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An Ontological Model of an Information System‘

Yar Wand and Ron Weber

Abstract—Theoretical developments in the CS and IS disciplines have
been inhibited by inadequate formalization of basic constructs. b this
paper we propose an ontological model of am information system that
provides precise definitions of fundamental concepts like system, subsys-
tem, and coupling. We use this model to analyze some static and dynamic
properties of an information system and to examine the question of what
constitutes a “good” decomposition of an information system.

Index Terms-Cohesion, coupling,
structure, subsystem, system.

decomposition, hierarchy, level

l. INTRODUCTION

HE computer science (CS) and information systems (1S)

fields are replete with fundamental concepts that are poorly
defined. For example, concepts like system, subsystem, module,
object, interface, coupling, cohesion, hierarchy, input, output,
environment, and decomposition are central to many theories
in both fields, but inevitably they have not been articulated
rigorously. In the absence of carefully formulated foundations,
fields are unlikely to progress quickly. We concur with Parnas
[30, p. 19] who observes: “The use of . . . fuzzy terms (in
computer science) is not merely sloppy wording; it prevents . . .
the systematic analyses made possible by precise definitions.”
Moreover, we believe the current debate on the status of both
the CS and IS fields reflects that progress has been undermined
substantially by inadequate formalization of basic constructs [9],
[25], [43].

In this paper we propose a forma model of an information
system. We have three primary objectives. First, we seek to
define a set of core concepts that can be used to describe the
structure and behavior of an information system. Ultimately, we
hope these concepts will alow the similarities and differences
between many constructs used in the CS and IS fields to be
elucidated. Second, we seek to better understand the static and
dynamic properties of information systems. In this respect we are
viewing information systems as objects (artifacts) to be studied
in their own right, independently of the characteristics of their
users, the organizations in which they are employed, or the
technol ogies used to implement them [38], [43]. Third, we seek
to make predictions about information systems based upon their
static and dynamic properties. For example, we have sought to
use our model to predict the behavior of information systems
based upon the characteristics of alternative decompositions of
the system [41] and to predict the consequences of changes to the
information system for the reliability of controls that have been
implemented in the information system {40}. In short, we have
the usual goals for any model: understanding and prediction.
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Our approach is to model information systems within
context of a theory of ontology that is a modification
extension of one developed by Bunge [5], [6]. Because ontology
is concerned with the structure of the real world, its relevance to
the CSand ISfieldsistwofold. First, since information gyga,
themselves are models of the real world, ontology identifies the
basic thingsin the real world that information systemsoughy y,
be able to model. Second, since information systems are gjg,
things in the real world, ontology provides a basis for modelig
information systems themselves [3], [4]. Elsewhere we have ygeq
ontology in the former way [42]. In this paper, we use ontology
in the latter way.

Our approach differs from a number of other attempts to
provide formal bases for modeling CS and IS constructs. Fo,
example, specification languages such as Z and VDM seek to pro-
vide a formal notation that describes the properties an information
system must have without being constrained by implementation
considerations [15], [ 18], [34]. Unlike our approach, however,
they do not seek to define a st of core constructs that underlie
the CS and IS fields. Users of formal specification languages
are assumed (implicitly) to know these constructs at the outset,
The languages can then be employed to express these constructs
precisely. While rigorous specification of information systems is
clearly an important goal, we see our objectives in modeling core
constructs as being more fundamental.

The remainder of the paper proceeds as follows. Section Il
provides @ brief review of some major types of information
systems formalisms that bear on our goals and their respective
strengths and weaknesses relative to our model. Section 111
articulates some of the fundamental notions that underlie our
model. Section IV uses these basic notions to examine the nature
of and some dynamics Of system decompositions. Section V
provides several insights into the model’s predictive power via
an analysis of some properties of good decompositions. In
particular, we show how our model formalizes the intuitive
notion that good decompositions have subsystems that behave
relatively independently of one another. Finally, Section VI
presents suggestions for further research and our conclusions.

Il. PrRioOR RESEARCH

The motivation to formalize system concepts is not just
confined to the CS and IS domains. It is common to fields
like engineering [11], cybernetics [44], biology [23], physiology
{36], architecture [1], and general systems theory [21]. Bunge
[6] provides a brief review of the major types of system models
that have been proposed.

In the CS and IS fields, however, there now seems to be
widespread acceptance of formal models that view systems
(programs) in terms of their specifications: specifically, as a pair
of input and output assertions; or as a function mapping input
states to output states; or as a relation between input and output
states [12], {20}, [22], [24),{35]. In turn, states are conceived a8
mappings between system (program) identifiers and values | 3}
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¥ While these types of models have provided valuable insights
‘into such problems as design decomposition and proofs of
¥program correctness, they are essentially black-box models.
«Accordingly, they suffer the limitations of all black-box models
1jn terms of our goals of understanding and predicting system
“pehavior [6]. For example, since they do not model the internal
structure of a system, the relationship between the overall behav-
ior of the system and the behavior of its internal components is
difficult, if not impossible, to analyze.

To illustrate the problems of using these black-box models,
consider the objective of attaining a good design decomposition
during system implementation. If, say, the system to be designed
is conceived as a mapping between input and output states,
various design decomposition rules can be derived based upon
well-known mathematical results for decomposition of functions
[14], [22]. The subfunctions that arise from the decomposition
can be conceived as subsystems of the system. A control hi-
erarchy can then be defined among the function (system) and

subfunctions (subsystems) [ 14]. Under this conceptualization, the
focus is on what the system is supposed to achieve rather than
bow it achieves it.

On the other hand, if the system is conceived as ahierarchy
-of modules, our focus shifts to internal structural matters. A

programmer, for example, spatially arranges the variouscompo-
‘;nems of the system (e.g., program instructions and variables) and
cormects them via a control structure so they execute in particular
< sequences. Programmers are admonished to achieve objectives
like loose coupling between modules and tight internal cohesion
, Within a module [26], [46].

With current systems formalisms that we have available,

however, the mapping between the external view (what is to
.be accomplished) and the internal view (how it is to be accom-
“plished) is not clear-cut. How do we know, for example, that
“we have chosen and implemented subfunctionsin such away
that the resulting modules are internally cohesive and loosely

coupled? Indeed, as Bergland {2, p. 35] pointsout in hisreview

of decomposition methodologies, “all of the methodologies rely
+ 0l some magic.”

We propose that the quality of the mapping between external
and internal views of the system can only be examined and
evaluated when we have an integrated formalism for both views.

s Currently, we have well-developed formalisms for only the
“&Xternal view. However, formalisms that address the internal
view (e.g., concepts like coupling) are poorly developed [2].

In summary, we argue that current CS/IS systems formalisms
for viewing systems are deficient in that they primarily use
black-box rather than white-box models. Until rigorous white-box
odels of information systems have been developed, progress in

. f‘eVeIOping mappings between requirements specifications and
Implementation Structures will be impeded. In the model we
develop below, we seek to provide the rudiments of a white-
X model that can @) accommodate current formalisms which

View systems as mappings between inputs and outputs, and

rigorously describe the internal structure of systems.

A =
>

I1l. Basic NoTions

# In this section we develop some basic ontological notions

. Pequired 1o analyze certain static and dynamic properties of

'nfOrmatmn systems. To achieve generality, we formalize the

s using standard mathematical notation. Our experience
.ﬂ:at the concepts, once understood, can easily be translated
U the syntax of aformal specification language like Z.

TABLE |
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STATE  DESCRIPTION OF FIVE THINGS

Thing Property State  Variahle
[nventory Item ftemNumber Item-No
Quantity-on-Hand QOH
Unit Price Unit-Price
item Discount (%) Discount
Customer  Order Order  Number Order-No
Customer  Number Cust-No
Item Number Item-No
Quantity  Ordered Qu-Ord
Quantity Supplied Qty-Supl
Sales Price Sale-Pr
Sales Amount Sale-Amt
Date Date
Processed Flag Proc
Customer  Account Customer  Number Cust-No
Customer Address Cust-Add
Balance Due Bal-Due
Credit Limit Cr-Limit
Customer  Repayment Customer  Number Cust-No
Repayment  Amount Amount
Date Date
Processed Flag Proc
Inventory Shipment  Number Ship-No
Replenishment Item Number Item-No
Date Date
Replenishment  Amount Replen
Processed Flag Proc

A Things, Properties of Things, and States of Things

The elementary notion in our formalism is a thing.” We define
first the state space of a thing (definitions taken from or adapted
from Bunge [5], [6]} are starred “*”).

Definition | *: Let X be a thing modeled by a functional schema
X,»=(M, F), and |et each component of the function
F=(F, -, F)yM->V,® -0V,

represent a property of X. Then F,, 1<:<n, is caled the ith
state function (variable) of X, F is called the total state function
of X, and S(X) = {{zi,-++,Z,) €V, ® - ® V ]z, = F,(M)}
is called the possible state space of X.?

Toillustrate our formalism, Table!l shows a state description
for five things: an inventory item, a customer order, a customer
account, a customer repayment, and an inventory replenishment.
Note that Table | shows only one possible state description of
the things. For example, we have not used state variables to
describe the physical dimensions of the inventory item thing.
In this respect, we have chosen a specific functional schema to
reflect our particular purposes (simplicity) in modeling a subset
of the real world. In short, our formalism recognizes that absolute
state variables do not exist. Instead, state variables are chosen to
reflect our knowledge, goals, views, etc., at some time. Moreover,
different observers of the same thing may choose to model it
differently.

‘Note, we do not equate things with objects.
that objects are special types of things
some types of things are objects.

Elsewhere we have argued
[37). Al objects are things, but only

IThe nature of the domain M is sometimes complex. In systems theory it
is often considered to be a set of time instants, or the Cartesian product of a
set of reference frames and the real line [S.p. 120].
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The possible state space of the inventory item thing would
be represented by the set of all combinations of values that the
state variables might assume-the Cartesian product (represented
by ®) of the ranges of the state variables. Furthermore, the state
space of a thing must be modeled so it includes al possble dtates
that the thing might assume from the beginning to the end of its
life. For the inventory item thing, for example, we must choose
a total state function F so that some subsets of the state space
reflect that the values of state variables describing the inventory
item have been updated and others reflect new state variables
have been chosen to describe the inventory item. This view of
the state space of a thing reflects what Bunge (5, p. 221) calls the
principle of nominal invariance: “athing, if named, shall keep
its name throughout its history as long as the latter does not
include changes in natural kind--changes which call for changes
of name.”

B. Laws and Lawful Sates

We proceed, now, to recognize that not all states of a thing are
lawful. The values of the attributes of athing may be restricted
by various rules, and these rules define the lawful state space of
a thing. We begin with the notion of a law statement.

Definition 2*: Let X,, = (M, F) be a functional schema
for athing X. Any restrictions on the possible values of the
components of F and any relation among two or more such
components is called a law statement, {{X) € L(X). Thus,
(X): Vi®. .. ®V, — {unlawful, lawful}.

Laws reflect either natural or artificial constraints imposed
upon things.® For example: 1) the QOH state variable of the
inventory item thing might be restricted to values that are zero
or positive (a natural law); 2) the Discount state variable may be
related to the Unit-Price state variable (an artificial law). Thus,
laws provide information about things. As such, they are also
properties of things. Accordingly, if we choose, laws can be
modeled via the total state function used to describe a thing.

Since we postulate the existence of laws, we recognize that
only a subset of the possible state space of a thing may be
deemed lawful. .

Definition 3*: Let X.» = (M, F) be a functional schema for
athing X, where F = (F\,--- \F,) : M =V, ®---@V, isthe
total state function, and let L(X) be the set of all law statements
on X. Then the subset of the codomain V restricted under L{X)is
called the lawful state space of X in the representation X,,. That
is, Sp(X)= {{z;,- -, z,) EVI®--- @V, F satisfies every
I(X) € L(X)}.

Thus, the lawful state space of the inventory item thing would
include all combinations of state variable values that we deem
allowed.

C. Events, History, and Coupling

When a thing undergoes change, the value of at least one of
its properties must alter. A change of state constitutes an event.

Definition 4*: An ordered pair (s, s'), where s, §' € S(X),
will be called an event.

However, not all changes of state are lawful, and so not
al events are lawful. We define, first, the notion of a lawful
transformation.

Definition 5*: Let S, (X) be the lawful state space of a thing X.
We denote by Gr{X) the set of transformations from the lawful

3Laws correspond to the notion of invariants in Z.
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state space into itself that are given as lawful in the system. Tpq, *

is, GL(X) C SL(X) & S.(X).

Hence we have the following.

Definition 6*: Let S,(X) be the lawful state space of a
thing X, and let G, (X)) be the set of lawful transformations
on the state space into itself. Then a lawful event i x is
represented by the ordered pair (s, s'), where s,8' € SL(X)
and s' = g(s),g € GL(X).

Corollary 6*: The lawful event space of a thing X is the set
ordered pairs: E; = G, (X) N [S.(X)].

To illustrate these concepts, consider again our inventory item
thing. Assume at some time the state functions for the inventory
item thing map it into the following values: Item-No =_pj.
QOH = 10; Unit-Price = 15.00; Discount = 5. Thus, s = P,
10, 15.00, 5).

Assume, also, that one lawful transformation on this
state updates the value of QOH in light of an inventory
replenishment. For example, if 5 more units of inventory
are received, the following lawful event occurs: (s,s') =
((P1,10,15.00, 5), (P1, 15,15.00,5)). Thus, a subset of the
lawful event space for the inventory item thing includes g
events that arise as a rexult of an inventory replenishment and the
“firing” of the lawful inventory replenishment transformation.

Changes of state manifest a history of a thing. Thus we have
the following.

Definition 7*: Let X be a thing modeled by a functiond schema
Xm=M, F),lette M,t> 0 beatime instant. Then a history
of X isthe set of ordered pairs, h(X) = {{t, F(t))}.

In turn, the notion of a history allowsus to determine when
two things are bonded or coupled to each other. Intuitively, if two
things are independent of each other, they will have independent
histories. If they are coupled in some way, however, at least one
of the things' history will depend upon the other thing's history.
Thus we have Definitions 8 and 9.

Definition 8*: A thing X acts on athing Y, denoted X D Y
if h(Y {X) # h(Y).

Definition 9*: Two things X and Y are coupled, denoted
B(X,Y),iff X DY) Vv (Y D X).

To illustrate these notions, consider the inventory item and the
customer order shown in Table I. If the customer order represents
a sde of inventory to a customer, the states of the inventory item
will depend upon the states of the customer order. Thus, the two
things are coupled.

D. Systems and Subsystems

The notions of things and couplings enable us to define
precisely the concept of a system. Intuitively, a system comprises
a st of things where each thing in the set is coupled to a least Oné
other thing in the set and where, in addition, it is impossible to
patition the set of things such that the histories of the two parti-
tions are independent of each other. Thus we have the following

Definition 10: Let C be a set of things, and let Bc =
{{(X,Y)|X,Y € Ca B(X,Y)}. Let o(C, Bc) be a graph, where
C is the set of vertices (things) and B¢ is the set of edges
(couplings). Then ¢(C, B¢) is a system iff it is a connected
graph. Henceforth, ¢(C, B¢ ) will be denoted by .

Fig. 1 is a graph of a system. Consider the various couplings
that exist. First, the order thing is coupled to the inventory item
thing and the customer account thing. When the order occurs, {hc
value of Qty-Supl depends upon the value of QOH. The quantity
ordered can only be supplied if there is sufficient inventory of
hand. Furthermore, the maximum discount that the salesperson

A
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Fig. 1. Graph of a system.

F I
G
Fig. 2. Graph of an aggregate.

can give to a customer is given by Discount. Thus, Sale-Pr is a
function of Unit-Pr and Discount. The order will be filled only
if the sales amount is less than or equal to the customer’s credit
limit less their balance due. Thus, Qty-Supl is also a function
of Cr-Limit and Bal-Due. Second, the inventory item thing is
coupled to the inventory replenishment thing. When inventory
replenishment occurs, the quantity-on-hand is updated with the
value of the replenishment amount. Thus, QOH is a function
of Replen. Third, the customer account thing is coupled to the
customer repayment thing. When a repayment occurs, the value
of balance due is decreased. Thus, Bal-Due is a function of
Amount.

Thus, dl things in Fig. 1 are coupled to a least one other thing.
Moreover, it is possble to “wak” from one thing to another thing
via the arcs. In Fig. 2, however, each thing is coupled to at least
one other thing, but the set of things can be partitioned s the
histories of A and B are independent of the histories of C, D, and
E. Thus, Fig. 2 shows two disjoint systems. It is an aggregate
but not a system.

Unfortunately, the transition to defining the concept of a
subsystem is not straightforward. We must begin by defining
the notions of the composition, environment, and structure of a

System.

¢

Definition 11*: Let ¢ be a system. Then:
2) the composition of ¢ at timetis the set of thingsins at t

Clo,t)={z |z €0}

b) the environment of ¢ at time't is the set of things that are

g B0t components of & but which act on or are acted upon by
£ Componentsof ¢ at .

Bl,6) = {2 2¢ C(o,t) A G)(v € Clot) A B, ) )

¢) the structure of g a time t is the set of couplings among
the components of ¢ and among them and the set of components
in the environment of ¢ at t:

S(o,t) = {R € B(o, t) u B(a,t)}
where
B(ao, 1) = { B(z.y) [z,3€ Clo. t)}
Blo,t) = {B(ﬂf,y) |z e€Clo t)Aye Elo. t)}

To illustrate these notions, consider the Fig. 1 system. Its
composition comprises five things: inventory item, customer
order, customer account, customer repayment, and inventory
replenishment. The environment of the system comprises two
things: customer and supplier. Customer is coupled to order,
customer account, and customer repayment because customers
place orders, change addresses, and make repayments. Supplier
is coupled to inventory replenishment because suppliers supply
inventory. Finally, the structure of the system comprises a) the
internal bondings B, between order and inventory item, order
and customer account, inventory item and replenishment, and
customer account and repayment, and b) the external bondings
B, between supplier and replenishment, customer and order,
customer and customer account, and customer and repayment.

Given the concepts of composition, environment, and structure,
we now define a subsystem as a system whose composition and
structure are subsets of another system and whose environment is
a subset of those things that are in the environment of the system
plus those things that are in the composition of the system but
not in the composition of the subsystem. X

Definition 12*: Let o be a system with composition C(a, t),
environment E(o, t), and structure S(o, t) at timet. Then xisa
subsystem of ¢, denoted x < o, iff:

a) x isasystem at time ¢, and

b)

[CC,,t)gC‘(a, t)]
A [Be.t) c{Bo, 1) U{Clo,n~ C 0} ]
A 3 1) € 3(0,0)].

Notation 12: If x is a subsystem of ¢, then g is a supersystem
of x.

To illustrate these notions, consider a system that comprises
inventory item, replenishment, and their bonding. This sys-
tem, which we might call the inventory management subsys-
tern, is a subsystem of the Fig. 1 system. Its composition C(z)=
{inventory item, replenishment}, is a subset of the composition
of the Fig. 1 system. Its environment, E(x) = {supplier, order},
is a subset of the things that are in the environment of the Fig. 1
system plus those things that are in the composition of the Fig. 1
system but not in the composition of the inventory management
subsystem. Its structure, S{z) = {(inventory item, replenish-
ment), (replenishment, supplier), (inventory item, order)}, isa
subset of the structure of the Fig. 1 system.

E. Equilibrium’

Systems can be in stable or unstable states. Since both types
of state are important from the viewpoint of examining system

"This section may be skipped by those readers who are primarily interested
in our decomposition results in Section V.
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dynamics, we develop the notion of a system equilibrium. We
propose two types of equilibrium: a static equilibrium and a
dynamic equilibrium. Each is simply a specific instance of a
more general concept.

Definition 13: Let o be a system, and let G C G{o) be a
subset of the set of transformations on the possible state space
S(@). Furthermore, let S'(n) C S(a) be a subset of the possible
state space of the system. Then ¢ isin equilibrium in the
region S'(a) with respect to the set of transformations G’ (a)
iff (Vs € S(@), (Vg € G'(0)), s = g(s) and s' € §'(7). Note,
for some transformations, s may equal s.

Corollary 13a: A state s € S(a) isstabie® with respect to the
set of transformations G'{o) iff (Vg e G'(o)), g(s) = s.

Corollary 13b: A state s € S(¢) is unstable with respect to
the set of transformations G’ (u) iff (g € G'(u)), g(9) #s.

Corollary 13c: A system ¢ isin a static equilibrium in the
region S (&) with respect to the set of transformations G’ (a) iff
(Vs € S'(@), (Y9 € G'(a)), 9(s) = s.

Corollary 13d: A system ¢ isin a dynamic equilibrium in the
region S (a) with respect to the set of transformations G’ (a) iff
it is in equilibrium and (3s € S(a)), (3g € G'(a)), such that
9(s) # s.

To illustrate the notion of a static equilibrium, consider again
the Fig. 1 system. Assume we focus on the transformation
that updates QOH for the inventory item in light of a new
replenishment from a supplier. (Below we call this “the replen-
ishment transformation.”) When a new inventory replenishment
is received, the state of inventory replenishment will change.
In particular, the value of Proc (Processed Flag) will indicate
the replenishment has not been processed. This new state is
unstable because a transformation exists that will change it. The
transformation will update the value of QOH and set the value of
Proc to indicate the replenishment has been processed. Once the
replenishment has been processed, the system will once again be
in a static equilibrium. Indeed, with respect to the replenishment
transformation, the system is in a stable state.

To illustrate the notion of a dynamic equilibrium, consider a
situation where several orders are received from customers for
the inventory item. As the orders deplete the quantity-on-hand,
the inventory item moves through a set of states. Providing the
set of states are included within some a priori defined set of
states that for some reason are of interest, the system is in
a dynamic equilibrium. However, once a state arises that is
not within the a priori defined set, the system isno longer in
equilibrium. For example, an order may deplete the quantity-on-
hand to zero so that customer orders can no longer befilled. If
the inventory item state where the quantity-on-hand is zero is
not a member of the apriori defined set of states, the system is
in disequilibrium.

There are two reasons why a system may move from either
astatic equilibrium or a dynamic equilibrium. First, an environ-
mental component may act upon a system component to change
its state. Second, a transformation exists that is not within the
subset of transformations being considered.

Historically, the tendency of systems to move toward a static
equilibrium because of the action of transformations on unstable
states has been called homeostasis {23}. In this light, note
that unstable states are not necessarily unlawful. Lawfulness
and stability are two different properties of a system state

(Fig. 3).

5Stable states correspond to the notion of fixed pints described in [7,
p. 10}.
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Fig. 3. Lawfulness and stability as digioint properties of stages.

F. Inputs, External Events, and Internal Events

Systems are usually of interest because they accept inputs and
transform them into outputs. To formaize these notions, we begin
with the notion of an input component.

Definition 14 Let x € C‘(a). Then x is an input component of
o iff 3y, y € E{o) such that y b x.

In other words, athing is an input component of a system
if it is acted upon by an environmental thing. For example, in
Fig. 1, order is an input component because customer can act
upon order to change its state.

Input components must be distinguished from input states.
First we have Definition 15.

Definition 15*: Let x and y be two things such that x acts on
y. Then the total action of x ony isA(z,y) = A{y|z) ~ h(y).

The total action of one thing on another thing is the set of
states indexed by time that arise with the latter by virtue of the
existence of the former. This concept leads to the notions of the
totality of input for an input component and a system and an
input state of a system.

Definition 16: Let x be an input component of ¢. Then the
totality of input of x is the set of environmental actions on x:
Uz) = U Alyz).

yEE(o)

Corollary 16: The totality of input of ¢ is the set of all
environmental actions on all input components of ¢:U(b) =

U U(z)where x is an input component of .
eClo)

Definition 17: S;(¢) = {F(t) |<t, F(t)>€ U(a)} isthe set
of input states of asystem ¢.s€ S;{g) isaninput state.

The concept of an input state leads to the notion of an external
event and an external transformation.

Definition 18: An event <s,s'> is an external event iff
s' € S,(u).

Corollary 18 A transformation g is an external transformation
iff ¢ = g(s) and s € §,(a).

To illustrate these concepts, the totality of input of the order
thing in Fig. 1 is the set of states of the order thing indexed by
time that arise because the customer places an order. The totality
of input of the system is the (set) union of the totdity of input of
the order thing, the totality of input of the repayment thing, and
the totality of input of the replenishment thing. An input state
of the order thing arises by virtue of the action of a customer.
When an input component changes state because of the action of
an environmenta component on it, the resuting event is called an
external (input) event. For example, when the state of the Sales-
Amt state variable of the order component changes from, say,
zero dollars to $200 to reflect a customer has placed an ordef,
this event is an external event. The transformation that evokes
an external event is an external transformation.




Finally we have the notions of an internal event and an internal
transformation.

Definition 19: An event <s, s'> is an internal event iff
§ ¢ Si(a).

Corollary 19: A transformation g is an internal transformation
iff &= g(s)and s' ¢ S(a).

Internal events arise as a result of external events. For example,
in Fig. 1a customer may place an order. The state of the system
changes to reflect the external event that has occurred. If the
resulting state is unstable, an internal event (or sequence of
internal events) then occurs to restore the system to stability.
For example, as a result of the order, inventory is depleted and
the customer’s account is updated. Internal transformations effect
these events.

G. Outputs and Transfer Functions’

Output concepts are similar to input concepts. We begin with
the notions of an output component and the totality of output.

Definition 20: Letr € C(o). Then x is an output component
of aiff 3y,y € E(o) such that £ D y.

In Fig. 1, order is both an input component (as discussed
above) and an output component. It is an output component
because the confirmation or rejection of an order affects the
state of customer (e.g., by altering the value of a property of
the customer such as amount of cash they have in the bank).

Definition 21: Let x be an output component of «. Then
the totality of output of x is the set of all actions of x on the
environment of 1T: V(z) = | A(z,y).

E(e

Corollary 21: The totali!{f/ o(f)output of o isthe set of all
actions of output components of ¢ on the environment of g:
Vie) = U V&

1€Co)
The totality of output of the order thing is the set of states
of the customer thing that arise because orders are confirmed or
rejected. Since we assume no other system output, the totality of
output of order is also the totality of output for the system.

The concepts of input and output give rise to the notion of a
System transfer function.

Definition 22*: Let ¢ be a system, and let U(o) # & and
V(o) #0. Then the function f that maps the totality of inputs
of o to the totality of outputs of ¢ is called the transfer (or
fransducer) function of o. That is, f: U(a) — V(n).

In short, the transfer function of a system maps the totality of
inputs of the system to the totality of outputs of the system.’ It
manifests the “processing” that the system undertakes.

IV. ON THE NATURE OF AND SOME
DYNAMICS OF SYSTEM DECOMPOSITIONS

In this section we develop the notion of a system decom-
position. In addition, we examine some dynamics of system
mpositions. Our purpose istwofold. First, we seek to show

[y ‘As_With Section IlI-E, this section may be skipped by those readers who
;h PI’II’ﬂ&j’Hy interested in our decomposition results in Section V.
: Whether the transfer function is a single-valued function or a multivalued
t""cﬁ()n (relation) depends upon how well the system has been “carved out”
s from jiy environment. A system state may map into two or more subsequent
fllt.e. because the domain of the transformation includes values of slate
Hbles for components in the environment of the system. In Section V we
. that internal transformations in a well-decomposed system will depend
% 2 on the values of state variables for components in the composition of
$ystem. Indeed, drawing the boundary of the system can be viewed as
position of a larger system (composed of the environment and the

similar to breaking the system itself up into subsystems.

Inventory
Management
Subsystem

Supplier

Revenue and
Receivablcs
Subsystem

Customer

Fig. 4. Graph of a decomposition of a system

the power of our basic concepts for building more complex
notions. Second, we lay the groundwork for examining the nature
of a “good” decomposition.

We begin with the notion of a decomposition, which we define
as a set of subsystems of a system where a) every element in
the composition of the system isincluded in at |east one of the
subsystems in the set, b) the (set) difference between the union
of the environments of the subsystems and the composition of
the system equal s the environment of the system, and c) each
element in the structure of the system is included in at least one
of the subsystems in the set. Thus, we have the following.

Definition 23: Let 7 be an index set, and let D(o) =
{z.},e; Where ., < 0. Then D(0) isa decomposition over &
iff C(o) = Uie;C(z,). : N

Corollary 23a: E(a) = U, E(.) = C(a).

Corollary 236: S(o) = U,e;S(x;).

To illustrate the notion of a system decomposition, consider
Fig. 4. The Fig. 1 system has been decomposed into two sub-
systems: an inventory management subsystem and a revenue
and receivables subsystem. It is a straightforward exercise to
show that these two subsystems constitute a decomposition of
the Fig. 1 system.

The concept of a decomposition leads naturally into the notion
of alevel structure over asystem. A level structure formalizes
the idea that sets of subsystems are “nested” within particular
systems which in turn are nested within other systems [29]. Thus
we have the following.

Definition 24: Let % be a set of systems. Let L be a partition of
Y L={L|i=1,---,n}withn> 1 Then L win be called a
level structure iff (Vi> 1), (Vz){z € L' = 3y € L' ' Ax < y).

Definition 25: Let D(o) be a decomposition of a system &.
D(a) will be termed a level structure of ¢ iff a partition L of
D(o) exists that is a level structure.

Corollary 25a: For every decomposition D(a) of asystem o,
{a}u D(r)isalevel structure.

Corollary 256: If D(s) is alevel structure of , then {o} U
D(o)is aso alevel structure.

The top panel of Fig. 5 shows the level structure for the
system decomposition shown in Fig. 4. (The bottom panel has
been added to show the composition of each subsystem.) The
decomposition comprises three (sub)systems: the accounting
system itself, and the inventory management and revenue
and receivables subsystems. The level structure comprises two
partitions: one, L', contains the accounting system itself; and the
other, L%, contains the two subsystems. For every system in the
second partition (:>1), note that each is a subsystem of some
system in the higher-level partition.
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When a system changes its state, we know that at |east one
subsystem in the decomposition of the system must have changed
its state. Indeed, we observe changes at the system level because
changes have occurred at the subsystem level. Thus, state changes
can be viewed as propagating upwards in the level structure.
Alternatively, we can take the view that changes at the system
level are reflected in some subsystems-in short, system-level
changes induce changes in subsystems. It is this propagation, or
induction, of changes in the system decomposition that manifest
the dynamics of the system. The dynamics of a decomposition
can be studied, therefore, in terms of how state changes in
the system decompose into state changes in the subsystems of
the system. Ultimately we evaluate whether adecomposition is
“good” via the characteristics of its dynamics.

We begin with the notion of the dtate space of a decomposition
of a system.

Definition 26: Let | be an index set and D(a) be a decom-
position over asystem 4. Then the possible state space of the
decomposition is the Cartesian product of the possible state
spaces of the subsystems that constitute the decomposition. That
is, S(D(0)) = ®ic1S(z.).

Notation 26a: Henceforth, S{D(e)) will be abbreviated to
S(D).

(No>tation 266: s! denotes the jth state of the ith system; s&
denotes the kth state of the system.

To illustrate this concept, consider, again, the accounting sys-
temillustrated in Figs. 4 and 5. To simplify matters, assume we
use only one state variable to describe the state of a subsystem:
Inv (dollar value of inventory) for the inventory management
subsystem: and Rec (dollar value of receivables) for the revenue
and receivables subsystem. Furthermore, assume the inventory
management subsystem can take on only three dollar value
states, S(z;) = {s, 5,53} = {0,100,200}, and the revenue
and receivables subsystem can take on only four dollar value
states, S{x2)={s}, s, 53, 53} = {0, 100,200, 300). Under these
assumptions, the possible state space of the decomposition of the
accounting system is:

S(D) = {(s1,53), (81,53). (81,3), (81, 83), (5. 82). (s, 83),
(s1,52), (s1,83), (51, 82). (8%, 82), (s2.3), (o1, 3) }
= {(0,0), (0, 100), (0, 200), (0, 300), (100, 0),
(100, 100), (100, 200), (100, 300), (200, 0),
(200,100}, (200, 200), (200, 300)}.

A fundamental relationship can now be articulated between the
possible state space of a system and the possible state space of a
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decomposition of the system. Specifically, we have the foligw
straightforward but important result.

Lemma 1: Let S(a) be the possible state space of a System
o, and let S(D) be the possible state space of adecomPOSition
over 7. Then for every state s € S(¢), there exists at least ope
state § € S(D).

Corollary: There exists a mapping from S(a) into the power
set of S(D), P(S(D))..

Notation 26c: Let s € S(o), d(s) = {6 | § € SD)
corresponds to s € S(0)}. d(s) € P(S(D)).

To illustrate Lemma 1, assume we represent the state of the
accounting system x; using asingle state variable: Asset (toty
dollar value of inventory plus receivable assets). Since the state
of the accounting system, s, is a simple function of the state of
its two subsystems, we have

ing '%’

d(sg) = {{s},52)}. ie, d0)= {(0. 0)}

d(s2) = {(s). 53, (s2,s})}. i€, d(100) ={(D,100),(100,0))

d(s3) = {(s].s3). (s2.s3).  ied(200) = {(0,200), (100, 100),
(3, 82) 1. (200, 0)}

d(sg) = {(s]. 83). (s}.53) i£,d(300) = {(0,300),(100,200),
(st s3)), (200.100)}

d(sg) = {(s}.s3), (s].63)},  1€,d(400) = {(100,300},(200,200}}

d(sg) = {(s1.s2)}. i€, d(500) = {(200,300)}.

In general, because we may choose different variables to
represent the state of a system and the state of a subsystem,
we cannot say the possible state space of the system is equat
to the possible state space of a decomposition of the system.
Nonetheless, we postulate that the possible state space of a
system can always be mapped into the possible state space of
adecomposition of the system in ameaningful way.

In this light, we can now show how events in a system reflect
events in its subsystems. To assist our exposition, we introduce,
first, some additional notation and alemma.

Notation 266: Let$€ d(s), § is astate of the decomposition.
Hence it has a component in each of the subsystems. Theith
component of 6, &, will be termed a projection of state s in
subsystem x,. Alternatively, let 6 = d’(s) be the jth element
of the set d(s). The projection 6, will be denoted by d?. The set
of projections{4;} of a state s on subsystem z, will be denoted
by d;(s).

yLen"rrZa 2. Let s # s" be two different states of . Then
d(s') nd(s")=0. That is, for every 6 € d(s') and §" € d(s"),
at least one subsystem z, exists such that §, # 6"

To illustrate the notation in the above example, let s' = $
and s” = s Thus, d(s) = {(s},s3), (s7,5y)} and d(s") =
{(s}, s3).(s%,53),(5%,52)}. 1t can be seen that none of the com-
binations for s; equals any of the combinations for s;.

Using this foundation, we now propose the notion of an
induced event. Intuitively, an induced event is an event that
occurs in a subsystem which reflects that an event has occurred
in the system. The notion of an induced event reflects that we
can view achange in the state of the system at the level of the
system or at some level of subsystems when the subsystems are
organized in a level structure. Nonetheless, a change of state in
the system must still be manifested as a change of statein at
least one of its subsystems. Thus we have the following.
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Definition 27: Let (s, s’} € E(n) be an event in the possible
event space of the system, and let d’(s) and d*(s') be correspond-
:ing States in S(D) (j and k are not necessarily distinct). Let d! ()
-and d¥(s') be the state of the ith subsystem when the system is in
states s and s', respectively. Then the pair {d’(s), d*(s’)) will be
“called an induced event on subsystem r, < o iff d!(s) # d*(s').
The induced event on the subsystem x, will be designated e, .

To illustrate the notion of an induced event, consider our

accounting system. Assume the event (s, sj) occurs; that is, total
assets change from $200 to $400. Assume d'(s3) and d*( s}) are
the corresponding states in S(D). In our example above, d*(s})=
{(s2,81)} = {(200.0)} and (s}) = {(s}.5})} = ((200200)).
Thus: d(s?) = &0 = 200; di(si) = sj = 0; di(sj) = 87 = 200;

@(s3) = s3 = 200. Since di(sy) = dj(s}), no induced event
kas occurred in the inventory management subsystem. However,
note that d3(s3) # d3(s)). Thus, in the revenue and receivables
subsystem, an induced event has occurred in light of the change
of system state. Consequently, we conclude the dollar value of
assets has risen by $200, not because the value of inventory has

3 risen, but because the value of receivables has increased.

Not every change of statein a subsystem will be manifested
£ as a change of state in the system. Since a system state may
i map into two or more subsystem states-that is, the cardinality
of d(s) may be greater than one-a change of subsystem states
£ may not be manifested as a change of system states. For ex-
« ample, assume the following event occurs in the decomposition:

((s}, 83). (s1, 82)). Note that an induced event has occurred in
both subsystems. However, since s3 = 200 maps into both states
of the decomposition, the change of subsystem states will not be
manifested as a change of system state. If a change of state does
occur in the system, however, we have the following lemma.

Lemma 3. For every event in the system, a least one subsystem

must exist in which an induced event occurs.

V. ON Goob DECOMPOSITIONS

In Section IV we defined the concept of a decomposition of a
sysem. In the CS and IS fields, this concept Serves two purposes.
First, it isused as a basis for understanding complex systems
{10). For example, a number of systems analysis methodologies
“factor” processes and data into lower-level processes and data
so the processes and data can be better understood {45]. Second,
decomposition is used as a basis for design {16], [17}, (33], [47].
For example, the so-called structured design methodologies rely
on the concept of decomposition for deriving program modules,
Which in turn form the basis for system implementation in
some programming language [46]. Similarly, relational da&abase
management theory uses a form of decomposition to identify
relations that are relatively independent of one another (8].

Irrespective of whether the purpose of decomposition is to
understand or to design systems, two fundamental questions must
be addressed. First, what is the nature of a good decomposition?
Second, how do we achieve good decompositions? While many
heuristics have been proposed to address both questions [2], { 12},
[16}-{20}, [28],[32),[35], [46]), [47), no general theory of decom-
Position has been developed that enables us to evaluate whether
these heuristics do, in fact, produce good decompositions.

Accordingly, to show the power of our ontological model, we
how use it to define precisely the characteristics of a particular

,,, type of decomposition that we hypothesize will allow analysts,

designers, and programmers to better understand systems. In

8 using our model for this purpose, we point out four important

sues that underlie our analysis. First, whether the concept of

decomposition we propose leads to a better understanding of
systems is an untested empirical issue. The psychological theory

needed to support our hypotheses is still poorly developed, and
the empirical research needed to test our predictions has not
yet been undertaken. Second, different types of decomposition
may be required to accomplish other purposes when designing
and implementing systems.” For example, the type of decom-

position needed to achieve efficient execution of systems on
parallel machine architectures may be at odds with the type
of decomposition needed to facilitate understanding of systems
[7}. Third, while our model allows existing decompositions
to be evaluated to determine whether they are good, at this
time it provides only limited insights on the matter of how
good decompositions should be generated in the first place.
Indeed, it is a moot point whether a complete set of prescriptive

rules for generating good decompositions can ever be generated

or whether the development of good decompositions, like the
development of good theoretical models, will inevitably rely on
intuition and experience. Finally, the primary contribution of our
model is that it allows a precise definition of our notion of a good
decomposition to be articulated. At first glance this contribution

may seem modest. However, we are unaware of any other work in

the CS and IS fields where the notion of a good decomposition
has been defined precisely.

A. Some Characteristics of a Good Decomposition

It is generally believed that system decompositions which
have “loosely-coupled” subsystems are easier to understand than
system decompositions which have “tightly-coupled” subsystems
(see, e.g., [46]). Therationale is that human problem solving is
constrained by cognitive limitations; thus, things are easier to
understand if they can be considered relatively independently of
other things. Unfortunately, the meaning of “loose coupling” has
remained somewhat obscure.

In this light, we use our model to make the notion of relatively-
independent (loosely-coupled) subsystems precise. In summary,
our model shows that subsystems are loosely coupled if the
events in the subsystem that arise as a result of inputs to the
subsystem can be defined independently of the states of other
subsystems in the decomposition. In addition, the model shows
that decompositions are good only with respect to a certain
set of transformations on the system. The designer’s task is to
identify the relevant set of transformations to consider during
the decomposition process.

We begin, then, with adefinition that will aid our analysis.

Definition 28: Let abe astate of subsystem z,. Then the set
of system states that map into a will be denoted by S,(a) =
{s |a €d,(s)}. S;(a) will ke called the subsystem equivalence
states with respect to a.

Notation 28: Let o = s*, the kth state of subsystem ;.
Sk = S.(sF).

To illustrate this concept, consider our previous accounting
system example. Recall the system is decomposed into only two
subsystems: the inventory management subsystem z, and the
revenue and receivables subsystem z,. Given the six states the
system can assume, the sets of subsystem equivalence states are:

S! = s, 85,5508

di(s5) = dis) = di(s5) = da(s) = § 0
{3t 55,80, S0 1 .
di(s5) = di(s) = di(sq) = di(s5) = $100

3 4 5 6.
{30»3073()*30}'

S;

§ =
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(qg) d (4&) ({f(s‘,;) =d ( ) = $200
S;= {shsh s} dz(*('») dy(st) = () =% 0
S: = {"(l q(u 3(1} dl(stzl) z(g&) d;(sa) = $100
S} = {s'”,sn, s‘“} dy(s3) = d5(s) di(s}) =$200
S, = {"'m‘“u- 5 } dl 0) d;(q';) = 45(83) =

In light of the concept of the set of subsystem equivalence
states, we now define the decomposition condition.

Definition 29: Let g be a transformation on a system, and let
S* be a set of subsystem equivalence states. The decomposition
condition holds for transformation g and subsystem x; if, for every
sk of x; astate s* of x, exists such that: s € $¥ = g(s) € S*,
k and j are not necessarily distinct (i.e., #isafunction of £ and
g and i but not of s).

Corollary 29: If the decomposition condition holds, then
di@ = d(s)) = di(g(s)) N di(g(s)) # 0.

In other words, for the set of al sysem dstates that map into the
same ith subsystem state, the decomposition condition requires
that the set of new system states which arise from an event
will also map into the same ith subsystem state. In short, for
the decomposition condition to hold, subsystems must “behave”
independently in the following sense. If we know that the ith
subsystem is in state y = d*(s) when the system is in state
s, we have sufficient knowledge to predict what the new state
z = d!(g(s)) will be

We formalize these notions in terms of the concepts of a
well-defined, induced transformation and a good decomposition.

Definition 30: Let g be atransformation on a system o. Then
the transformation g, induced on the subsystem r, < g iswell-
defined iff g, is a function, i.e, g,(s) =S A g(s)=s"= s =
s’ for every s,s',s" € S(z;).

Definition 31: A decomposition D(s) of a system is a good
decomposition with respect to a transformation g on the system
iff the transformation g induces a well-defined internal transfor-
mation g, in every subsystem x, of the decomposition.

Recall from Definitions 18 and 19 that we have identified two
types of events that can occur in a system: an external (input)
event and an internal event. Since external eventsin a system
arise from the actions of the environment, they may not be
described by awell-defined transformation. For example, given
a certain level of inventory, it may be impossible to predict
the new level of inventory that arises after an order has been
satisfied because the amount ordered cannot be predicted. Once
the external event has occurred, however, we require that the
subsequent internal events that occur in each subsystem be well
defined if the decomposition is to be good. In summary, although
external eventsin a system may not be well defined, all internal
events in a well-decomposed system must be well-defined.

B. An Example

To illustrate the notion of a good decomposition, consider once
more our accounting system example. Assume again that we
represent the state of the inventory management subsystem via
the state variable Inv and the state of the revenue and receivables
system via the state variable Rec. However, assume now that we
represent the state of the system viathe state vector (Inv, Rec).
Clearly, amapping H from the state of the system to the state
of the decomposition is trivial:
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H(sh) = H((s},5)) = {(s], 50} = {(0,0))
H(s}) = H((s:,sg)) {{s1, 83y} = ((0.100))
H(sh) = H((shs3) = {(s}.s)} = ((0,200))
H(s}) = H((S:,Sz)) {(91752)} {(0, 300}
H(sp) = H((st,s1)) = {(s] 81} = {(100,0)}
H(s)) = H((st,53) = {G1)} = {Q1 00,100)}
H(sq) = H({s}.53)) = {{s},s3)} = {(100,200)}
H(s) = H((s1.53) = {{si,2)} = {(100,300)}
H(s) = H((sh4) = {(shs)} = {(200,0))
H(s") = H((s},53) = {(s}, )} = {(200,100)}
H (s0')= H ({s, "2‘)) = {(5?7 2)} = { (200, 200)}
H(si) = H({s},53)) = {(s},s3)} = ((200,300)).

The set of subsystem equivalence states are

{"m 80, Sn» bn
d:(so) =
= {sh 805050 )3
d (s) = &, (s5) = d} (1) = ¢ (s5) = $100

3 _ 0112
S5y = {30 SRR }

di(s5) = di(s5) = di(sp) =§ O

d(s2) = d (s7) = d (s0) = d! (5 = $200
Sl ) ) - ) -t
{ 0,.5(;, 5(1)“}! dé(sg d ( ) = dé 3[1)0) = $100

( 3

= {*"u *;» s(,}
{51) QO* $o }

!
= dis}) = 4
o ]

Note, the set of decomposition states into which each system
state maps comprises only one element, i.e., {d(s)} = 1. Thus,
there is a one-one mapping (injection) between a system state
and a state of the decomposition.

Assume, now, that the organization which operates the ac-
counting system has only one customer and that the customer
always orders inventory in $100 lots as either a cash order or
acredit order. Replenishment of inventory occurs on aregular
time schedule as the organization produces inventory at its
manufacturing facility. From time to time, stockout situations
may occur if the customer orders more inventory than normal
during atime period.

Assume, first, that the organization has a policy of generating
a rush production order if a stockout Stuation occurs because it is
concerned about losing goodwill if it cannot meet a future order
from the customer. Rush production orders occur in $200 lots.
A transformation g' which effects an inventory replenishment in
light of a rush production order when the inventory level reaches
zero can be represented as follows:

g'((0,.)) = (200 %9((100 ) = (100,.);
)=(2

9'((200, ) 0, ).
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The transformation g' induces the following internal transfor-
mations on x;, the inventory management subsystem, and x-, the
revenue and receivables subsystem?

gi(0) =200 g(0) - 0

gl(100) = 100  ¢i(100) = 100

g (200) =200  ¢;(200) = 200
92(300)

Note that a well-defined internal transformation has been in-
duced in each subsystem. Thus, the decomposition is a good
decomposition under the inventory replenishment transformation.
Assume now that the organization changes its policy with
respect to stockout Situations. It will generate a production order
for stock replenishment purposes only if the credit limit of $200
has not been reached. It is not willing to bear the extra costs
associated with a rush production order if its customer isin debt
at or beyond the credit limit amount. Consider a transformation
& which effects the inventory replenishment under this policy:

2((200, 0)) = (200, 0), i.e., g*(
2({200, 100)) = (200, 100), i.e, g*(s
2({200, 200 = (200,200), i.e, ¢’(s') = o'
2({200,300)) = (200,300), i.e, ¢*(s’) = sy

¢({ 0, 0) = (200, 0), ie, g*(s) = 8
g*(( 0100) = (200, 100), i.e, g*(s2) = s
g*({ 0,200)) = (200,200, i.e., g*(s}) = s;
¢%(( 0,300)) = ( 0,300), i.e., g*(si) = st
¢°((100, 0)) = (100, 0), i.e., gQ(Sf;) = s
¢({100,100)) = (100, 100), i.e, g2(sg) PN
¢*({100, 200)) = (100,200, i.e, ¢*(s]) = s
¢%((100,300)) = (100,300), i.e., ¢*(s5) = $5
g'((
g
9

g°((

The transformation g2 induces the following internal transfor-
mations on the two subsystems:

g 0) = { 0,200} g;( 0) - O
91(100) = 100 93(100) =
9:(200) = 200 g:(200) = 200

g2(300) = 300.

Note, the induced internal transformation on the inventory man-
agement subsystem is not well defined. Moreover, it is easy
to show that the decomposition condition has been violated;
sgjecmcally sy € Sl and s§ € S} but g*(sy) = s € S} and

9°(s3) = s €S Thus the mventory management subsystem
does not behave independently because it is not always possible
to predict its new state given its current state. In short, the
decomposition is not good with respect to the replenishment
transformation under the revised policy.

To conclude, our model shows the “goodness” of a decompo-
sition must be evaluated with respect to a set of transformations.
The designer’s task is to choose the “relevant” set of transforma-
tions and to devise a decomposition that is good with respect to

®In the interests of simplicity, we have not considered the externa events
that might have given rise to the intema events. Assume, however, that they
&e customer orders that deplete the inventory when they are sdified.

each transformation in the set. We have not shown how this task
can be undertaken in this paper, but the answer lies in identifying
which couplings are important under each transformation that is
of interest. This issue has been addressed elsewhere [31], [41].

VI.

Asweindicated in the introduction to this paper, two major
tests of the quality of a model are its ability to facilitate
understanding and to aid prediction. In terms of understanding,
we believe our model clarifies some previously fuzzy but funda-
mental congtructs in the CS and IS fields. It aso shows rigoroudy
how these constructs are related to one another. In addition,
elsewhere we believe we have used the model successfully to
analyze the meaning of concepts like batch systems, red-time
systems, system controls, data, programs, abstract data types,
and objects [37]-[40]. An important attribute of these analyses is
that they have been independent of implementation or technology
considerations. Thus, we believe they will prove to be robust in
thelong run.

In terms of prediction, we have used the model to forecast the
locus of control and audit procedure change when an information
system is modified {40] and to identify some necessary attributes
of a good requirements specification [39], (42]. In light of the
analysis of the characteristics of a good decomposition that we
have undertaken in this paper, we believe the model can now
be used to make predictions about the efficacy of the various
decomposition rules and heuristics that have been proposed in
the literature. For example, we can address the question of
how well functional decomposition, data flow decomposition,
and data structure decomposition meet the requirements of a
good decomposition that have been articulated in this paper. Our
current research is directed toward these issues.
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