have been developed, progress in

c %veloping mappings between requirements specifications and
mplementation structures will be impeded. In the model we
develOp below, we seek to provide the rudiments of a white-
box model that can a) accommodate current formalisms which
View systems as mappings between inputs and outputs, and

, b, r igorously describe the internal s tructure of systems.

i
i III. B A S I C N OTIONS

i h~ this section we develop some basic ontological notions
to analyze certain static and dynamic properties of

ion systems. To achieve generality, we formalize the
using standard mathematical notation. Our experience
e concepts, once understood, can easily be translated

e syntax of a formal specification language like Z.

1283

T A B L E I
STATE DESCIWTION OF FIVE THINGS

Thing Property State Variable

Inven tory I t em Item N u m b e r
Q u a n t i t y - o n - H a n d
U n i t P r i c e
I t e m D i s c o u n t (%)

Item-No

QOH
Unit-Price
Discount

C u s t o m e r O r d e r O r d e r N u m b e r
C u s t o m e r N u m b e r
Item Number
Quant i ty Ordered
Q u a n t i t y S u p p l i e d
Sales Pr ice
S a l e s A m o u n t
Date
Processed Flag

Order-No
Cut-No
Item-No
QtyOrd

QWUP’
Sole-Pr
Sale-Amt
Date
Proc

C u s t o m e r A c c o u n t C u s t o m e r N u m b e r
C u s t o m e r A d d r e s s
B a l a n c e D u e
C r e d i t L i m i t

Cust-No
Cut-Add
B&-Due
Cr-Limit

C u s t o m e r R e p a y m e n t C u s t o m e r N u m b e r Cust-No
R e p a y m e n t A m o u n t Amount

Date Date

Processed Flag Proc

I nven tory
R e p l e n i s h m e n t

S h i p m e n t N u m b e r
I t e m N u m b e r
Date
R e p l e n i s h m e n t A m o u n t
Processed Flag

Ship-No
Item-No
Date
Replen
Proc

A. Things, Properties of Things, and States of Things

The elementary notion in our formalism is a thing.’ We define
first the state space of a thing (definit ions taken from or adapted
from Bunge [5], [6] are starred “*“).

Definition I *: Let X be a thing modeled by a functional schema
X, = (M, p), and let each component of the function

represent a property of X. Then F,, 1 5 i < n, is called the ith
s ta te funct ion (variable) of X, E is cal led the to ta l s ta te funct ion
ofX, and S(X) = {(z,,.‘.,~,) E V, c~...c~V,,[LZ, = F,(M)}
is called the possible state space of X.’

To illustrate our formalism, Table I shows a state description
for five things: an inventory item, a customer order, a customer
account, a customer repayment, and an inventory replenishment.
Note that Table I shows only one possible state description of
the things. For example, we have not used state variables to
describe the physical dimensions of the inventory item thing.
In this respect, we have chosen a specific funct ional schema to
reflect our part icular purposes (simplici ty) in modeling a subset
of the real world. In short , our formalism recognizes that absolute
state variables do not exist . Instead, state variables are chosen to
reflect our knowledge, goals, views, etc. , at some time. Moreover,
different observers of the same thing may choose to model it
differently.

‘ N o t e , w e d o n o t e q u a t e t h i n g s w i t h o b j e c t s . E l s e w h e r e w e h a v e a r g u e d
tha t ob jec ts a re spec ia l t ypes o f th ings [37]. A l l o b j e c t s a r e t h i n g s , b u t o n l y
some types o f th ings a re ob jec ts .

‘The n a t u r e o f t h e d o m a i n M i s s o m e t i m e s c o m p l e x . I n systems t h e o r y i t
i s o f t e n c o n s i d e r e d 10 b e a s e t o f t i m e i n s t a n t s , o r t h e C a r t e s i a n p r o d u c t o f a
set o f re ference f rames and the rea l l ine 15. p . 1?0].

1284 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING. VOL. 16. NO. 11, NOa

The possible state space of the inventory item thing would
be represented by the set of al l combinations of values that the
state variables might assume-the Cartesian product (represented
by 8) of the ranges of the state variables. Furthermore, the state
space of a thing must be modeled so it includes all possible states
that the thing might assume from the beginning to the end of i ts
life. For the inventory item thing, for example, we must choose
a total s tate funct ion F so that some subsets of the state space
reflect that the values of state variables describing the inventory
item have been updated and others reflect new state variables
have been chosen to describe the inventory item. This view of
the state space of a thing reflects what Bunge (5, p. 221) calls the
principle of nominal invariance: “a thing, if named, shall keep
its name throughout its history as long as the latter does not
include changes in natural kind--changes which call for changes
of name.”

B. Laws and Lawful States

We proceed, now, to recognize that not all states of a thing are
lawful. The values of the attributes of a thing may be restricted
by various rules, and these rules define the lawful state space of
a thing. We begin with the notion of a law s ta tement .

Definition 2*: Let X, = (M,F) be a functional schema
for a thing X. Any restrictions on the possible values of the
components of E and any relation among two or more such
components is called a law statement, I(X) E L(X). Thus,
l(X) : v, c%3 * .f @ v, --t {unlawful, lawful}.

Laws reflect either natural or artificial constraints imposed
upon things.3 For example: 1) the QOH state variable of the
inventory item thing might be restricted to values that are zero
or posit ive (a natural law); 2) the Discount state variable may be
related to the Unit-Price state variable (an artificial law). Thus,
laws provide information about things. As such, they are also
properties of things. Accordingly, if we choose, laws can be
modeled via the total s tate funct ion used to describe a thing.

Since we postulate the existence of laws, we recognize that
only a subset of the possible state space of a thing may be
deemed lawful.

Definition 3*: Let X, = (M, F) be a functional schema for
a thingX, where p = (F],..-,F,) : M + V, @...@JV, is the
total s tate function, and let L(X) be the set of al l law statements
on X. Then the subset of the codomain V restricted under L(X) i s
called the l awfu l state space of X in the representation X,. That
is, SL(X) = {(z,,...,z,,) E V, @...@V, 1 F satisfies every
l(X) E L(X)l.

Thus, the lawful s tate space of the inventory i tem thing would
include all combinations of state variable values that we deem
allowed.

C. Events , History, and Coupling

When a thing undergoes change, the value of at least one of
i ts propert ies must al ter . A change of state consti tutes an event.

Definition 4*: An ordered pair (s, s’), where s, s’ E S(X),
will be called an event.

However, not all changes of state are lawful, and so not
all events are lawful. We define, first, the notion of a lawful
transformation.

Definition 5*: Let SL (X) be the lawful state space of a thing X.
We denote by GL(X) the set of t rans format ions from the lawful

3Laws c o r r e s p o n d t o t h e n o t i o n o f i n v a r i a n t s i n Z .

state space into i tself that are given as luwfil in the system. -fhat
is, GL(X) C_ S,(X) @ S,.(X).

Hence we have the following.
Definition 6*: Let S,(X) be the lawful state space of a

thing X, and let GL(X) be the set of lawful transformations
on the state space into itself. Then a lawful event b x k
represented by the ordered pair (3, s’), where s,s’ E s,(x)
and s’ = g(s),g E GL(X)-

Corol lary 6*: The lawful event space of a thing X is the set of
ordered pairs: El, = GL(X) f~ [S,,(X)]‘.

To il lustrate these concepts, consider again our inventory item
thing. Assume at some t ime the s tate funct ions for the inventory
item thing map it into the following values: Item-No = pl.
QOH = 10; Unit-Price = 15.00; Discount = 5. Thus, s = (PI:
10, 15.00, 5).

Assume, also, that one lawful transformation on this
state updates the value of QOH in light of an inventory
replenishment. For example, if 5 more units of inventory
are received, the following lawful event occurs: (s,~‘) =
((P1,10,15.00,5),(Pl, 15,15.00,5)). Thus, a subset of the
lawful event space for the inventory item thing includes all
events that arise as a result of an inventory replenishment and the
“fir ing” of the lawful inventory replenishment transformation.

Changes of state manifest a his tory of a thing. Thus we have
the following.

Definition 7*: Let X be a thing modeled by a functional schema
X, = (M, P), let t E M, t > 0 be a time instam. Then a h&dry
of X is the set of ordered pairs, h(X) = {(t,F(t))}.

In turn, the notion of a history allows US to determine when
two things are bonded or coupled to each other. Intuitively, if two
things are independent of each other, they will have independent
histories. If they are coupled in some way, however, at least one
of the things’ his tory wil l depend upon the other thing’s his tory.
Thus we have Definitions 8 and 9.

Dejinition 8*: A thing X acts on a thing Y, denoted X D Y
if h(Y / X) # h(Y).

Definition 9*: Two things X and Y are couple4 denoted
B(X,Y), iff (X D Y) V (Y D X).

To i l lustrate these notions, consider the inventory i tem and the
customer order shown in Table I . If the customer order represents
a sale of inventory to a customer, the states of the inventory item
will depend upon the states of the customer order. Thus, the two

things are coupled.

D. Systems and Subsystems

The notions of things and couplings enable us to define
precisely the concept of a system. Intuit ively, a system comprises
a set of things where each thing in the set is coupled to at least one
other thing in the set and where, in addi t ion, i t i s impossible to
partition the set of things such that the histories of the two parti-
t ions are independent of each other. Thus we have the following.

Definition 10: Let C be a set of things, and let Bc =
{(X,Y)JX,Y E CA B(X,Y)}.L.et ~(C,B~)beagraph,where
C is the set of vertices (things) and Bc is the set of edges
(couplings). Then cr(C, &) is a system iff it is a connects
graph. Henceforth, u(C, B,) will be denoted by 6.

Fig. 1 is a graph of a system. Consider the various couplings
that exist . Firs t , the order thing is coupled to the inventory item
thing and the customer account thing. When the order occur% the
value of Qty-Sup1 depends upon the value of QOH. The quantity
ordered can only be supplied if there is sufficient inventory On
hand. Furthermore, the maximum discount that the salesperson

AND WEBER: ONTOLQGlCAL MODEL OF AN INWKMAIKJN SXSLCM

Fig. 1. Graph of a system.

Fig. 2. Graph of an aggregate.

can give to a customer is given by Discount . Thus, Sale-Pr i s a
function of Unit-Pr and Discount. The order will be filled only
if the sales amount is less than or equal to the customer’s credit
limit less their balance due. Thus, Qfy-Sup1 is also a function
of G-Limit and Bal-Due. Second, the inventory item thing is
coupled to the inventory replenishment thing. When inventory
replenishment occurs, the quanti ty-on-hand is updated with the
value of the replenishment amount. Thus, QOH is a function
of Repfen. Third, the customer account thing is coupled to the
customer repayment thing. When a repayment occurs, the value
of balance due is decreased. Thus, Bal-Due is a function of
A m o u n t .

Thus, all things in Fig. 1 are coupled to at least one other thing.
Moreover, it is possible to “walk” from one thing to another thing
via the arcs. In Fig. 2, however, each thing is coupled to at least
one other thing, but the set of things can be partitioned SO the
histor ies of A and B are independent of the histories of C, D, and
f% Thus, Fig. 2 shows two disjoint systems. It is an aggregate
but not a system.

Unfortunately, the transition to defining the concept of a
subsystem is not straightforward. We must begin by defining
the not ions of the composit ion, environment, and s tructure o f a

system.
i.. Definition II*: Let u be a system. Then:
I a) the composition of o at time t is the set of things in u at t:

.L
C(u,t)={x~xEu}

b) the environment of B at time t is the set of things that are
not components of u but which act on or are acted upon by
Components of d at t:

16 = { 2 I x # &, t) A W(Y E @, t) A B(x, Y)) }

c) the structure of u at time t is the set of couplings among
the components of u and among them and the set of components
in the environment of o at t:

$7, t) = {R, E &, t) u &u, f)}

where

B(u, t) = { B(z, y)i’x, y E c(a. t)}

&G> = (B(w) I 5 E qu. t) A y E E(n. I,}

To illustrate these notions, consider the Fig. 1 system. Its
composition comprises five things: inventory item, customer
order, customer account, customer repayment, and inventory
replenishment. The environment of the system comprises two
things: customer and supplier. Customer is coupled to order,
customer account, and customer repayment because customers
place orders, change addresses, and make repayments. Supplier
is coupled to inventory replenishment because suppliers supply
inventory. Finally, the structure of the system comprises a) the
internal bondings 8, between order and inventory item, order
and customer account, inventory item and replenishment, and
customer account and repayment, and b) the external bondings
& between supplier and replenishment, customer and order,
customer and customer account, and customer and repayment.

Given the concepts of composit ion, environment, and structure,
we now define a subsystem as a system whose composi t ion and
structure are subsets of another system and whose environment is
a subset of those things that are in the environment of the system
plus those things that are in the composition of the system but
not in the composi t ion of the subsystem.

Definition 12*: Let u be a systeq with composition (?(a, t),
environment ,??(a, t), and structure S(u, t) at time t. Then x is a
subsystem of u, denoted x 4 O, iffz

a) x is a system at time t, and
9

[cc,, t) c qu. t)]
A [E(x, t) c {l&J, t) u { qu, t) - 6(x, t,} }]

A [S(x, t) c S(d)].
Notation 12: If x is a subsystem of u, then u is a supersystem

of x.
To i l lustrate these notions, consider a system that comprises

inventory item, replenishment, and their bonding. This sys-
tem, which we might call the inventory management s_ubsys-
tern, is a subsystem of the Fig. 1 system. I ts composi t ion C(z) =
{inventory i tem, replenishment}, is a subset of the composi t ion
of the Fig. 1 system. Its environment, J??(X) = {supplier, order},
is a subset of the things that are in the environment of the Fig. 1
system plus those things that are in the composi t ion of the Fig. 1
system but not in the composi t ion of the inventory management
subsystem. Its structure, s(s) = {(inventory item, replenish-
ment), (replenishment, supplier), (inventory item, order)}, is a
subset of the s tructure of the Fig. 1 system.

E. Equi l ibr ium 4

Systems can be in stable or unstable states. Since both types
of state are important from the viewpoint of examining system

4This sec t ion may be sk ipped by those readers who are pr imar i ly in te res ted
i n o u r d e c o m p o s i t i o n r e s u l t s i n S e c t i o n V .

1286 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 11,

dynamics, we develop the notion of a system equilibrium. We
propose two types of equilibrium: a static equilibrium and a
dynamic equilibrium. Each is simply a specific instance of a
more general concept.

Definition 13: Let u be a system, and let G’ c G(o) be a
subset of the set of t ransformations on the possible state space
S(a). Furthermore, let S’(n) s S(a) be a subset of the possible
state space of the system. Then u is in equilibrium in the
region S’(a) with respect to the set of transformations G’(a)
iff (Vs E S’(a)), (Vg E G’(C)), s’ = g(s) and s’ E S’(o). Note,
for some transformations, s’ may equal s.

Corollary 13~: A state s E S(a) is stub@ with respect to the
set of transformations G’(cr) iff (Vg E G’(o)), g(s) = s.

Corollary 13b: A state s E S(a) is unstable with respect to
the set of transformations G’(u) iff (39 E G’(u)), g(s) # s.

Corollary 13~: A system (T is in a static equilibrium in the
region S’(a) with respect to the set of transformations G’(a) iff
(Vs E S’(a)), (Vg E G’(a)), g(s) = s.

Corol lary 13d: A system (T i s in a dynamic equi l ibrium in the
region S’(a) with respect to the set of transformations G’(a) iff
it is in equilibrium and (3s E S’(a)), (39 E G’(a)), such that
g(s) z s.

To i l lustrate the not ion of a s tat ic equi l ibr ium, consider again
the Fig. 1 system. Assume we focus on the transformation
that updates QOH for the inventory item in light of a new
replenishment from a supplier. (Below we call this “the replen-
ishment transformation.“) When a new inventory replenishment
is received, the state of inventory replenishment will change.
In particular, the value of Proc (Processed Flag) will indicate
the replenishment has not been processed. This new state is
unstable because a transformation exists that wil l change i t . The
transformation wil l update the value of QOH and set the value of
Proc to indicate the replenishment has been processed. Once the
replenishment has been processed, the system will once again be
in a stat ic equil ibrium. Indeed, with respect to the replenishment
transformation, the system is in a stable s tate .

To i l lustrate the not ion of a dynamic equil ibrium, cons ide r a
situation where several orders are received from customers for
the inventory i tem. As the orders deplete the quanti ty-on-hand,
the inventory i tem moves through a set of s tates . Providing the
set of states are included within some u priori defined set of
states that for some reason are of interest, the system is in
a dynamic equilibrium. However, once a state arises that is
not within the a priori defined set, the system is no longer in
equilibrium. For example, an order may deplete the quantity-on-
hand to zero so that customer orders can no longer be filled. If
the inventory item state where the quantity-on-hand is zero is
not a member of the o pr ior i defined set of s tates, the system is
in disequilibrium.

There are two reasons why a system may move from either
a static equilibrium or a dynamic equilibrium. First, an environ-
mental component may act upon a system component to change
its state. Second, a transformation exists that is not within the
subset of t ransformations being considered.

Historical ly, the tendency of systems to move toward a s tat ic
equil ibrium because of the act ion of t ransformations on unstable
states has been called homeostasis 1231. In this light, note
that unstable states are not necessarily unlawful. Lawfulness
and stability are two different properties of a system state
(Fig. 3).

5Stable states correspond IO the notion of fixed pints described in [7,
p. lo].

Fig. 3. Lawfulness and stability as disjoint properties of states.

F. Inputs, External Events, and Internal Events

Systems are usually of interest because they accept inputs and
transform them into outputs. To formalize these notions, we begin
with the not ion of an input component .

Def in i t ion 141 Let x E C(U). Then x is an input component of
u iff 3y, y E E(a) such that y D x.

In other words, a thing is an input component of a system
if it is acted upon by an environmental thing. For example, m
Fig. 1, order is an input component because customer can act
upon order to change i ts state.

Input components must be distinguished from input states.
First we have Definition 15.

Def in i t ion lS*: Let x and y be two things such that x acts on
y. Then the total action of x on y is A(z, y) = h(y 1 z) - h(y).

The total action of one thing on another thing is the set of
states indexed by t ime that ar ise with the lat ter by vir tue of the
existence of the former. This concept leads to the notions of the
totality of input for an input component and a system and an
input state of a system.

Definition 16: Let x be an input component of CT. Then the
totality of input of x is the set of environmental actions on x:
U(x) = U A(Y,x).

YEE(O)
Corollary 16: The totality of input of u is the set of ail

environmental actions on all input components of 6: U(b) =
lJ U(z) where x is an input component of cr.

rECc-1
Definition 17: Sl(a) = {p(t) j<t,F(t)>E U(a)} is the set

of input stares of a system 0. s E S,(U) is an input state.
The concept of an input state leads to the notion of an external

event and an external t rans format ion.
Definition 18: An event <s,s’> is an external event if?

s’ E S , (u) .
Corollary 18: A transformation g is an external transformation

iff s’ = g(s) and s’ E S,(a).
To i l lustrate these concepts , the total i ty of input of the order

thing in Fig. 1 is the set of s tates of the order thing indexed by
time that arise because the customer places an order. The totality
of input of the system is the (set) union of the totality of input of
the order thing, the total i ty of input of the repayment thing, and
the totality of input of the replenishment thing. An input state
of the order thing arises by virtue of the action of a customer.
When an input component changes state because of the action of
an environmental component on it, the resulting event is called an
external (input) event. For example, when the state of the S&s-
Amt state variable of the order component changes from, say,
zero dollars to $200 to reflect a customer has placed an order,
this event is an external event. The transformation that evokes
an external event is an external transformation.

Finally we have the notions of an internal event and an internal
transformation.

Definition 19: An event <s, s’> is an internal event iff
5’ $2 S,(g).

Corol lary 19: A transformation g is an in ternal t rans format ion
iff s’ = g(s) and s’ 4 S,(a).

Internal events arise as a result of external events. For example,
in Fig . 1 a customer may place an order. The state of the system
changes to reflect the external event that has occurred. If the
resulting state is unstable, an internal event (or sequence of
internal events) then occurs to restore the system to stability.
For example, as a result of the order, inventory is depleted and
the customer’s account is updated. Internal transformations effect
these events .

S. Outputs and Transfer Funct ions’

Output concepts are similar to input concepts. We begin with
the notions of an output co-mponent and the totafip of output.

Definition 20: Let r E C(o). Then x is an output component
of cr iff 3y, y E E(n) such that z D y.

In Fig. 1, order is both an input component (as discussed
above) and an output component. It is an output component
because the confirmation or rejection of an order affects the
state of customer (e.g., by altering the value of a property of
the customer such as amount of cash they have in the bank).

Definition 21: Let x be an output component of n. Then
the totaliry of output of x is the set of all actions of x on the
environment of IT: V(x) = IJ A(s,y).

YEaa)

Corollary 21: The totality of output of c is the set of all
actions of output components of (T on the environment of cx
V(u) = u V(x).

ret’
The totality of output of the order thing is the set of states
Of the customer thing that arise because orders are confirmed or
rejected. Since we assume no other system output , the total i ty of
Output of order is a lso the total i ty of output for the system.

The concepts of input and output give r ise to the not ion of a
system transfer finction.

Definition 22*: Let (T be a system, and let U(o) # 0 and
V(U) # 0. Then the function f that maps the totality of inputs
Of u to the totality of outputs of cr is called the transfer (or
tranrducer) function of 0. That is, f: U(o) + V(n).

In short , the transfer function of a system maps the total i ty of
$tns of the system to the totality of outputs of the system.’ It
manifests the “processing” that the system undertakes.

IV. ON THE NATURE OF AND SOME

DY N A M I C S O F S Y S T E M D E C O M P O S I T I O N S

In this section we develop the notion of a system decom-
position. In addition, we examine some dynamics of system
(leccmipositions. Our purpose is twofold. First, we seek to show

‘Aa with S e c t i o n I I I - E , t h i s s e c t i o n m a y b e s k i p p e d b y t h o s e r e a d e r s w h o
j&e Primari ly i n t e r e s t e d i n o u r d e c o m p o s i t i o n r e s u l t s i n S e c t i o n V .

%’ ‘Whether t h e t r a n s f e r f u n c t i o n i s a s i n g l e - v a l u e d f u n c t i o n o r a m u l t i v a l u e d
Le (r e l a t i o n) d e p e n d s u p o n h o w w e l l t h e s y s t e m h a s b e e n “ c a r v e d o u t ”

rk~ e n v i r o n m e n t . A s y s t e m s t a t e m a y m a p i n t o t w o o r m o r e s u b s e q u e n t
t- because t h e d o m a i n of the t r a n s f o r m a t i o n inc ludes va lues o f s la te

Fig. 4. Graph of a decomposition of a system

the power of our basic concepts for building more complex
notions. Second, we lay the groundwork for examining the nature
of a “good” decomposit ion.

We begin with the notion of a decomposit ion, which we define
as a set of subsystems of a system where a) every element in
the composition of the system is included in at least one of the
subsystems in the set , b) the (set) difference between the union
of the environments of the subsystems and the composition of
the system equals the environment of the system, and c) each
element in the structure of the system is included in at least one
of the subsystems in the set . Thus, we have the fol lowing.

Definition 23: Let I be an index set, and let D(g) =
1x1 IL,,, where 2, < (T. Then D(o) is a decomposition over (T
iff C(u) = U,cfC(x,).

Corollary 23a: e(0) = UIEIC(~,) - C(c).
Corollary 236: S(o) = UsEIS(
To illustrate the notion of a system decomposition, consider

Fig. 4. The Fig. 1 system has been decomposed into two sub-
systems: an inventory management subsystem and a revenue
and receivables subsystem. It is a straightforward exercise to
show that these two subsystems const i tute a decomposi t ion of
the Fig. 1 system.

The concept of a decomposit ion leads natural ly into the notion
of a level structure over a system. A level structure formalizes
the idea that sets of subsystems are “nested” within particular
systems which in turn are nested within other systems [29]. Thus
we have the following.

Def in i t ion 24: Let C be a set of systems. Let L be a part i t ion of
C:L={L’(i=l,.*. ,n} with n > 1. Then L will be called a
level structure iff (tli > l), (Vz)[x E L’ * 3y E L’-’ Ax 4 y].

Definition 25: Let D(o) be a decomposition of a system (T.
D(a) will be termed a level structure of (T iff a partition L of
D(g) exists that is a level structure.

Corollary 25a: For every decomposition D(a) of a system (T,
{ f7) U D(o) is a level structure.

Corollary 256: If D(o) is a level structure of o, then (0) U
D(cr) is also a level structure.

The top panel of Fig. 5 shows the level structure for the
system decomposition shown in Fig. 4. (The bottom panel has
been added to show the composition of each subsystem.) The
decomposition comprises three (sub)systems: the accounting
system itself, and the inventory management and revenue
and receivables subsystems. The level structure comprises two
part i t ions: one, L’, contains the accounting system i tself ; and the
other, L2, contains the two subsystems. For every system in the
second partition (i > l), note that each is a subsystem of some
system in the higher- level par t i t ion.

Ia38 IEEE TRANSACIIONS ON SOFIWARE ENGINEERING, VOL. 16. NO. 11, Nt-jm

1.______________----_~---..~...~~..~--.~~~~-.~.~~.---.~.~-~~.
Fig. 5. Level structure for first decomposition.

When a system changes its state, we know that at least one
subsystem in the decomposi t ion of the system must have changed
its state. Indeed, we observe changes at the system level because
changes have occurred at the subsystem level. Thus, state changes
can be viewed as propagating upwards in the level structure.
Alternatively, we can take the view that changes at the system
level are reflected in some subsystems-in short, system-level
changes induce changes in subsystems. I t is this propagation, or
induct ion, of changes in the system decomposi t ion that manifest
the dynamics of the system. The dynamics of a decomposition
can be studied, therefore, in terms of how state changes in
the system decompose into s tate changes in the subsystems of
the system. Ultimately we evaluate whether a decomposition is
“good” via the characterist ics of i ts dynamics.

We begin with the notion of the state space of a decomposition
of a system.

Definition 26: Let I be an index set and D(a) be a decom-
position over a system CT. Then the possible state space of the
decomposition is the Cartesian product of the possible state
spaces of the subsystems that const i tute the decomposit ion. That
is, S(D(c)) = @,EIS(Z,).

Notation 26a: Henceforth, S(D(o)) will be abbreviated to
S(D).

Notation 266: si denotes the jth state of the ith system; s,”
denotes the kth state of the system.

To i l lustrate this concept, consider, again, the accounting sys-
tem illustrated in Figs. 4 and 5. To simplify matters, assume we
use only one state variable to describe the state of a subsystem:
fnv (dollar value of inventory) for the inventory management
subsystem: and Ret (dollar value of receivables) for the revenue
and receivables subsystem. Furthermore, assume the inventory
management subsystem can take on only three dollar value
states, S(zr) = {st, s~,$} = {0,100,200}, and the revenue
and receivables subsystem can take on only four dollar value
states, S(Q) = { si, 522, s:, sl} = {0,100,2OO, 300). Under these
assumptions, the possible s tate space of the decomposit ion of the
account ing system is :

S(D) = {(&s:), (st,s;)> (h;), (sb:), (h;), (h;),

(4,4), (4+4), (4’s:),‘(&s:), (4.$), (SX))

= ((0, O), (0, loo), (0,200), (0,300), (100, O),
(100, loo), (100,200), (100,300), (200,0),

(200,100),(200,200),(200,300)}.

A fundamental relationship can now be art iculated between the
possible state space of a system and the possible state space of a

decomposi t ion of the system. Specifically, we have the follow~g
straightforward but important resul t .

Lemma 1: Let S(a) be the possible state space of a system
0, and let S(D) be the possible state space of a decom~s~io,,
over (T. Then for every state s E S(o), there exists at least one
state 6 E S(D).

Coroflary:‘There exists a mapping from S(a) into the mQ
set of S(D), PCS(D)).

Notation ‘26~:’ &t i E S(o), d(s) G (6 1 6 E S(D)
corresponds to a E S(o)}. d(s) E P(S(D)).

To illustrate Lemma 1, assume we represent the state of the
accounting system x0 using a single state variable: Asset (total
dollar value of inventory plus receivable assets). Since the state
of the accounting system, si, is a s imple funct ion of the s tate of
i ts two subsystems, we have

i.e., d(O) = { (0. O)]

i.e., d(100) = { (0.10). (10&O))

i.e., d(200) = {(0,200), (lOO,loO),

G3w 011
i.e., d(300) = {(0,3~),(100,200),

(200. loo)}

i.e., d(400) = { (100, WO), (200,2~j)

i.e., d(500) = {(200,300)}.

In general, because we may choose different variables to
represent the state of a system and the state of a subsystem,
we cannot say the possible state space of the system is eq&
to the possible state space of a decomposition of the system.
Nonetheless, we postulate that the possible state space of a
system can always be mapped into the possible s tate space of
a decomposition of the system in a meaningful way.

In this l ight, we can now show how events in a system reflect
events in i ts subsystems. To assis t our exposi t ion, we introduce,
first, some additional notation and a lemma.

Notation 266: Let 6 E d(s), 6 is a state of the decomposition.
Hence it has a component in each of the subsystems. The ith
component of 6, 6, will be termed a projection of state s in
subsystem 2,. Alternatively, let S = d-‘(s) be the jth element
of the set d(s). The projection 6, will be denoted by d;‘. The set
of projections {a,} of a state s on subsystem z, will be denoted
by d,(s).

Lemma 2: Let s’ # s” be two different states of (T. Then
d(s’) fl d(s”) = 0. That is, for every 6’ E d(s’) and S” E d(s”),
at least one subsystem 2, exists such that 6: # 6:‘.

To illustrate the notation in the above example, let s’ = 3:
and s” = si. Thus, d(s’) = {(s~,s~), (SAPS:)} and d(s”) =
{(s:, s:), (s:, sj), (s:, ~22)). It can be seen that none of the com-
binations for si equals any of the combinations for s$

Using this foundation, we now propose the notion of an
induced event. Intuitively, an induced event is an event that
occurs in a subsystem which reflects that an event has occurred
in the system. The notion of an induced event reflects that we
can view a change in the state of the system at the level of the
system or at some level of subsystems when the subsystems are
organized in a level structure. Nonetheless, a change of state in
the system must still be manifested as a change of state in at
least one of i ts subsystems. Thus we have the fol lowing.

Definition 27: Let (s,s’) E E(n) be an event in the possible
evenispace of the system, and let hJ(s) and rl’(s’) be coriespond-

iing s tates in S(D) (i and k are not necessari ly dist inct) . Let di (s)
.and be the s ta te of the i th subsystem when the system is in
states s and s’, respectively. Then the pair (di (s) , df (s ’)) wil l be

-called an induced event on subsystem X, 4 (T iff n:(s) # dF(s’).
The induced event on the subsystem 2, wil l be designated e , .

To illustrate the notion of an induced event, consider our
accounting system. Assume the event (si. si) occurs; that is , total
assets change from $200 to $400. Assume d”(si) and d’(si) are
the corresponding states in S(D). In our example above, d3(si) =
{(s:,si)} = {(200.0)} and &(si) = {(s~.s~)} = ((200,200)).
Thus: d;(s;) = s; = 200; dgsi) = s; = 0; d;(g) = s; = 200;

dj(si) = .si = 200. Since &(si) = cE:(.$). no induced event
has occurred in the inventory management subsystem. However,
note that &(si) # I~~($). Thus, in the revenue and receivables
subsystem, an induced event has occurred in l ight of the change
of system state. Consequently, we conclude the dollar value of
assets has risen by $200, not because the value of inventory has

; risen, but because the value of receivables has increased.
: Not every change of state in a subsystem will be manifested
* .‘1 as a change of state in the system. Since a system state may
: map into two or more subsystem states-that is, the cardinality-5
of d(s) may be greater than one-a change of subsystem states
$may not be manifested as a change of system states. For ex-
v ample, assume the fol lowing event occurs in the decomposit ion:

((s:, s:). (s:, si)). Note that an induced event has occurred in
both subsystems. However, since s i = 200 maps into both s ta tes
of the decomposit ion, the change of subsystem states wil l not be
manifested as a change of system state. If a change of state does
occur in the system, however, we have the following lemma.

Lemma 3: For every event in the system, at least one subsystem
must exist in which an induced event occurs.

V. ON GOOD DECOMPOSITIONS

In Section IV we defined the concept of a decomposit ion of a
system. In the CS and IS fields, this concept serves two purposes.
First, it is used as a basis for understanding complex systems
[IO]. For example, a number of systems analysis methodologies
“factor” processes and data into lower-level processes and data
so the processes and data can be better understood (45). Second,
decomposit ion is used as a basis for design (161, [17], [33], [47].
For example, the so-called structured design methodologies rely
on the concept of decomposit ion for deriving program modules,
Which in turn form the basis for system implementation in
some programming language [46]. Similar ly, relat ional da&abase
management theory uses a form of decomposition to identify
relations that are relatively independent of one another [8].

Irrespective of whether the purpose of decomposition is to
understand or to design systems, two fundamental quest ions must
be addressed. First , what is the nature of a good decomposit ion?
Second, how do we achieve good decomposit ions? While many
heuristics have been proposed to address both questions [2], [121,
[16]-[20], [28], [32], [35], [46], [47], no general theory of decom-
Posit ion has been developed that enables us to evaluate whether
these heurist ics do, in fact , produce good decomposit ions.

Accordingly, to show the power of our ontological model, we
now use it to define precisely the characteristics of a particular
tyP of decomposition that we hypothesize will allow analysts,
&signers, and programmers to better understand systems. In_~ .
mm& our model for this purpose, we point out four important
)&la that underlie our analysis. First, whether the concept of

decomposition we propose leads to a better understanding of
systems is an untested empirical issue. The psychological theory
needed to support our hypotheses is s t i l l poorly developed, and
the empirical research needed to test our predictions has not
yet been undertaken. Second, different types of decomposition
may be required to accomplish other purposes when designing
and implementing systems.’ For example, the type of decom-
position needed to achieve efficient execution of systems on
parallel machine architectures may be at odds with the type
of decomposit ion needed to faci l i tate understanding of systems
[7). Third, while our model allows existing decompositions
to be evaluated to determine whether they are good, at this
time it provides only limited insights on the matter of how
good decompositions should be generated in the first place.
Indeed, i t is a moot point whether a complete set of prescriptive
rules for generating good decompositions can ever be generated
or whether the development of good decompositions, like the
development of good theoretical models, will inevitably rely on
intuit ion and experience. Final ly, the primary contr ibution of our
model is that i t a l lows a precise definition of our notion of a good
decomposit ion to be ar t iculated. At f i rs t glance this contr ibut ion
may seem modest. However, we are unaware of any other work in
the CS and IS fields where the notion of a good decomposition
has been defined precisely.

A. Some Characteristics of a Good Decomposition

It is generally believed that system decompositions which
have “loosely-coupled” subsystems are easier to understand than
system decomposi t ions which have “t ight ly-coupled” subsystems
(see, e.g., [46]). The rationale is that human problem solving is
constrained by cognitive limitations; thus, things are easier to
understand if they can be considered relatively independently of
other things. Unfortunately, the meaning of “loose coupling” has
remained somewhat obscure.

In this light, we use our model to make the notion of relativefy-
independent (loosely-coupled) subsystems precise. In summary,
our model shows that subsystems are loosely coupled if the
events in the subsystem that arise as a result of inputs to the
subsystem can be defined independently of the states of other
subsystems in the decomposi t ion. In addi t ion, the model shows
that decompositions are good only with respect to a certain
set of transformations on the system. The designer’s task is to
identify the relevant set of transformations to consider during
the decomposi t ion process .

We begin, then, with a definition that will aid our analysis.
Definition 28: Let a be a state of subsystem 5,. Then the set

of system states that map into a will be denoted by S,(a) =
{3 1 a E d,(s)}. S,(a) will be called the subsystem equivalence
states with respect to a.

Notation 28: Let cy = sf , the kth state of subsystem 2,.
s,k = S,(sf).

To illustrate this concept, consider our previous accounting
system example. Recal l the system is decomposed into only two
subsystems: the inventory management subsystem z1 and the
revenue and receivables subsystem x2. Given the six states the
system can assume, the sets of subsystem equivalence states are:
s; = { 1 2 3 4);

so, SOI so1 so

d;(s:) = d;(s;) = d;(s;) = d;(s;) = $ 0

s; = {s~,s~,sf,s~}; .

d;(s;) = &(s;) = d;(s;) = d;(s;) = $100

sp = {s;,s~,9;,3~};

1290
 ; . 4: fg

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 11, NOW- & ‘:

d: (.si) = ci; (a;,) = qsg = d; (sfr) = $200

s; = {s ;,,s&s;}; d&,) = dgs,:) = f&s;;) =$ 0

$2, = {si. .s;l,, 3:); cq.s(q = dgsi) = fqs:,) = $100

Si = {si~,s~,.$}; di(ai) = di(.si) = di(si) = $200

S,” = {s~,s~,af}; do = di(si) = di(ai) = $300.

In light of the concept of the set of subsystem equivalence
states, we now define the decomposition condition.

Definition 29: Let g be a transformation on a system, and let
5’: be a set of subsystem equivalence states. The decomposition
condition holds for t ransformation g and subsystem X, if, for every
s,” of xi a state 51 of X, exists such that: s E S: + g(s) E S,“,
k and h are not necessarily distinct (i.e., h is a function of k and
g and i but not of s).

Corollary 29: If the decomposition condition holds, then
d!(a) = d:“(d) + d,(g(s)) n d,(g(s’)) # 0.

In other words, for the set of all system states that map into the
same i th subsystem state , the decomposit ion condit ion requires
that the set of new system states which arise from an event
will also map into the same ith subsystem state. In short, for
the decomposi t ion condit ion to hold, subsystems must “behave”
independently in the following sense. If we know that the ith
subsystem is in state y = d:(a) when the system is in state
s, we have sufficient knowledge to predict what the new state
t = df(g(s)) will be.

We formalize these notions in terms of the concepts of a
well-defined, induced transformation and a good decomposition.

Definition 30: Let g be a transformation on a system (T. Then
the transformation g, induced on the subsystem z, < (T is well-
defined iff g, is a function, i.e., g,(s) = s’ A gl(s) = s” a s’ =
s” for every s?s’.s” E S(Z*).

Definition 31: A decomposition D(n) of a system is a good
decomposition with respect to a transformation g on the system
iff the transformation g induces a well-defined internal transfor-
mation g, in every subsystem X, of the decomposition.

Recall from Definitions 18 and 19 that we have identified two
types of events that can occur in a system: an external (input)
event and an internal event. Since external events in a system
arise from the actions of the environment, they may not be
described by a well-defined transformation. For example, given
a certain level of inventory, it may be impossible to predict
the new level of inventory that arises after an order has been
satisfied because the amount ordered cannot be predicted. Once
the external event has occurred, however, we require that the
subsequent internal events that occur in each subsystem be well
defined if the decomposit ion is to be good. In summary, al though
external events in a system may not be well defined, all internal
events in a well-decomposed system must be well-defined.

B. An Example

To i l lustrate the not ion of a good dedomposition, consider once
more our accounting system example. Assume again that we
represent the state of the inventory management subsystem via
the state variable Inv and the state of the revenue and receivables
system via the state variable Rec. However, assume now that we
represent the state of the system via the state vector (fnv,Rec).
Clearly, a mapping H from the state of the system to the state
of the decomposition is trivial:

H(4) = H((.q:,.Q) = {(a~,.a~)} = {(O,O)}

H(s:,) = H((.sf,.s;)) = {(s;,s;)} = ((0 , 1 0 0))

H(sl) = H((s:,si)) = {(a:,a~)) = ((0,200))

H(4) = H((.sl,ai)) = {(sl,s:)} = {(0,3Oo)}

H@) = Iq(s:,.s:)) = {(s:,s:)} = {(100,0)}

H(4) = H((.sf,.$)) = {(sf,ai)} = {(lOO,lOO)}

H(s;;) = H((.s;,s;)) = {(s;,*&} = {(100,2oo)}

H(4) = H((s~~s~)) = {(a:,si)} = {(100,300)}

H(.+) = H((s;.s;)) = {(s;,s;)} = {(200,0)}

H($) = H((sf,sz)) = {(~~,a~)} = {(200,100)}

H (a;,‘) = H ((sf, si)) = { (sf, s;)} = { (200, LOO)}

H(.s;;) = H((s;,.s;)) = {(s;,s;)} = ((200,300)).

The set of subsystem equivalence states are

S: = {s& si, sj;, a:}:

df(ab) = di(si) = di(si) = d!(st) = $ O

SF = {s~,sR,a~,s~};

d: (si) = di (SF;) = dl (s:) = di (a:) = $100

Sf = {a~~s~l(),.s~~‘,.s~}:

d; (s;) = d; (s;;) = d; (sb’) = d; (s;‘) = $200

s; = {sb. s& s;;}: d&s;) = d;(s;) = d;(s;) =$ O

s: = {sg,sf;,s:;‘}; d;(s;) = d;(s;) = d;(s;‘) = $100

s; = {si. s;. sb’}; d:(si) = di(s:) = di(ai’) = $200

s; = {S;.R;, SF}; di (si) = di (si) = di (a:‘) = $300.

Note, the set of decomposition states into which each system
state maps comprises only one element, i.e., Id(a)\ = 1. Thus,
there is a one-one mapping (injection) between a system state
and a s tate of the decomposit ion.

Assume, now, that the organization which operates the ac-
counting system has only one customer and that the customer
always orders inventory in $100 lots as either a cash order or
a credit order. Replenishment of inventory occurs on a regular
time schedule as the organization produces inventory at its
manufacturing facility. From time to time, stockout situations
may occur if the customer orders more inventory than normal
during a time period.

Assume, f irst , that the organization has a policy of generating
a rush production order if a stockout situation occurs because it is
concerned about losing goodwill i f i t cannot meet a future order
from the customer. Rush production orders occur in $200 lots.
A transformation g’ which effects an inventory replenishment in
light of a rush production order when the inventory level reaches
zero can be represented as follows:

g’((O,.)) = (200,.);g’((100,.)) = (loo,.);

g’((200, .)) = (200, .).

‘WAND AND WEBER: ONTOLOGICAL MODEL OF \&‘I INFORMATION SYSTEM

The transformation g’ induces the following internal t ransfor-
mat ions on xl, the inventory management subsystem, and x2, the
revenue and receivables subsystem?

s: (0) = 200 d(O) = 0

g!(lOO) = 100 gi(100) = 100

g; (200) = 200 gi(200) = 200

gi(300) = 300.

Note that a well-defined internal transformation has been in-
duced in each subsystem. Thus, the decomposition is a good
decomposi t ion under the inventory replenishment t ransformation.

Assume now that the organization changes its policy with
respect to stockout si tuations. I t wil l generate a production order
for s tock replenishment purposes only i f the credi t l imit of $200
has not been reached. It is not willing to bear the extra costs
associated with a rush production order i f i ts customer is in debt
at or beyond the credit l imit amount. Consider a t ransformation
g’ which effects the inventory replenishment under this policy:

g*((0, 0)) = (200, 0), i.e., g’(sh) = si

g*((0.100)) = (200, loo), i.e., g’(si) = sA”

g*((0 , 2 0 0)) = (200,200), i . e . , g’(si) = s :

g*((0,300)) = (0,300), i.e., g’(sd) = st

g’((100. 0)) = (100, 0), i.e., g’(si) = si

g2(~100,100)) = (100, loo), i.e., g2(si) = s,”

g*((lOO, 200)) = (100,200), i.e., g2(si) = si

g*((100,300)) = (100,300), i.e., g’(si) = s”,

g*((200, 0)) = (2 0 0 , 0) , i . e . , g’(si) = s”,

g*((200,100)) = (200, loo), i.e., g2(Q) = s:”

g2((200, 200)) = (200,200), i.e., g’(si’) = sil

g’((200,300)) = (200,300), i.e., g2(sr) = sy.

The transformation g* induces the fol lowing internal transfor-
mat ions on the two subsystems:

!J:c 0) = { 0,200) d(0) = 0

gf(100) = 100 g,2(100) = 100

gf(200) = 200 gz”(200) = 200

gi(300) = 300.

Note, the induced internal transformation on the inventory man-
agement subsystem is not well defined. Moreover, it is easy
to show that the decomposition condition has been violated;
specifically, s: E S: and si E S: but g’(sA) = 3: E S,” and
g2(ai) = ai E S:. Thus, the inventory management subsystem
does not behave independently because i t is not always possible
to predict its new state given its current state. In short, the
decomposition is not good with respect to the replenishment
transformation under the revised policy.

TO conclude, our model shows the “goodness” of a decompo-
si t ion must be evaluated with respect to a set of t ransformations.
fie designer’s task is to choose the “relevant” set of transforma-
tiom and to devise a decomposi t ion that is good with respect to

“In the interests of simplicity, we have not considered the external events
*at might have given rise to the internal events. Assume, however, that they
m wtomer orders that deplete the inventory when they are satisfied.

each transformation in the set . We have not shown how this task
can be undertaken in this paper, but the answer l ies in identifying
which couplings are important under each transformation that is
of interest . This issue has been addressed elsewhere [31], [41].

VI. R E S E A R C H DIRECTIONS AND C ONCLUSIONS

As we indicated in the introduction to this paper, two major
tests of the quality of a model are its ability to facilitate
understanding and to aid predict ion. In terms of understanding,
we believe our model clarif ies some previously fuzzy but funda-
mental constructs in the CS and IS fields. It also shows rigorously
how these constructs are related to one another. In addition,
elsewhere we believe we have used the model successfully to
analyze the meaning of concepts like batch systems, real-time
systems, system controls, data, programs, abstract data types,
and objects [37]-(401. An important at t r ibute of these analyses is
that they have been independent of implementat ion or technology
considerat ions. Thus, we believe they wil l prove to be robust in
the long run.

In terms of prediction, we have used the model to forecast the
locus of control and audit procedure change when an information
system is modif ied [40] and to identify some necessary attr ibutes
of a good requirements specification (391, (421. In light of the
analysis of the characterist ics of a good decomposit ion that we
have undertaken in this paper, we believe the model can now
be used to make predictions about the efficacy of the various
decomposit ion rules and heurist ics that have been proposed in
the literature. For example, we can address the question of
how well functional decomposition, data flow decomposition,
and data structure decomposition meet the requirements of a
good decomposit ion that have been art iculated in this paper. Our
current research is directed toward these issues.

ACKN OW L EDGMENT

We are indebted to P. Bailes and A. Street for helpful com-
ments on this paper. We are especially grateful to G. Dromey and
three reviewers for their detailed comments and to K. Raymond
for helpful discussions on the Z language.

PI

PI

131

I41

PI

1’51

171

PI

191

PJl

1111

REFERENCES

C. J. W. Alexander, N o t e s o n t h e S y n t h e s i s of F o r m . Cambridge,
MA: Harvard University Press, 1964.
G. D. Bergland, “A guided tour of program design methodologies,”
Computer, vol. 14, no. 10, pp. 13-37, Oct. 1981.
A. Borgida, S. Greenspan, and J. Mylopulos, “Knowledge repre-
sentation as the basis for requirements specifications,” Compufer,
vol. 18, no. 4, pp. 82-91, Apr. 1985.
F. P. Brooks, Jr., “No silver bullet , essence and accidents of
software engineering,” Computer, vol. 20, no. 4, pp. 10-19, Apr.
1987.
M. Bunge, Treatise on Basic Philosophy: Vol. 3: Ontology I: The
F u r n i t u r e of t h e W o r l d . Boston, MA: Reidel, 1977.
M. Bunge, Treatise on Basic Philosophy: Vol. 4: Ontology II: A
World of Systems. Boston, MA: Reidel, 1979.
K. M. Chandy and J. Misra, P a r a l l e l P r o g r a m D e s i g n : A F o u n d a -
t i o n . Reading, MA: Addison-Wesley, 1988.
E. F. Codd, “A relational model of data for large shared databanks,”
C o m m u n . A C M , v o l . 13, no. 6, pp. 377-387, June 1970.
M. 1. Culnan, “The intellectual development of management infor-
mation systems, 1972-1982: A co-citation analysis,” Management
Sci., vol. 32, no. 2, pp. 156-172, Feb. 1986.
P. J. Curtois, “On t ime and space decomposit ion of complex
structures,” Commun. ACM, vol. 28, no. 6, pp. 590-603, June
1985.
J. D. DiStefano, III, A. R. Stubberud, and 1. J. Williams, Feedback
a n d C o n t r o l S y s t e m s . New York: McGraw-Hill. 1976.

1292

1121
[131

[141

[W
VI

1171

WI

PI

WI

VI

I
2 3 1
2 4 1

1251

WI

[271

1281

f291

1301

[311

1321

(331

I341

[351

[361

1371

1381

IEEE TRANSACTIONS ON SOFlWARJ? ENGINEERING, VOL. 16, NO. 11, NGV@~‘&,,, ‘..

‘7

R. G. Dromey, “Systematic program development,” IEEE Trans.
Software Eng, voc SE-14, no. 1; pp. 12-29,-Jan. 1988.
J. D. Gannon. R. G. Hamlet. and H. D. Mills. “Theory of modules,”
IEEE Trans. ‘Software Eng, vol. SE-13, no. 7, pp. 820-829, July
1987.
M. Hamilton and S. Zeldin, “Higher order software-A methodol-
ogy for defining software,” IEEE Trans. Software Eng., vol. SE-2,
no. 1, pp. 9-32, Mar. 1978.
1. J. Haves, Ed., Specification CuseStudies. Englewood Cliffs, NJ:
Prenti&Hail, 1987. -
C. A. R. Hoare, “An overview of some formal methods for program
design,” Computer, vol. 20, no. 9, pp. 85-91, Sept. 1987.
M. A. Jackson. Principles of Program Design. New York: Aca-
demic, 1975. ’ . - -
C. B. Jones, Systematic Software Development Using VDM. En-
glewood Cliffs, NJ: Prentice-Hall, 1986.
J. Karimi and B.R. Konsynski, “An automated software design
assistant,” IEEE Trans. Sofhvare Eng., vol. 14, no. 2, pp. 194-210,
Feb. 1988.
R. C. Linger, H. D. Mills, and B. 1 . Witt, Structured Programming:
Theory and Practice. Reading, MA: Addison-Wesley, 1979.
M. D. Mesarovic and Y. Takahara, General Systems Theory. New
York: Academic, 1975.
A. Mili, J. Desharnais, and J. R. Gagne, “Formal models of stepwise
refinement of orocrams.” ACM Comout. Surveys. vol. 18. no. 3.

.Y .

pp. 231-276, Sept. 1986.
J. G. Miller. Livine Svstems. New York: McGraw-Hill. 1978.
H.G. Mills, V. R. ‘Basili, J.D. Gannon, and R.G. Hamlet,
Principles of Computer Programming: A Muthematicul Approach.
Boston, MA: Ailyn and Bacon, 1987.
J. Moses, “Computer science as the science of discrete man-made
systems,” in The Study oflnformution: Interdisciplinary Messuges,
F. Machlup and U. Mansfield, Eds. New York: Wiley, 1983.
G. J. Myers, Reliable Sofrware Through Composite Design. New
York: Petrocelli/Charter, 1975.
T. W. Olle, J. Hagelstein, LG. Macdonald, C. Rolland, H.G. Sol,
F. J. M. Van Assche, and A. A. Verrijn-Stuart, Information System
Methodologies: A Framework for Understanding. Reading, MA:
Addison-Wesley, 1988.
D. L. Pamas, “On the criteria to be used in decomposing systems
into modules,” Commun. ACM, vol. 15, no. 12, pp. 1053-1058,
D e c . 1 9 7 2 .

. _

-, “On a ‘buzzword’: Hierarchical structure,” in fnform. Pro-
cessing 74. Amsterdam, The Netherlands: North-Holland, 1974,
pp. 336-339.

“Education for computing professionals,” Computer, vol. 23,
no.1 pp. 17-22, Jan. 1990.
J.D. Paulson, “Reasoning tools to support system analysis and
design,” Ph.D. dissertation, Univ. British Columbia, 1988.
S. B. Roeers. “A simnie architecture for consistent aonlication
design,” TBi Syst. J., ;ol. 22, no. 3, pp. 19%213, 1983: ’
H. A. Simon, The Sciences of the Artificial, 2nd ed. Cambridge,
MA: MIT Press, 1981.
J. M. Spivey, The 2 Notation: A Reference Manual. Englewood
Cliffs, NJ: Prentice-Hall, 1989.
T. H. Tse, “The identification of program unstructuredness: A
formal approach,” Comput. J., vol. 30, no. 6, pp. 507-511, 1987.
P.A. M. Van Dongen and J.H. L. Van Den Bercken, “Structure
and function in neurobiology: A conceptual framework and the
localization of functions,” Int. J. Neurosci., vol. 16, pp. 49-68,
1981.
Y. Wand, “A proposal for a formal model of objects,” in
Object-Oriented Concepts, Applications, and Databases, W. Kim
and F. Lochovsky, Eds. Reading, MA: Addison-Wesley, 1989,
pp. 537-559.
Y. Wand and R. Weber, “An ontological analysis of some fun-
damental information system concepts,” in Proc. Ninth Int. Conf
lnformution Systems, Dec. 1988, pp. 213-226.

I391 -, “A deep structure theory of information systems,” urtf,,
British Columbia, unpublished working paper, Mar. 1988. ’

[40] -, “A model of control and audit procedure change in evob,-
ing data processing systems,” Accounting Rev., vol. WV, no. 1
pp. 87-107, Jan. 1989.

[41] -, “A model of systems decomposition,” in Proc. Tenth 1:
Conf btformation Systems, Dec. 1989, pp. 41-51.

[42] -, ” An ontological evaluation of systems analysis and design
methods,” in Information Systems Concepts-& In-DepthA+,sts
E. Falkenberg and P. Lindgreen, Eds. Amsterdam, The Nether:
lands: North-Holland, 1989, pp. 79-107.

1431 R. Weber, “Toward a theory of artifacts: A paradigmatic base
for information systems research,” J. Inform. Syst., vol. 1, no. 2,
pp. 3-19, Spring 1987.

[44] N. Wiener, Cybernetics: Or Control and Communication in the
Animal and the Machine, 2nd ed.
1961.

Cambridge, MA: MIT Press,

[45] J. L. Whitten, L. D. Bentley, and T. I. M. Ho, Systems Analysis and
Design Methods. St. Louis, MO: Times Mirror/Mosby, 1986.

[46] E. Yourdon and L. L. Constantine, Structared Design: Fundamen.
tals of a Discipline of Computer Program and System Design,
Englewood Cliffs, NJ: Prentice-Hall, 1979.

[47] P. &ve, “The operational versus the conventional approach to soft-
ware development,” Commun. ACM, vol. 30, no. 2, pp. 104-118,
Feb. 1984.

Yair Wand received the B.Sc. degree in mathe-
matics and physics from the Hebrew Universitv.
Jerusalem, israel, in 1966, the M.Sc. degree in
nhvsics from the Weizmann Institute of Sciencp
kehovot, Israel, in 1970, and the D.Sc. de;;
in operations research from the Technion, Haifa,
Israel, in 1977.

Since 1977 he held positions at the Faculty
of Management, the University of Calgary; the
Faculty of Commerce, the University of British
Columbia; and the Faculty of Industrial Engi-

neering and Management, the Technion. His industry experience includes
working with IBM (Israel) Ltd. and as an independent consultant.
Presenfiy he is on faculty at the MIS Division, Faculty of Commerce
and Business Administration, the Universitv of British Columbia. His
research interests are modehng of information systems and formal
foundations of systems analysis-and design. -

Dr. Wand is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Ron Weber received the B. Com.(Hons.) degree
and University Medal from the ‘University of
Oueensland. Oueensland. Australia. in 1972 and
the M.B.A. degree and Ph.D. degree in manage-
ment information systems from the University
of Minnesota in 1976 and 1977, respectively.

He is currently GWA Professor of Commerce
at the University of Queensland. His current
research interests are in the areas of formal mod-
eling of information systems, computer control
and audit, and systems analysis and design.

