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An Ontological Model of an Information System
Yair Wand and Ron Weber -”

Abstracf-Theoretical  developments in the CS and IS disciplines have
been inhibited by inadequate formalization of basic constructs. IO this
paper we propose an ontological  model of aa information system that
provides precise definitions of fundamental concepts like system, subsys-
tem, and coupling. We use this model to analyze some static and dynamic
properties of an information system and to examine the question of what
constitutes a “good” decomposition of an information system.

Index Terms-Cohesion, coupling, decomposition, hierarchy, level
structure, subsystem, system.

I .  I N TRODUCTION

THE computer science (CS) and information systems (IS)
fields are replete with fundamental  concepts that  are poorly

defined.  For example,  concepts l ike system, subsystem, module,
object, interface, coupling, cohesion, hierarchy, input, output,
environment, and decomposition are central to many theories
in both fields, but inevitably they have not been articulated
rigorously. In the absence of carefully formulated foundations,
fields are unlikely to progress quickly. We concur with Pamas
[30, p. 191 who observes: “The use of . . . fuzzy terms (in
computer  science)  is  not  merely s loppy wording;  i t  prevents  .  .  .
the systematic analyses made possible by precise definitions.”
Moreover, we believe the current debate on the status of both
the CS and IS f ields reflects  that  progress has been undermined
substantial ly by inadequate formalizat ion of  basic constructs  [9],
1251, 1431.

In this paper we propose a formal model of an information
system. We have three primary objectives. First, we seek to
define a set of core concepts that can be used to describe the
structure and behavior of an information system. Ultimately,  we
hope these concepts will allow the similarities and differences
between many constructs used in the CS and IS fields to be
elucidated. Second, we seek to better understand the static and
dynamic properties of information systems. In this respect  we are
viewing information systems as objects  (ar t i facts)  to be studied
in their own right, independently of the characteristics of their
users, the organizations in which they are employed, or the
technologies used to implement them [38], [43].  Third, we seek
to make predict ions about  information systems based upon their
static and dynamic properties. For example, we have sought to
use our model to predict the behavior of information systems
based upon the characterist ics of al ternative decomposit ions of
the system [41]  and to predict  the consequences of changes to the
information system for  the rel iabi l i ty of  controls  that  have been
implemented in the information system [40]. In short, we have
the usual  goals  for  any model:  understanding and predict ion.
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Our approach is to model information systems within the
context of a theory of ontology that is a modification ar,d
extension of one developed by Bunge [5],  [6].  Because ontology
is concerned with the structure of the real world,  i ts  relevance to
the CS and IS fields is twofold. First, since information systems
themselves are models of  the real  world,  ontology identif ies the
basic things in the real world that information systems ought  tr,
be able to model. Second, since information systems are ~
things in the real  world,  ontology provides a  basis  for  modeling
information systems themselves  [3],  [4].  Elsewhere we have used
ontology in the former way [42].  In this paper, we use ontology
in the latter way.

Our approach differs from a number of other attempts to
provide formal bases for modeling CS and IS constructs. For
example,  specification languages such as Z and VDM seek tp  pro.
vide a formal notation that  describes the propert ies an informatiorr
system must  have without  being constrained by implementatio,,
considerations [15], [ 181, [34].  Unlike our approach, however,
they do not seek to define a set of core constructs that underlie
the CS and IS fields. Users of formal specification languages
are assumed (implicitly) to know these constructs at the outset.
The languages can then be employed to express these constructs
precisely.  While r igorous specif icat ion of  information systems is
clearly an important goal,  we see our objectives in modeling core
constructs  as being more fundamental .

The remainder of the paper proceeds as follows. Section II
provides a brief review of some major types of information
systems formalisms that  bear on our goals  and their  respective
strengths and weaknesses relative to our model. Section 111
articulates some of the fundamental notions that underlie our
model.  Section IV uses these basic notions to examine the nature
of  and some dynamics of system decompositions. Section V
provides several  insights  into the model’s  predict ive power via
an analysis of some properties of good decompositions. In
particular, we show how our model formalizes the intuitive
notion that  good decomposi t ions have subsystems that  behave
relatively independently of one another. Finally, Section VI
presents s u g g e s t i o n s  for further research and our conclusions.

II. PRIOR  R E S E A R C H

The motivation to formalize system concepts is not just
confined to the CS and IS domains. It is common to fields
like engineering [ll], cybernetics [44], b io logy [23], physio logy
[36], architecture [l],  and general systems theory (211.  Bun@
[6]  provides a brief  review of the major types of system models
that  have been proposed.

In the CS and IS fields, however, there now seems to be
widespread acceptance of formal models that view sy~km

(programs) in terms of their  specifications:  specifically,  as a pair
of input and output assertions; or as a function mapping in@
states  to output  s tates;  or  as  a  relat ion between input  and output
states [12], [20], [22], [24], [35].  In turn, stufees  are conceived as
mappings between system (program) identif iers and values [ 131.
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$ While these types of  models  have provided valuable insights
‘into  such problems as design decomposition and proofs of
$rogram correctness, they are essentially black-box models.
IAccordingly,  they suffer the limitations of all black-box models
@ terms of our goals of understanding and predicting system
:&havior  [6].  For example, since they do not model the internal

structure of a system, the relationship between the overall  behav-
ior  of  the system and the behavior  of  i ts  internal  components  is
diff icult ,  i f  not  impossible,  to analyze.

To illustrate the problems of using these black-box models,
consider  the object ive of  at taining a  good design decomposi t ion
during system implementat ion.  If ,  say,  the system to be designed
is  conceived as a mapping between input and output states,
various design decomposit ion rules can be derived based upon
well-known mathematical  resul ts  for  decomposit ion of  functions
(141, [22].  The subfunctions that arise from the decomposition
can  be conceived as subsystems of the system. A control hi-
erarchy can then be defined among the function (system) and

subfunct ions (subsystems) [  141. Under this conceptualization,  the
focus is  on what the system is  supposed to achieve rather than
bow i t  achieves i t .

On the other hand, if the system is conceived as a hierarchy
;-of  modules, our focus shifts to internal structural matters. A
bprogrammer,  for example, spatially arranges the various compo-
-iaents  of the system (e.g. ,  program instructions and variables) and
i~~nnects  them via a control  structure so they execute in part icular
:‘f@quences.  Programmers are admonished to achieve objectives

like loose coupling between modules and t ight  internal  cohesion
_ Within a module [26],  [46].

With current systems formalisms that we have available,
however, the mapping between the external view (what is to

.be  accomplished) and the internal view (how it is to be accom-
“@shed)  is not clear-cut. How do we know, for example, that
‘we  have chosen and implemented subfunctions in such a way
that the resulting modules are internally cohesive and loosely

coupled?  Indeed, as Bergland [2,  p. 351 points out in his review
of decomposi t ion methodologies , “al l  of  the methodologies rely

v on  some magic.”
We propose that the quali ty of the mapping between external

ad  internal views of the system can only be examined and
evaluated when we have an integrated formalism for both views.

,.$urrently,  we have well-developed formalisms for only the
-external  view. However, formalisms that address the internal

view  (e.g. ,  concepts l ike coupling) are poorly developed [2].
In summary, we argue that current CS/IS  systems formal isms

for viewing systems are deficient in that they primarily use
black-box rather than white-box models.  Unti l  r igorous white-box
models  of information systems have been developed,  progress in

c %veloping  mappings between requirements specifications and
mplementation  structures will be impeded. In the model we
develOp  below, we seek to provide the rudiments of a white-
box model that can a) accommodate current formalisms which
View systems as mappings between inputs and outputs, and

, b, r igorously describe the internal  s tructure of  systems.

i
i III. B A S I C  N OTIONS

i h~  this section we develop some basic ontological notions
to analyze certain static and dynamic properties of

ion systems. To achieve generality, we formalize the
using standard mathematical  notation.  Our experience
e concepts,  once understood, can easily be translated

e syntax of a formal specification language like Z.
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T A B L E  I
STATE  DESCIWTION  OF FIVE THINGS

Thing Property State Variable

Inven tory  I t em Item  N u m b e r
Q u a n t i t y - o n - H a n d
U n i t  P r i c e
I t e m  D i s c o u n t  (%)

Item-No

QOH
Unit-Price
Discount

C u s t o m e r  O r d e r O r d e r  N u m b e r
C u s t o m e r  N u m b e r
Item  Number
Quant i ty  Ordered
Q u a n t i t y  S u p p l i e d
Sales Pr ice
S a l e s  A m o u n t
Date
Processed Flag

Order-No
Cut-No
Item-No
QtyOrd

QWUP’
Sole-Pr
Sale-Amt
Date
Proc

C u s t o m e r  A c c o u n t C u s t o m e r  N u m b e r
C u s t o m e r  A d d r e s s
B a l a n c e  D u e
C r e d i t  L i m i t

Cust-No
Cut-Add
B&-Due
Cr-Limit

C u s t o m e r  R e p a y m e n t C u s t o m e r  N u m b e r Cust-No
R e p a y m e n t  A m o u n t Amount

Date Date

Processed Flag Proc

I nven tory
R e p l e n i s h m e n t

S h i p m e n t  N u m b e r
I t e m  N u m b e r
Date
R e p l e n i s h m e n t  A m o u n t
Processed Flag

Ship-No
Item-No
Date
Replen
Proc

A. Things, Properties of Things, and States of Things

The elementary notion in our formalism is  a thing.’  We define
first  the state space of a thing (definit ions taken from or adapted
from Bunge [5],  [6]  are starred “*“).

Definition I *: Let  X be a thing modeled by a functional schema
X, = (M, p),  and let each component of the function

represent a property of X. Then F,,  1 5 i < n, is called the ith
s ta te  funct ion (variable) of X, E is  cal led the to ta l  s ta te  funct ion
ofX,  and S(X) = {(z,,.‘.,~,)  E V, c~...c~V,,[LZ,  = F,(M)}
is called the possible state space of X.’

To illustrate our formalism, Table I shows a state description
for five things: an inventory item, a customer order, a customer
account,  a customer repayment,  and an inventory replenishment.
Note that Table I shows only one possible state description of
the things. For example, we have not used state variables to
describe the physical dimensions of the inventory item thing.
In this respect,  we have chosen a specific funct ional  schema to
reflect  our part icular  purposes (simplici ty)  in modeling a subset
of the real  world.  In short ,  our formalism recognizes that  absolute
state variables do not exist .  Instead, state variables are chosen to
reflect our knowledge, goals,  views, etc. ,  at  some time. Moreover,
different observers of the same thing may choose to model it
differently.

‘ N o t e ,  w e  d o  n o t  e q u a t e  t h i n g s  w i t h  o b j e c t s .  E l s e w h e r e  w e  h a v e  a r g u e d
tha t  ob jec ts  a re  spec ia l  t ypes  o f  th ings  [37].  A l l  o b j e c t s  a r e  t h i n g s ,  b u t  o n l y
some types  o f  th ings  a re  ob jec ts .

‘The n a t u r e  o f  t h e  d o m a i n  M  i s  s o m e t i m e s  c o m p l e x .  I n  systems  t h e o r y  i t
i s  o f t e n  c o n s i d e r e d  10  b e  a  s e t  o f  t i m e  i n s t a n t s ,  o r  t h e  C a r t e s i a n  p r o d u c t  o f  a
set  o f  re ference  f rames and the  rea l  l ine  15.  p .  1?0].
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The possible state  space of the inventory item thing would
be represented by the set  of  al l  combinations of values that  the
state variables might assume-the Cartesian product (represented
by 8) of the ranges of the state variables.  Furthermore,  the state
space of a thing must be modeled so it includes all possible states
that  the thing might  assume from the beginning to  the end of  i ts
life. For the inventory item thing, for example, we must choose
a total  s tate  funct ion F so that  some subsets  of  the state space
reflect  that  the values of state variables describing the inventory
item have been updated and others reflect new state variables
have been chosen to describe the inventory item. This view of
the state space of a thing reflects what Bunge (5,  p.  221) calls the
principle of nominal invariance: “a thing, if named, shall keep
its name throughout its history as long as the latter does not
include changes in natural kind--changes which call  for changes
of name.”

B. Laws and Lawful States

We proceed, now, to recognize that not all  states of a thing are
lawful. The values of the attributes of a thing may be restricted
by various rules,  and these rules define the lawful state space of
a thing.  We begin with the notion of  a law s ta tement .

Definition 2*:  Let X, = (M,F)  be a functional schema
for a thing X. Any restrictions on the possible values of the
components of E and any relation among two or more such
components is called a law statement, I(X)  E  L(X). Thus,
l(X)  : v, c%3  * .f @ v, --t  {unlawful, lawful}.

Laws reflect either natural or artificial constraints imposed
upon things.3  For example: 1) the QOH state variable of the
inventory item thing might be restricted to values that are zero
or posit ive (a natural  law);  2) the Discount  state variable may be
related to the Unit-Price state variable (an artificial law). Thus,
laws provide information about things. As such, they are also
properties of things. Accordingly, if we choose, laws can be
modeled via the total  s tate  funct ion used to describe a  thing.

Since we postulate the existence of laws, we recognize that
only a subset of the possible state space of a thing may be
deemed lawful.

Definition 3*: Let X, = (M, F)  be a functional schema for
a thingX,  where p  = (F],..-,F,) : M + V, @...@JV,  is the
total  s tate  function,  and let  L(X)  be the set  of  al l  law statements
on X. Then the subset  of  the codomain V restricted under L(X)  i s
called the l awfu l  state  space of X in the representation X,.  That
is, SL(X)  = {(z,,...,z,,)  E V,  @...@V,  1 F satisfies every
l(X) E L(X)l.

Thus,  the lawful  s tate space of  the inventory i tem thing would
include all combinations of state variable values that we deem
allowed.

C. Events ,  History,  and Coupling

When a thing undergoes change, the value of at  least one of
i ts  propert ies must  al ter .  A change of state consti tutes an event.

Definition 4*: An ordered pair (s, s’),  where s,  s’  E S(X),
will be called an event.

However, not all changes of state are lawful, and so not
all events are lawful. We define, first, the notion of a lawful
transformation.

Definition 5*: Let SL (X) be the lawful state space of a thing X.
We denote by GL(X)  the set  of  t rans format ions  from the lawful

3Laws  c o r r e s p o n d  t o  t h e  n o t i o n  o f  i n v a r i a n t s  i n  Z .

state space into i tself  that  are given as luwfil in  the system. -fhat
is, GL(X)  C_  S,(X) @ S,.(X).

Hence we have the following.
Definition 6*: Let S,(X) be the lawful state space of a

thing X,  and let GL(X)  be the set of lawful transformations
on the state space into itself. Then  a lawful  event b  x k
represented by the ordered pair (3,  s’), where s,s’ E s,(x)
and s’ = g(s),g  E GL(X)-

Corol lary  6*: The lawful  event  space of a  thing X is  the set  of
ordered pairs: El,  = GL(X)  f~ [S,,(X)]‘.

To il lustrate these concepts,  consider again our inventory item
thing.  Assume at  some t ime the s tate  funct ions for  the inventory
item thing map it into the following values: Item-No =  pl.
QOH = 10; Unit-Price = 15.00; Discount = 5. Thus, s =  (PI:
10, 15.00, 5).

Assume, also, that one lawful transformation on this
state updates the value of QOH in light of an inventory
replenishment. For example, if 5 more units of inventory
are received, the following lawful event occurs: (s,~‘)  =
((P1,10,15.00,5),(Pl,  15,15.00,5)).  Thus,  a subset of the
lawful event space for the inventory item thing includes all
events that arise as a result of an inventory replenishment and the
“fir ing” of  the lawful  inventory replenishment transformation.

Changes of state manifest  a his tory  of a thing. Thus we have
the following.

Definition 7*:  Let X be a thing modeled by a functional schema
X, = (M, P),  let t E M, t > 0 be a time instam.  Then a h&dry
of X is the set of ordered pairs, h(X) = {(t,F(t))}.

In turn, the notion of a history allows US to determine when
two things are bonded or coupled to each other. Intuitively, if two
things are independent of each other,  they will  have independent
histories.  If  they are coupled in some way, however,  at  least one
of  the things’  his tory wil l  depend upon the other  thing’s  his tory.
Thus we have Definitions 8 and 9.

Dejinition  8*:  A thing X acts on a thing Y, denoted X D Y
if h(Y / X) #  h(Y).

Definition 9*: Two things X and Y are couple4  denoted
B(X,Y), iff (X D Y) V (Y D X).

To i l lustrate  these notions,  consider  the inventory i tem and the
customer order shown in Table I .  If  the customer order represents
a sale of inventory to a customer, the states of the inventory item
will  depend upon the states of the customer order.  Thus,  the two

things are coupled.

D. Systems and Subsystems

The notions of things and couplings enable us to define
precisely the concept of a system. Intuit ively,  a  system comprises
a set of things where each thing in the set is coupled to at least one
other  thing in  the set  and where,  in  addi t ion,  i t  i s  impossible  to
partition the set of things such that the histories of the two parti-
t ions are independent of each other.  Thus we have the following.

Definition 10:  Let C be a set of things, and let Bc  =
{(X,Y)JX,Y E CA B(X,Y)}.L.et  ~(C,B~)beagraph,where
C is the set of vertices (things) and Bc  is the set of edges
(couplings). Then cr(C,  &) is a system iff it is a connects
graph. Henceforth, u(C,  B,)  will be denoted by 6.

Fig.  1 is  a  graph of  a  system. Consider  the various couplings
that  exist .  Firs t ,  the order  thing is  coupled to the inventory item
thing and the customer account thing.  When the order occur%  the
value of Qty-Sup1  depends upon the value of QOH. The  quantity
ordered can only be supplied if there is sufficient inventory On
hand. Furthermore, the maximum discount that the salesperson
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Fig. 1. Graph of a system.

Fig. 2. Graph of an aggregate.

can give to a customer is  given by Discount .  Thus,  Sale-Pr i s  a
function of Unit-Pr and Discount. The order will be filled only
if  the sales amount is  less  than or  equal  to the customer’s credit
limit  less their balance due. Thus, Qfy-Sup1  is also a function
of G-Limit  and Bal-Due. Second, the inventory item thing is
coupled to the inventory replenishment thing.  When inventory
replenishment occurs,  the quanti ty-on-hand is  updated with the
value of the replenishment amount. Thus, QOH is a function
of Repfen.  Third, the customer account thing is coupled to the
customer repayment thing. When a repayment occurs,  the value
of balance due is decreased. Thus, Bal-Due is a function of
A m o u n t .

Thus, all things in Fig. 1 are coupled to at least one other thing.
Moreover, it is possible to “walk” from one thing to another thing
via the arcs.  In Fig.  2,  however,  each thing is coupled to at  least
one  other thing, but the set of things can be partitioned SO the
histor ies  of  A and B are independent of the histories of C, D, and
f% Thus, Fig. 2 shows two disjoint systems. It is an aggregate
but  not a system.

Unfortunately, the transition to defining the concept of a
subsystem is not straightforward. We must begin by defining
the not ions of  the composit ion,  environment,  and s tructure o f  a

system.
i.. Definition II*: Let  u be a system. Then:
I a)  the composition of o at time t is the set of things in u at t:

.L
C(u,t)={x~xEu}

b)  the environment of B at time t is the set of things that are
not  components of u but which act on or are acted upon by
Components of d at t:

16 = { 2 I x # &, t) A W(Y E @, t) A B(x, Y)) }

c) the structure of u at time t is the set of couplings among
the components of  u  and among them and the set  of  components
in the environment of o at t:

$7,  t) = {R, E  &,  t) u &u,  f)}

where

B(u, t) = { B(z,  y)i’x,  y E  c(a.  t)}

&G>  = (B(w)  I 5 E  qu.  t)  A y E  E(n. I,}

To illustrate these notions, consider the Fig. 1 system. Its
composition comprises five things: inventory item, customer
order, customer account, customer repayment, and inventory
replenishment. The environment of the system comprises two
things: customer and supplier. Customer is coupled to order,
customer account,  and customer repayment because customers
place orders,  change addresses, and make repayments. Supplier
is  coupled to inventory replenishment because suppliers  supply
inventory. Finally, the structure of the system comprises a) the
internal bondings 8, between order and inventory item, order
and customer account, inventory item and replenishment, and
customer account and repayment,  and b) the external bondings
& between supplier and replenishment, customer and order,
customer and customer account,  and customer and repayment.

Given the concepts of composit ion,  environment,  and structure,
we now define a subsystem as a  system whose composi t ion and
structure are subsets of  another system and whose environment is
a subset  of  those things that  are in the environment of  the system
plus those things that are in the composition of the system but
not  in  the  composi t ion of  the  subsystem.

Definition 12*:  Let u be a systeq  with composition (?(a, t),
environment ,??(a,  t), and structure S(u, t) at time t.  Then x is a
subsystem of u,  denoted x 4 O,  iffz

a) x is a system at time t,  and
9

[cc,, t) c qu. t)]
A [E(x, t) c {l&J, t) u { qu, t) - 6(x, t,} }]

A [S(x, t) c S(d)].
Notation 12: If x is a subsystem of u,  then u is a supersystem

of x.
To i l lustrate these notions,  consider a  system that  comprises

inventory item, replenishment, and their bonding. This sys-
tem, which we might call the inventory management s_ubsys-
tern,  is  a  subsystem of  the Fig.  1  system. I ts  composi t ion C(z)  =
{inventory i tem, replenishment},  is  a  subset  of  the composi t ion
of the Fig. 1 system. Its environment, J??(X)  = {supplier, order},
is  a  subset  of  the things that  are in the environment of  the Fig.  1
system plus  those things that  are  in  the  composi t ion of  the  Fig.  1
system but  not  in  the composi t ion of  the inventory management
subsystem. Its structure, s(s)  = {(inventory item, replenish-
ment), (replenishment, supplier), (inventory item, order)}, is a
subset  of  the s tructure of  the Fig.  1  system.

E.  Equi l ibr ium 4

Systems can be in stable or  unstable states.  Since both types
of state are important from the viewpoint of examining system

4This  sec t ion  may  be  sk ipped  by  those  readers  who are  pr imar i ly  in te res ted
i n  o u r  d e c o m p o s i t i o n  r e s u l t s  i n  S e c t i o n  V .
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dynamics, we develop the notion of a system equilibrium. We
propose two types of equilibrium: a static equilibrium and a
dynamic equilibrium. Each is simply a specific instance of a
more general concept.

Definition 13: Let u be a system, and let G’ c  G(o) be a
subset  of  the set  of  t ransformations on the possible state space
S(a). Furthermore, let  S’(n) s  S(a) be a subset of the possible
state space of the system. Then u is in equilibrium in the
region S’(a) with respect to the set of transformations G’(a)
iff (Vs E S’(a)), (Vg E G’(C)),  s’ = g(s) and s’  E S’(o).  Note,
for some transformations, s’ may equal s.

Corollary 13~:  A state s  E S(a) is stub@  with respect to the
set of transformations G’(cr)  iff (Vg E G’(o)),  g(s) = s.

Corollary 13b: A state s  E S(a)  is unstable with respect to
the set of transformations G’(u) iff (39 E G’(u)), g(s) #  s.

Corollary 13~:  A system (T  is in a static equilibrium in the
region S’(a) with respect to the set of transformations G’(a) iff
(Vs E S’(a)), (Vg E G’(a)), g(s) = s.

Corol lary  13d:  A system (T  i s  in  a  dynamic equi l ibrium in  the
region S’(a) with respect to the set of transformations G’(a) iff
it is in equilibrium and (3s E S’(a)), (39 E G’(a)), such that
g(s) z s.

To i l lustrate  the not ion of  a  s tat ic  equi l ibr ium,  consider again
the Fig. 1 system. Assume we focus on the transformation
that updates QOH for the inventory item in light of a new
replenishment from a supplier. (Below we call this “the replen-
ishment transformation.“) When a new inventory replenishment
is received, the state of inventory replenishment will change.
In particular, the value of Proc  (Processed Flag) will indicate
the replenishment has not been processed. This new state is
unstable because a transformation exists  that  wil l  change i t .  The
transformation wil l  update the value of  QOH and set  the value of
Proc  to indicate the replenishment has been processed. Once the
replenishment has been processed,  the system will  once again be
in a stat ic  equil ibrium. Indeed,  with respect  to the replenishment
transformation,  the system is  in a  stable  s tate .

To i l lustrate  the not ion of  a  dynamic equil ibrium, cons ide r  a
situation where several orders are received from customers for
the inventory i tem. As the orders deplete the quanti ty-on-hand,
the inventory i tem moves through a set  of  s tates .  Providing the
set of states are included within some u  priori defined set of
states that for some reason are of interest, the system is in
a dynamic equilibrium. However, once a state arises that is
not within the a priori defined set, the system is no longer in
equilibrium. For example, an order may deplete the quantity-on-
hand to zero so that customer orders can no longer be filled. If
the inventory item state where the quantity-on-hand is zero is
not a member of the o  pr ior i  defined set  of  s tates,  the system is
in disequilibrium.

There are two reasons why a system may move from either
a static equilibrium or a dynamic equilibrium. First, an environ-
mental  component may act  upon a system component to change
its state. Second, a transformation exists that is not within the
subset  of  t ransformations being considered.

Historical ly,  the tendency of  systems to move toward a s tat ic
equil ibrium because of  the act ion of  t ransformations on unstable
states has been called homeostasis 1231. In this light, note
that unstable states are not necessarily unlawful. Lawfulness
and stability are two different properties of a system state
(Fig. 3).

5Stable  states correspond IO  the notion of fixed pints described in [7,
p. lo].

Fig. 3. Lawfulness  and stability as disjoint properties of states.

F. Inputs,  External Events,  and Internal Events

Systems are usually of interest  because they accept inputs and
transform them into outputs. To formalize these notions, we begin
with the not ion of  an input  component .

Def in i t ion  141  Let x E  C(U).  Then x is  an input  component  of
u iff 3y, y E E(a) such that y D x.

In other words, a thing is an input component of a system
if it is acted upon by an environmental thing. For example,  m
Fig. 1, order is an input component because customer can act
upon order to change i ts  state.

Input components must be distinguished from input states.
First we have Definition 15.

Def in i t ion  lS*: Let x and y be two things such that  x acts  on
y. Then the total action of x on y is A(z,  y) = h(y  1 z) - h(y).

The total action of one thing on another thing is the set of
states indexed by t ime that  ar ise with the lat ter  by vir tue of  the
existence of the former.  This concept leads to the notions of the
totality of input for an input component and a system and an
input state of a system.

Definition 16: Let x be an input component of CT.  Then the
totality of input of x is the set of environmental actions on x:
U(x)  = U A(Y,x).

YEE(O)
Corollary 16: The totality of input of u is the set of ail

environmental actions on all input components of 6: U(b) =
lJ U(z)  where x is an input component of cr.

rECc-1
Definition 17: Sl(a)  = {p(t)  j<t,F(t)>E  U(a)} is the set

of input stares  of a system 0.  s E  S,(U) is an input state.
The concept of  an input state leads to the notion of an external

event and an external  t rans format ion.
Definition 18: An event <s,s’>  is an external event if?

s’  E S , ( u ) .
Corollary 18: A transformation g is an external transformation

iff s’  = g(s) and s’ E S,(a).
To i l lustrate these concepts ,  the total i ty of  input  of  the order

thing in Fig.  1  is  the set  of  s tates  of  the order  thing indexed by
time that arise because the customer places an order.  The totality
of input of the system is the (set) union of the totality of input of
the order thing,  the total i ty of  input  of  the repayment thing,  and
the totality of input of the replenishment thing. An input state
of the order thing arises by virtue of the action of a customer.
When an input component changes state because of the action of
an environmental component on it, the resulting event is called  an
external ( input) event.  For example,  when the state of the S&s-
Amt state variable of the order component changes from, say,
zero dollars to $200 to reflect a customer has placed an order,
this event is  an external event.  The transformation that  evokes
an external event is an external transformation.



Finally we have the notions of an internal  event and an internal
transformation.

Definition 19: An event <s,  s’>  is an internal event iff
5’ $2 S,(g).

Corol lary  19:  A transformation g is  an in ternal  t rans format ion
iff s’  = g(s)  and s’  4 S,(a).

Internal events arise as a result  of external events.  For example,
in  Fig .  1 a customer may place an order.  The state of the system
changes to reflect the external event that has occurred. If the
resulting state is unstable, an internal event (or sequence of
internal events) then occurs to restore the system to stability.
For example,  as a result  of the order,  inventory is  depleted and
the customer’s account is updated. Internal transformations effect
these events .

S. Outputs  and Transfer  Funct ions’

Output concepts are similar  to input  concepts.  We begin with
the notions of an output co-mponent  and the totafip  of output.

Definition 20: Let r E C(o).  Then x is an output component
of cr iff 3y,  y E E(n)  such that z D y.

In Fig. 1, order is both an input component (as discussed
above) and an output component. It is an output component
because the confirmation or rejection of an order affects the
state of customer (e.g., by altering the value of a property of
the customer such as amount of cash they have in the bank).

Definition 21: Let x be an output component of n.  Then
the totaliry  of output of x is the set of all actions of x on the
environment of IT: V(x)  = IJ  A(s,y).

YEaa)

Corollary 21: The totality of output of c  is the set of all
actions of output components of (T  on the environment of cx
V(u) = u  V(x).

ret’
The  totality of output of the order thing is the set of states
Of  the customer thing that arise because orders are confirmed or
rejected.  Since we assume no other system output ,  the total i ty of
Output  of  order  is  a lso the total i ty  of  output  for  the system.

The concepts  of  input  and output  give r ise  to  the not ion of  a
system  transfer finction.

Definition 22*: Let (T  be a system, and let U(o) #  0  and
V(U)  #  0. Then the function f that maps the totality of inputs
Of  u to the totality of outputs of cr is called the transfer (or
tranrducer)  function of 0. That is, f: U(o) + V(n).

In short ,  the transfer  function of  a  system maps the total i ty of
$tns  of the system to the totality of outputs of the system.’ It
manifests  the “processing” that  the system undertakes.

IV. ON THE NATURE OF AND SOME

DY N A M I C S O F  S Y S T E M  D E C O M P O S I T I O N S

In this section we develop the notion of a system decom-
position. In addition, we examine some dynamics of system
(leccmipositions.  Our purpose is twofold. First, we seek to show

‘Aa  with  S e c t i o n  I I I - E ,  t h i s  s e c t i o n  m a y  b e  s k i p p e d  b y  t h o s e  r e a d e r s  w h o
j&e Primari ly  i n t e r e s t e d  i n  o u r  d e c o m p o s i t i o n  r e s u l t s  i n  S e c t i o n  V .

%’  ‘Whether  t h e  t r a n s f e r  f u n c t i o n  i s  a  s i n g l e - v a l u e d  f u n c t i o n  o r  a  m u l t i v a l u e d
Le  ( r e l a t i o n )  d e p e n d s  u p o n  h o w  w e l l  t h e  s y s t e m  h a s  b e e n  “ c a r v e d  o u t ”

rk~  e n v i r o n m e n t .  A  s y s t e m  s t a t e  m a y  m a p  i n t o  t w o  o r  m o r e  s u b s e q u e n t
t- because t h e d o m a i n of the t r a n s f o r m a t i o n inc ludes  va lues  o f  s la te

Fig. 4. Graph of a decomposition of a system

the power of our basic concepts for building more complex
notions.  Second, we lay the groundwork for examining the nature
of a  “good” decomposit ion.

We begin with the notion of a decomposit ion,  which we define
as a set of subsystems of a system where a) every element in
the composition of the system is included in at least one of the
subsystems in the set ,  b) the (set)  difference between the union
of the environments of the subsystems and the composition of
the system equals the environment of the system, and c) each
element in the structure of  the system is  included in at  least  one
of the subsystems in the set .  Thus,  we have the fol lowing.

Definition 23: Let I be an index set, and let D(g)  =
1x1 IL,,, where 2, < (T. Then D(o) is a decomposition over (T
iff C(u)  = U,cfC(x,).

Corollary 23a: e(0)  = UIEIC(~,) - C(c).
Corollary 236: S(o) = UsEIS(
To illustrate the notion of a system decomposition, consider

Fig. 4. The Fig. 1 system has been decomposed into two sub-
systems: an inventory management subsystem and a revenue
and receivables subsystem. It is a straightforward exercise to
show that  these two subsystems const i tute  a  decomposi t ion of
the Fig. 1 system.

The concept  of  a  decomposit ion leads natural ly into the notion
of a level structure over a system. A level structure formalizes
the idea that sets of subsystems are “nested” within particular
systems which in turn are nested within other  systems [29]. Thus
we have the following.

Def in i t ion  24:  Let  C be a set  of systems. Let L  be a part i t ion of
C:L={L’(i=l,.*. ,n} with n > 1. Then L will be called a
level structure iff  (tli  > l), (Vz)[x  E L’ * 3y  E L’-’  Ax 4 y].

Definition 25: Let D(o)  be a decomposition of a system (T.
D(a) will be termed a level structure of (T  iff a partition L of
D(g)  exists that is a level structure.

Corollary 25a:  For every decomposition D(a) of a system (T,
{ f7) U D(o)  is a level structure.

Corollary 256: If D(o)  is a level structure of o,  then (0) U
D(cr)  is also a level structure.

The top panel of Fig. 5 shows the level structure for the
system decomposition shown in Fig. 4. (The bottom panel has
been added to show the composition of each subsystem.) The
decomposition comprises three (sub)systems:  the accounting
system itself, and the inventory management and revenue
and receivables subsystems. The level  structure comprises two
part i t ions:  one,  L’, contains the accounting system i tself ;  and the
other, L2, contains the two subsystems.  For  every system in the
second partition (i > l), note that each is a subsystem of some
system in the higher- level  par t i t ion.
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Fig. 5. Level structure for first decomposition.

When a system changes its state, we know that at least one
subsystem in the decomposi t ion of  the system must  have changed
its state.  Indeed, we observe changes at  the system level because
changes have occurred at the subsystem level.  Thus, state changes
can be viewed as propagating upwards in the level structure.
Alternatively, we can take the view that changes at the system
level are reflected in some subsystems-in short, system-level
changes induce changes in subsystems.  I t  is  this  propagation,  or
induct ion,  of  changes in the system decomposi t ion that  manifest
the dynamics of the system. The dynamics of a decomposition
can be studied, therefore, in terms of how state changes in
the system decompose into s tate  changes in the subsystems of
the system. Ultimately we evaluate whether a decomposition is
“good” via the characterist ics of  i ts  dynamics.

We begin with the notion of the state space of a decomposition
of a system.

Definition 26: Let I be an index set and D(a) be a decom-
position over a system CT.  Then the possible state space of the
decomposition is the Cartesian product of the possible state
spaces of  the subsystems that  const i tute the decomposit ion.  That
is, S(D(c))  = @,EIS(Z,).

Notation 26a: Henceforth, S(D(o))  will be abbreviated to
S(D).

Notation 266: si  denotes the jth state of the ith system; s,”
denotes the kth  state of the system.

To i l lustrate this  concept,  consider,  again,  the accounting sys-
tem illustrated in Figs. 4 and 5. To simplify matters, assume we
use only one state variable to describe the state of  a subsystem:
fnv (dollar value of inventory) for the inventory management
subsystem: and Ret  (dollar value of receivables) for the revenue
and receivables subsystem. Furthermore,  assume the inventory
management subsystem can take on only three dollar value
states, S(zr)  = {st,  s~,$}  = {0,100,200},  and the revenue
and receivables subsystem can take on only four dollar value
states, S(Q) = { si,  522,  s:, sl}  = {0,100,2OO, 300). Under these
assumptions,  the possible s tate  space of  the decomposit ion of  the
account ing system is :

S(D)  = {(&s:),  (st,s;)>  (h;),  (sb:),  (h;),  (h;),

(4,4), (4+4),  (4’s:),‘(&s:),  (4.$), (SX))

= ((0,  O),  (0,  loo),  (0,200),  (0,300),  (100,  O),
(100, loo),  (100,200),  (100,300),  (200,0),

(200,100),(200,200),(200,300)}.

A fundamental  relationship can now be art iculated between the
possible state space of  a  system and the possible state space of  a

decomposi t ion of  the system. Specifically,  we have the follow~g
straightforward but  important  resul t .

Lemma 1: Let S(a) be the possible state space of a system
0, and let S(D) be the possible state space of a decom~s~io,,
over (T. Then for every state s  E S(o),  there exists at least  one
state 6 E S(D).

Coroflary:‘There  exists a mapping from S(a) into the mQ
set of S(D), PCS(D)).

Notation ‘26~:’  &t i E  S(o), d(s) G (6  1 6  E  S(D)
corresponds to a E S(o)}. d(s) E P(S(D)).

To illustrate Lemma 1, assume we represent the state of the
accounting system x0 using a single state variable: Asset (total
dollar  value of inventory plus  receivable assets).  Since the state
of the accounting system, si,  is  a  s imple funct ion of  the s tate  of
i ts  two subsystems,  we have

i.e., d(O)  = { (0. O)]

i.e., d( 100) = { (0.10).  (10&O))

i.e., d(200) = {(0,200),  (lOO,loO),

G3w  011
i.e., d(300) = {(0,3~),(100,200),

(200. loo)}

i.e., d(400) = { (100, WO),  (200,2~j)

i.e., d(500)  = {(200,300)}.

In general, because we may choose different variables to
represent the state of a system and the state of a subsystem,
we cannot say the possible state space of the system is eq&
to the possible state space of a decomposition of the system.
Nonetheless, we postulate that the possible state space of a
system can always be mapped into the possible s tate  space of
a decomposition of the system in a meaningful way.

In this l ight,  we can now show how events in a system reflect
events  in  i ts  subsystems.  To assis t  our  exposi t ion,  we introduce,
first, some additional notation and a lemma.

Notation 266: Let 6 E d(s), 6 is a state of the decomposition.
Hence it has a component in each of the subsystems. The ith
component of 6, 6,  will be termed a projection of state s  in
subsystem 2,. Alternatively, let S = d-‘(s)  be the jth element
of the set d(s). The projection 6, will be denoted by d;‘.  The set
of projections {a,}  of a state s  on subsystem z, will be denoted
by d,(s).

Lemma 2: Let s’  # s” be two different states of (T. Then
d(s’) fl d(s”) = 0. That is, for every 6’ E d(s’)  and S”  E d(s”),
at least one subsystem 2, exists such that 6: #  6:‘.

To illustrate the notation in the above example, let s’  = 3:
and s” = si. Thus, d(s’) = {(s~,s~),  (SAPS:)}  and d(s”)  =
{(s:,  s:),  (s:,  sj),  (s:,  ~22)).  It  can be seen that none of the com-
binations for si  equals any of the combinations for s$

Using this foundation, we now propose the notion of an
induced event. Intuitively, an induced event is an event that
occurs in a subsystem which reflects that an event has occurred
in the system. The notion of an induced event reflects that we
can view a change in the state of the system at the level of the
system or at  some level  of  subsystems when the subsystems are
organized in a level structure.  Nonetheless,  a change of state in
the system must still be manifested as a change of state in at
least  one of  i ts  subsystems.  Thus we have the fol lowing.



Definition 27: Let (s,s’)  E E(n) be an event in the possible
evenispace  of the system, and  let hJ(s)  and rl’(s’) be coriespond-

iing  s tates  in  S(D) (i and k are not necessari ly dist inct) .  Let di  (s)
.and   be the s ta te  of  the i th  subsystem when the system is  in
states  s  and s’,  respectively. Then the pair (di  (s) ,  df  (s ’ ) )  wil l  be

-called  an induced event  on subsystem X,  4 (T  iff n:(s) #  dF(s’).
The induced event  on the subsystem 2, wil l  be designated e ,  .

To illustrate the notion of an induced event, consider our
accounting system. Assume the event  (si. si) occurs;  that  is ,  total
assets change from $200 to $400. Assume d”(  si) and d’(  si) are
the corresponding states in S(D).  In our example above, d3(si) =
{(s:,si)}  = {(200.0)}  and &(si)  = {(s~.s~)}  = ((200,200)).
Thus:  d;(s;)  =  s; = 200; dgsi) =  s; = 0;  d;(g) =  s;  = 200;

dj(si)  = .si  = 200.  Since &(si)  = cE:(.$).  no induced event
has  occurred in the inventory management subsystem. However,
note that &(si)  # I~~($).  Thus, in the revenue and receivables
subsystem, an induced event has occurred in l ight of the change
of system state.  Consequently,  we conclude the dollar  value of
assets has risen by $200, not because the value of inventory has

; risen, but because the value of receivables has increased.
: Not every change of state in a subsystem will be manifested
* .‘1 as a change of state in the system. Since a system state may
: map into two or more subsystem states-that is, the cardinality-5
of d(s) may be greater than one-a change of subsystem states
$may not be manifested as a change of system states. For ex-
v  ample,  assume the fol lowing event  occurs in the decomposit ion:

((s:, s:).  (s:,  si)).  Note that an induced event has occurred in
both subsystems. However,  since s i = 200 maps into both s ta tes
of  the decomposit ion,  the change of  subsystem states  wil l  not  be
manifested as a change of system state. If a change of state does
occur in the system, however,  we have the following lemma.

Lemma 3: For every event in the system, at least one subsystem
must  exist  in which an induced event  occurs.

V. ON GOOD DECOMPOSITIONS

In Section IV we defined the concept  of  a  decomposit ion of  a
system. In the CS and IS fields, this concept serves two purposes.
First, it is used as a basis for understanding complex systems
[IO].  For example,  a  number of  systems analysis  methodologies
“factor” processes and data into lower-level processes and data
so the processes and data can be better understood (45).  Second,
decomposit ion is  used as  a  basis  for  design (161,  [17],  [33],  [47].
For  example,  the so-called structured design methodologies rely
on the concept  of  decomposit ion for  deriving program modules,
Which in turn form the basis for system implementation in
some programming language [46].  Similar ly,  relat ional  da&abase
management theory uses a form of decomposition to identify
relations that  are relatively independent of one another [8].

Irrespective of whether the purpose of decomposition is to
understand or  to  design systems,  two fundamental  quest ions must
be addressed.  First ,  what is  the nature of a good decomposit ion?
Second, how do we achieve good decomposit ions? While many
heuristics  have been proposed to address both questions [2],  [ 121,
[16]-[20], [28], [32], [35], [46], [47], no general theory of decom-
Posit ion has been developed that  enables us to evaluate whether
these heurist ics  do,  in fact ,  produce good decomposit ions.

Accordingly,  to show the power of our ontological  model,  we
now  use  it to define precisely the characteristics of a particular
tyP of decomposition that we hypothesize will allow analysts,
&signers,  and programmers to better understand systems. In_~  .
mm& our model for this purpose, we point out four important
)&la  that underlie our analysis. First, whether the concept of

decomposition we propose leads to a better understanding of
systems is  an untested empirical  issue.  The psychological  theory
needed to support  our hypotheses is  s t i l l  poorly developed,  and
the empirical research needed to test our predictions has not
yet been undertaken. Second, different types of decomposition
may be required to accomplish other purposes when designing
and implementing systems.’ For example, the type of decom-
position needed to achieve efficient execution of systems on
parallel machine architectures may be at odds with the type
of decomposit ion needed to faci l i tate  understanding of  systems
[7).  Third, while our model allows existing decompositions
to be evaluated to determine whether they are good, at this
time it provides only limited insights on the matter of how
good decompositions should be generated in the first place.
Indeed,  i t  is  a  moot point  whether a complete set  of  prescriptive
rules for generating good decompositions can ever be generated
or whether the development of good decompositions, like the
development of good theoretical models, will inevitably rely on
intuit ion and experience.  Final ly,  the primary contr ibution of  our
model  is  that  i t  a l lows a  precise  definition  of  our notion of  a  good
decomposit ion to be ar t iculated.  At  f i rs t  glance this  contr ibut ion
may seem modest.  However, we are unaware of any other work in
the CS and IS fields where the notion of a good decomposition
has been defined precisely.

A. Some Characteristics of  a Good Decomposition

It is generally believed that system decompositions which
have “loosely-coupled” subsystems are easier to understand than
system decomposi t ions which have “t ight ly-coupled” subsystems
(see, e.g., [46]).  The rationale is that human problem solving is
constrained by cognitive limitations; thus, things are easier to
understand if  they can be considered relatively independently of
other things.  Unfortunately,  the meaning of “loose coupling” has
remained somewhat obscure.

In this light, we use our model to make the notion of relativefy-
independent ( loosely-coupled) subsystems precise.  In summary,
our model shows that subsystems are loosely coupled if the
events in the subsystem that arise as a result of inputs to the
subsystem can be defined independently of the states of other
subsystems in  the decomposi t ion.  In  addi t ion,  the model  shows
that decompositions are good only with respect to a certain
set of transformations on the system. The  designer’s  task is  to
identify the relevant set of transformations to consider during
the decomposi t ion process .

We begin, then, with a definition that will aid our analysis.
Definition 28: Let a be a state of subsystem 5,. Then the set

of system states that map into a will be denoted by S,(a) =
{3 1 a E d,(s)}. S,(a)  will be called the subsystem equivalence
states with respect to a.

Notation 28: Let cy  = sf , the kth state of subsystem 2,.
s,k  = S,(sf).

To illustrate this concept, consider our previous accounting
system example.  Recal l  the system is  decomposed into only two
subsystems: the inventory management subsystem z1 and the
revenue and receivables subsystem x2. Given the six states the
system can assume, the sets of subsystem equivalence states are:
s;  = { 1 2 3 4);

so,  SOI so1  so

d;(s:)  = d;(s;)  = d;(s;)  = d;(s;)  = $ 0

s;  = {s~,s~,sf,s~}; .

d;(s;)  = &(s;)  =  d;(s;)  = d;(s;)  = $100

sp  = {s;,s~,9;,3~};
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d: (.si) = ci; (a;,) = qsg = d; (sfr)  = $200

s; = {s ;,,s&s;}; d&,) = dgs,:)  = f&s;;) =$ 0

$2,  = {si.  .s;l,,  3:); cq.s(q  = dgsi)  = fqs:,) = $100

Si = {si~,s~,.$};  di(ai)  =  di(.si) =  di(si) = $200

S,”  = {s~,s~,af};  do  =  di(si)  =  di(ai) = $300.

In light of the concept of the set of subsystem equivalence
states,  we now define the decomposition condition.

Definition 29: Let  g be a transformation on a system, and let
5’:  be a set  of subsystem equivalence states.  The decomposition
condition holds for  t ransformation g and subsystem X,  if, for every
s,”  of xi a state 51  of X,  exists such that: s  E S: + g(s) E S,“,
k and h  are not necessarily distinct (i.e., h  is a function of k and
g and i but not of s).

Corollary 29: If the decomposition condition holds, then
d!(a) = d:“(d)  + d,(g(s))  n d,(g(s’))  #  0.

In other words, for the set of all system states that map into the
same i th subsystem state ,  the decomposit ion condit ion requires
that the set of new system states which arise from an event
will also map into the same ith subsystem state. In short, for
the decomposi t ion condit ion to  hold,  subsystems must  “behave”
independently in the following sense. If we know that the ith
subsystem is in state y = d:(a) when the system is in state
s, we have sufficient knowledge to predict what the new state
t = df(g(s))  will be.

We formalize these notions in terms of the concepts of a
well-defined,  induced transformation and a good decomposition.

Definition 30: Let  g be a transformation on a system (T. Then
the transformation g, induced on the subsystem z, < (T  is well-
defined iff g, is a function, i.e., g,(s) = s’ A  gl(s) = s”  a s’  =
s” for every s?s’.s” E S(Z*).

Definition 31: A decomposition D(n) of a system is a good
decomposition with respect  to a transformation g on the system
iff  the transformation g induces a well-defined internal transfor-
mation g, in every subsystem X,  of the decomposition.

Recall from Definitions 18 and 19 that we have identified two
types of events that can occur in a system: an external (input)
event and an internal event. Since external events in a system
arise from the actions of the environment, they may not be
described by a well-defined transformation. For example, given
a certain level of inventory, it may be impossible to predict
the new level of inventory that arises after an order has been
satisfied because the amount ordered cannot be predicted. Once
the external event has occurred, however, we require that the
subsequent internal  events that  occur in each subsystem be well
defined if  the decomposit ion is  to be good.  In summary,  al though
external events in a system may not be well defined, all internal
events in a well-decomposed system must  be well-defined.

B. An Example

To i l lustrate  the not ion of  a  good dedomposition,  consider once
more our accounting system example. Assume again that we
represent  the state of  the inventory management subsystem via
the state variable Inv  and the state of the revenue and receivables
system via the state variable Rec. However, assume now that we
represent the state of the system via the state vector (fnv,Rec).
Clearly, a mapping H from the state of the system to the state
of the decomposition is trivial:

H(4) = H((.q:,.Q) = {(a~,.a~)} = {(O,O)}

H(s:,)  =  H((.sf,.s;))  =  {(s;,s;)}  =  ( ( 0 , 1 0 0 ) )

H(sl)  = H((s:,si))  = {(a:,a~))  = ((0,200))

H(4) = H((.sl,ai))  = {(sl,s:)} = {(0,3Oo)}

H@) = Iq(s:,.s:))  = {(s:,s:)}  = {(100,0)}

H(4) =  H((.sf,.$))  =  {(sf,ai)} =  {(lOO,lOO)}

H(s;;) =  H((.s;,s;))  =  {(s;,*&} =  {(100,2oo)}

H(4) =  H((s~~s~))  =  {(a:,si)}  =  {(100,300)}

H(.+)  =  H((s;.s;))  =  {(s;,s;)}  =  {(200,0)}

H($) =  H((sf,sz))  =  {(~~,a~)}  =  {(200,100)}

H (a;,‘)  = H ((sf,  si))  = { (sf,  s;)}  = { (200, LOO)}

H(.s;;)  = H((s;,.s;))  = {(s;,s;)}  = ((200,300)).

The set  of subsystem equivalence states are

S: = {s&  si, sj;,  a:}:

df(ab)  =  di(si)  =  di(si)  =  d!(st)  = $ O

SF  = {s~,sR,a~,s~};

d: (si)  = di  (SF;)  = dl  (s:)  = di  (a:) =  $100

Sf = {a~~s~l(),.s~~‘,.s~}:

d;  (s;)  = d; (s;;)  = d; (sb’  ) = d; (s;‘)  = $200

s; = {sb.  s& s;;}: d&s;)  =  d;(s;)  =  d;(s;)  =$  O

s:  = {sg,sf;,s:;‘}; d;(s;)  =  d;(s;)  =  d;(s;‘)  = $100

s; = {si.  s;.  sb’}; d:(si)  =  di(s:)  =  di(ai’)  =  $200

s;  = {S;.R;,  SF}; di  (si)  = di  (si) = di (a:‘) = $300.

Note, the set of decomposition states into which each system
state maps comprises only one element, i.e., Id(a)\  = 1. Thus,
there is a one-one mapping (injection) between a system state
and a s tate  of  the decomposit ion.

Assume, now, that the organization which operates the ac-
counting system has only one customer and that  the customer
always orders inventory in $100 lots as either a cash order or
a credit order. Replenishment of inventory occurs on a regular
time schedule as the organization produces inventory at its
manufacturing facility. From time to time, stockout  situations
may occur if the customer orders more inventory than normal
during a time period.

Assume, f irst ,  that  the organization has a policy of generating
a rush production order if a stockout  situation occurs because it is
concerned about losing goodwill  i f  i t  cannot meet a future order
from the customer. Rush production orders occur in $200 lots.
A transformation g’ which effects an inventory replenishment in
light of a rush production order when the inventory level reaches
zero can be represented as follows:

g’((O,.))  = (200,.);g’((100,.))  = (loo,.);

g’((200,  .)) = (200, .).
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The transformation g’  induces the following internal  t ransfor-
mat ions  on xl, the inventory management subsystem, and x2, the
revenue and receivables subsystem?

s:  (0) = 200 d(O)  = 0

g!(lOO)  = 100 gi(100)  = 100

g;  (200) = 200 gi(200)  = 200

gi(300)  = 300.

Note that a well-defined internal transformation has been in-
duced in each subsystem. Thus, the decomposition is a good
decomposi t ion under  the inventory replenishment  t ransformation.

Assume now that the organization changes its policy with
respect to stockout  si tuations.  I t  wil l  generate a production order
for  s tock replenishment  purposes only i f  the credi t  l imit  of  $200
has not been reached. It is not willing to bear the extra costs
associated with a rush production order  i f  i ts  customer is  in debt
at  or  beyond the credit  l imit  amount.  Consider  a  t ransformation
g’  which effects  the inventory replenishment under this  policy:

g*((  0, 0)) = (200, 0), i.e., g’(sh)  = si

g*((  0.100)) = (200, loo),  i.e., g’(si)  = sA”

g*((  0 , 2 0 0 ) )  =  (200,200),  i . e . ,  g’(si)  =  s :

g*((  0,300)) = ( 0,300),  i.e., g’(sd)  = st

g’((100. 0)) = (100, 0), i.e., g’(si)  = si

g2(~100,100)) = (100, loo),  i.e., g2(si)  = s,”

g*((lOO,  200)) = (100,200),  i.e., g2(si)  = si

g*((100,300))  = (100,300),  i.e., g’(si)  = s”,

g*((200,  0 ) )  =  ( 2 0 0 ,  0 ) ,  i . e . ,  g’(si)  =  s”,

g*((200,100))  = (200, loo),  i.e., g2(Q)  = s:”

g2((200,  200)) = (200,200),  i.e., g’(si’)  = sil

g’((200,300))  = (200,300),  i.e., g2(sr)  = sy.

The transformation g*  induces the fol lowing internal  transfor-
mat ions  on the  two subsystems:

!J:c  0) = { 0,200) d(  0)  = 0

gf(100) = 100 g,2(100)  = 100

gf(200) = 200 gz”(200)  = 200

gi(300)  = 300.

Note,  the induced internal  transformation on the inventory man-
agement subsystem is not well defined. Moreover, it is easy
to show that the decomposition condition has been violated;
specifically, s:  E S:  and si  E S: but g’(sA)  = 3: E S,”  and
g2(ai)  = ai  E S:.  Thus, the inventory management subsystem
does not  behave independently because i t  is  not  always possible
to predict its new state given its current state. In short, the
decomposition  is not good with respect to the replenishment
transformation  under the revised policy.

TO conclude, our model shows the “goodness” of a decompo-
si t ion must  be evaluated with respect  to a  set  of  t ransformations.
fie  designer’s task is  to choose the “relevant” set  of transforma-
tiom and to devise a  decomposi t ion that  is  good with respect  to

“In  the interests of simplicity, we have not considered the external events
*at  might  have given rise to the internal events. Assume, however, that they
m wtomer  orders that deplete the inventory when they are satisfied.

each transformation in the set .  We have not shown how this task
can be undertaken in this  paper,  but  the answer l ies in identifying
which couplings are important  under each transformation that  is
of interest .  This issue has been addressed elsewhere [31], [41].

VI. R E S E A R C H  DIRECTIONS  AND  C ONCLUSIONS

As we indicated in the introduction to this paper, two major
tests of the quality of a model are its ability to facilitate
understanding and to aid predict ion.  In terms of  understanding,
we believe our model clarif ies some previously fuzzy but funda-
mental constructs in the CS and IS fields. It also shows rigorously
how these constructs are related to one another. In addition,
elsewhere we believe we have used the model successfully to
analyze the meaning of concepts like batch systems, real-time
systems, system controls, data, programs, abstract data types,
and objects  [37]-(401. An important  at t r ibute of  these analyses is
that  they have been independent of  implementat ion or technology
considerat ions.  Thus,  we believe they wil l  prove to be robust  in
the long run.

In  terms of prediction,  we have used the model to forecast  the
locus of control  and audit  procedure change when an information
system is  modif ied  [40]  and to identify some necessary attr ibutes
of a good requirements specification (391,  (421.  In light of the
analysis  of  the characterist ics of  a good decomposit ion that  we
have undertaken in this paper, we believe the model can now
be used to make predictions about the efficacy of the various
decomposit ion rules and heurist ics  that  have been proposed in
the literature. For example, we can address the question of
how well functional decomposition, data flow decomposition,
and data structure decomposition meet the requirements of a
good decomposit ion that  have been art iculated in this  paper.  Our
current research is directed toward these issues.
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