A Cookbook for Using the Model-
View-Controller User Interface
Paradigm in Smalltalk-80

Glenn E. Krasner
Stephen T. Pope

Introduction

The user interface of the Smallialk-80™ programming environ-
ment (see references, [Goldberg 83]) was developed using a
particular strategy of representing information. display. and
control. This strategy was chosen to satisfy two goals: (1) 1o
create the special set of system components needed to support a
highly interactive software development process: and (2) to
provide a general set of system components that make it pos-
sible for programmers 10 create portable interactive graphical
applications easily.

In this article we assume that the reader has a basic
knowledge of the Smalltalk-80 language and programming en-
vironment. Interested readers not familiar with these are
referred to [Goldberg and Robson 83] and [Goldberg 83] for in-
troductory and tutorial material.

MVC and the Issues of Reusability and Pluggability

When building interactive applications. as with other programs.
modularity of components has enormous benefits. Isolating
functional units from each other as much as possible makes it
easier for the application designer to understand and modify
each particular unit. without having to know everything about
the other units. Our experiences with the Smallalk-76
programming system showed that one particular form of
modularity—a three-way separation of application com-
ponents—has payoff beyond merely making the designer’s life
easier. This three-way division of an application entails separat-
ing (1) the parts that represent the model of the underlying ap-
plication domain from. (2) the way the model is presented to
the user and from, and (3) the way the user interacts with it.

Author’s Address: ParcPlace Systems. 2400 Geng Road Palo Alto. CA 94303.
glenn@ ParcPlace.com.

Smalltalk-80 is a trademark of ParcPlace Systems.

26 JOOP August'September 1988

Model-View-Controller (MVC) programming is the applica-
tion of this three-way factoring. whereby objects of different
classes take over the operations related 1o the application
domain (the model). the display of the application’s state (the
view). and the user interaction with the model and the view (the
controller). In earlier Smalitalk system user interfaces. the 100ls
that were put into the interface tended to consist of arrange-
ments of four basic viewing idioms: paragraphs of text. lists of
text (menus). choice “buttons.” and graphical forms (bit- or
pixel-maps). These tools also tended 10 use three basic user in-
teraction paradigms: browsing. inspecting. and editing. A goal
of the current Smalltalk-80 system was to be able to define user
interface components for handling these idioms and paradigms
once. and share them among all the programming environment
tools and user-writien applications using the methodology of
MVC programming.

We also envisioned that the MVC methodology would aliow
programmers to write an application model by first defining new
classes that would embody the special application domain-
specific information. They would then design a user interface to
it by laying out a composite view (window) for it by “plugging
in” instances taken from the pre-defined user interface classes.
This “pluggability™ was desirable not only for viewing idioms.
but also for implementing the controlling (editing) paradigms. Al-
though certainly related in an interactive application. there is an
advantage to being able to separate the functionaiity between
how the mode] is displayed. and the methods for interacting with
it. The use of pop-up versus fixed menus. the meaning attached to
keyboard and mouse/function key. and scheduling of muliple
views should be choices that can be made independently of the
model or its view(s). They are choices that may be left up to the
end user where appropnate.

The Model-View-Controller Metaphor

To address the issues outlined above. the Model- View-Control-
ler metaphor and its application structuring paradigm for think-
ing about (and implementing) interactive application com-

ponents was developed. Models are INUse CUIPULLIL Ui e
system application that actually do the work (simulation of the
application domain). They are kept quite distinct from views,
which display aspects of the models. Controllers are used to
send messages to the model, and provide the interface between
the model with its associated views and the interactive user in-
terface devices (e.g., keyboard. mouse). Each view may be
thought of as being closely associated with a controller. each
having exactly one model. but a model may have many
view/controller pairs.

Models

The model of an application is the domain-specific software
simulation or implementation of the application’s central struc-
ture. This can be as simple as an integer (as the model of a
counter) or string (as the model of a text editor), or it can be a
complex object that is an instance of a subclass of some
Smalltalk-80 collection or other composite class. Several ex-
amples of models will be discussed in the following sections of
this article.

Views

In this metaphor, views deal with everything graphical: they
request data from their model, and display the data. They con-
tain not only the components needed for displaying but can
also contain subviews and be contained within superviews. The
superview provides ability to perform graphical transforma-
tions. windowing. and clipping between the levels of this sub-
view/superview hierarchy. Display messages are often passed
from the top-level view (the standard system view of the ap-
plication window) through to the subviews (the view objects
used in the subviews of the top-level view).

Figure 1. Model-View-Controller State and Message Sending

- e -

Controllers contain the interface between their associated
models and views and the input devices (e.g.. kevboard. poini-
ing device. time). Controllers also deal with scheduling interac-
tions with other view-controller pairs: they track mouse move-
ment between application views, and implement messages for
mouse button activity and input from the input sensor. Al-
though menus can be thought of as view-controller pairs, they
are more typically considered input devices. and theretfore are
in the realm of controllers.

Broadcasting Change

In the scheme described above. views and controtlers have
exactly one model. but a model can have one or several views
and controllers associated with it. To maximize data encapsula-
tion and thus code reusability. views and controllers need to
know about their model explicitly. but models should not know
about their views and controllers.

A change in a mode! is often triggered by a controller con-
necting a user action to a message sent to the model. This
change should be reflected in all of its views. not just the view
associated with the controller that initiated the change.

Dependents

To manage change notification. the notion of objects as de-
pendents was developed. Views and controllers of a model are
registered in a list as dependents of the model, to be informed
whenever some aspect of the model is changed. When a model
has changed; a message is broadcast to notity all of its depend-
ents about the change. This message can be parameterized
(with arguments). so that there can be many types of model

[ﬂ Controller
) Display
geSS{CIenPUt layout and
User interaction a;e;zicnon Display
=== | Input output
access and
editing

DependeV
change

messages

View messages

messages\s

Model

Application
domain

state and
behavior

View

= Dependents
change
messages

August/September 1988 JOOP 27

change messages. Each view or controller responds to the ap-
propriate model changes in the appropriate manner.

A Standard for the Interaction Cycle

The standard interaction cycle in the Moadel-View-Controller
metaphor. then. is that the user takes some input action and the ac-
tive controller notifies the model 10 change itself accordingly. The
mode] carries out the prescribed operations. possibly changing its
state. and broadcasts 10 its dependents (views and controllers) that
it has changed. possibly telling them the nature of the change.
Views can then inquire of the model about its new state. and update
their display if necessary. Controllers may change their method of
interaction depending on the new state of the model. This message-
sending is shown diagrammatically in Figure 1.

An implementation of Model-View-Controller

The Smallialk-80 implementation of the Model-View-Control-
ler metaphor consists of three abstract superclasses named
Model, View, and Controller. plus numerous concrete subclas-
ses. The abstract classes hold the generic behavior and state of
the three parts of MVC. The concrete classes hold the specific
state and behavior of the application facilities and user inter-
face components used in the Smalltalk-80 system. Since our
primary set of user interface components were those needed for
the system’s software development tools. the most basic con-
crete subclasses of Model. View. and Controller are those that
deal with scheduled views, text. lists of text. menus. and
graphical forms and icons.

Class Mode!

The behavior required of models is the ability to have de-
pendents and the ability to broadcast change messages to their

Figure 2. FinancialHistoryView with its BarChart subviews. the Con-
trolier's menu. and an interaction prompter (note that the menu and
prompter are never visible at the same time)

Financial His:oryl

spend
receive
800 800
How much for good times ?
600
-~
400 | 400
200 I 200

rent food utils pay interest

dependents. Models hold onto a collection of their dependent
objects. The class Model has message protocol to add and
remove dependents from this collection. In addition. class
Model contains the ability to broadcast change messages to de-
pendents. Sending the message changed to a Model causes the
message update to be sent to each of its dependents. Sending
the message changed: aParameter will cause the correspond-
ing message update: aParameter to be sent to each dependent.

A simple vet sophisticated MVC example is the Financial-
Historyview tutorial found in {Goldberg and Robson 83]. A dis-
play of a FinancialHistory is shown in Figure 2 and its im-
plementation is discussed in the MVC implementation
examples at the end of this article. In it. a view that displays a

Figure 3. Message-sending and dependency updating for an example from the FinancialHistory application

User picks menu item spend

inandaiHistoryController
uses FilllnTheBlanks to
query user for reason

nd amount of expenditure

inancialHistoryController
sends model the message
spend: amount for: reason

|

FinancialHistory updates its
cashOnHand andthe
incomes Dictionary

FinancialHistory sends the ™
message expenditures changed

BarChartView (dependent
of incomes) gets update message

BarChartView queries model
for keys and values of income;

BarChartView redisplays
itself, updating screen view

"Normal” message-passing

7w~ = Dependents changed/update messages

|

28 JOOP August'September 1988

bar chart is created as a dependent of a dictionary of tagged
numerical values (for example, rent 2 $500). The composite
FinancialHistory View has two subviews, with two bar charts.
whose models are two distinct dictionaries (incomes and ex-
penditures). These are held as instance variables of the central
model. an instance of class FinancialHistory.

Figure 2 also shows the pop-up menu used by the Financial-
HistoryController with the two items labeled ‘spend’ and
‘receive’ as well as the input prompter (a FillinTheBlank)
querying for an amount of be spent on *good times’.

User action for interacting with the FinancialHistory applica-
tion might be to pick an item from a menu to add a new amount
for rent. The controller then sends a message to the model (the
dictionary), and the model sends self changed. As a result of this,
the bar chart is sent the méssage update. In response to that mes-
sage. the bar chart gets the new values from the dictionary and
displays the new bars using the display messages. A flow diagram
for this MVC interaction might look like Figure 3.

The change messages with parameters (i.e.. self changed:
someAspect) are used to pass information from the model to its
dependents about which aspect has changed, so as to minimize
the amount of view updating needed. For exampie. the object
householdFinances (the model mentioned earlier that holds
onto the dictionaries of income and expenses), could have been
the model of two bar chart views, with separate protocols for
displaying expenses and income. In this case, the update mes-
sage could contain a parameter saying which of the aspects (ex-
penses or income) had changed. ‘

Depending on the application, many of the basic Smalltalk-
80 system structure classes can serve as models of MVC sys-
tems. Views can be found in the system or user applications
that use very simple objects (numbers or strings). collection
class instances (orderedCollections, dictionaries. bitmaps or
displayTexts) or complex composite objects (networks,
databases, event lists, or financial histories) as their underlying
models.

Class View

The abstract superclass, class View, contains the generic be-
havior of views in the system. This includes model and control-
ler interaction. subview and superview interaction. coordinate
transtormation. and display rectangle actions. The many sub-
classes of View implement the various display interaction tools
used in the user interface.

Every instance of a view has exactly one model and exactly
one controller. The model is normally set explicitly. Because
view and controller classes are often designed in consort. a
view’s controller is often simply initialized to an instance of the
corresponding controller class. To support this. the message
defaultControllerClass, that returns the class of the ap-
propriate coniroller, is defined in many of the subclasses of
view,

Views have the ability to have zero or more subviews. with
flexible coordinate transformations between one view and its
super- and subviews. Instances of class View have instance
variables for their superviews and for a (possibly empty) col-
lection of subviews. as well as for an instance of class

Windowing Transformanon Wiichl Tepieseiies tid tdinsviim .
(translation and scaling) between that view's coordinate system
and that of its superview. In addition, there is a default protocol
in View for adding and removing subviews. as well as a
protocol for changing the transformations. This allows views
consisting of many subviews to be pieced together tlexibly and
simply.

The third type of behavior in class View is that which relates
to displaying. Because subclasses of View are assumed to use
display objects to actually do their displaying (Forms, Pens,
Lines. or instances of other graphical classes). View only sup-
ports generic displaying behavior. In particular. there is no in-
stance variable for display objects. Class View assumes that the
top level of a subview structure displays on some medium
(typically the display screen).

Views therefore cache the transformation from their own inter-
nal coordinate system to the display’s coordinate system (i.e., the
composition of the view's transformation and all of its
superviews’ transformations). so that it is faster to get from a
view's internal space to display space. View also has instance
variables insetDisplayBox. the clipping rectangle within which
the view may display without overlapping other views; border-
Width and horderColor, to define the (nonscaled) borders be-
tween a view and its superview: insideColor, to define the color
(if any) with which a view colors its insetDisplayBox before ac-
tually displaying its contents: and boundingBox. to describe the
extent of display objects within the view’s coordinate system.

By default, the message model: anObject, when sent to a
view, initializes the view’s controller to be a new instance of
the view's default controller class. It establishes anObjecr as
the model for both the view and the controller. and establishes
the view as a dependent of the model. This one message is typi-
cally sufficient for setting up the MVC structure.

The message release, used when closing a hierarchy of
views (i.e.. the subviews of one top-level window), gives the
programmer the opportunity to insert any finalization activity.
By default. release breaks the pointer links between the view
and controller. The message release also removes the view
from its model’s dependents collection, breaking reference cir-
cularities between them.

Class Controller

It is a controller’s job to handle the control or manipulation
(editing) functions of a model and a particular view. In par-
ticular. controllers coordinate the models and views with the
input devices and handle scheduling tasks. The abstract super-
class Controller contains three instance variables: model. view.,
and sensor. the last of which is usually an instance of class
InputSensor representing the behavior of the input devices.

Because the interpretation of input device behavior is very
dependent on the particular application. class Controller imple-
ments almost none of this behavior. The one such behavior that
is implemented is the determination of whether or not the con-
troller's view contains the cursor. ’

Class Controller does include default scheduling behavior. It
takes the point of view that orily one controller is to be active
at a time: that is. oniy one controller at a time mediates user

August/September 1988 JOOP 29

input actions. Other views could be displaying information in
parallel. but the user’s actions are to be interpreted by a single
controller. Thus. there is behavior in class Controller for deter-
mining whether a controller needs 10 receive or maintain con-
trol. In addition. there is behavior to signal initiation and ter-
mination of control. since many controllers will need 10 have
special initiation and termination behavior.

The query messages isControlWanted and isControlActive
are overridden in concrete subclasses of Controller if they re-
quire a different behavior for determining whether 10 receive or
maintain control. By default. these messages use the messages
controlToNextLevel (pass it on down) and viewHasCursor (a
query) in such a way that the controller of the lowest subview
in the hierarchy that contains the cursor in its display box will
take and retain control.

Once a controller obtains control. the default behavior is 10
send it the messages controllnitialize. controlLoop. and
controlTerminate. This message sequence is found in the
method startUp. The messages controllnitialize and control-
Terminate are overridden in subclasses that want specific be-
havior for starting and ending their control sequences (for ex-
ample. many of the list controllers have a scroll bar appear 1o
their left only when they have control). ControlLoop is imple-
mented as a loop that sends the message controlActivity as
long as the controller retains control. This message is overrid-
den in many controller classes to do the “real” work of the user
interface.

StandardSystemView and StandardSystemController

Subclasses of View and Controller are the various classes that
implement more specific types of view and controller behavior.
Classes StandardSystemView and StandardSystemController are
the implementation of “window System™ behavior. Stand-
ardSystemController contains the definition of the standard blue-
burton menu (normally assigned to the right-hand mouse button).
used for accessing operations of closing. collapsing. and resizing
the top-level view on the display. It also contains the behavior for
scheduling the view as one of the active views. Stand-
ardSystemView contains the behavior for top-level view labels.
for displaving when collapsed or not (possibly using icons). and

Figure 4. Instance variables of an MVC Triad for running CounterView

Figure 5. SwitchView and ListView examples

s Cdls

Coliectinns=>upport
Graphics-Primitives
Graphics-Display Objects
Graphics-Paths
Graphics-Views
Graphics-Editors
Grapnics-Suppor:
Kernel-Objects
Kernel-Classes

for the size (minimum. maximum. changing) of the view on the
display. Interactive applications tvpically exist inside svstem
views. that is. the views and controllers for the application are
created as subviews of a StandardSystemView (the application’s
top-level view).

In addition to StandardSvstemController. the
provides other abstract controller classes with default behavior.
Instances of NoConmroller will never take control: they are
often used in conjunction with “read-only™ views. Class
MouseMenuController includes behavior for producing pop-up
menus when any of the mouse buttons is pressed. Most control-
lers in the user interface are subclasses of MouseMenu-
Controller. including StandardSystemController itself. because
of the extensive use of pop-up menus. Another example of
these abstract classes is class ScroliController. which imple-
ments scroll bars.

Because views are often composed of parts (composite
views). with one application view containing multiple subviews
(as the FinancialHistorvView shown in Figure 2 has subviews
for the two bar chart views). the instance variables for views
have different meanings in an application’s Stand-
ardSystemView than in their subviews. Of the many subclasses
of View. some are meant 10 behave as top-level views (such as
StandardSystemView). and others are meant to be used as sub-
views (single subviews within a structured view) and “plugged
in” to other views as components (such as the SelectionInList-
Views used in many tvpes of applications).

Figure 4 is a schematic diagram of the staie and inter-
relationships of the relevant MVC objects used in the Counter-

system

value: 0 -—
dependents:
OrderedCollection (a CounterView)®]

Counter

L controller:
superView: a StandardSystemView

model: a Counter®

view: a CounterView®

yellowButtonMenu: a PopUpMenu
yellowButtonMessages: (increment decrement)
sensor. an InputSensor

a Counter
a CounterController

v model:

subViews: OrderedCollection ()
insetDisplayBox: 421@34 corner: 569@104
borderWidth: 2@2 corner: 2@2
borderColor: a Form

insideColor: a Form

CounterView

Interaction devices

CounterController

30 JOOP August September 1988

User

(mouse, kevboard)

The complete source code for this exampie is Ciuded deiow 1
the section called "MVC Implementation Examples.” The inter-
dependencies are shown by the arrows linking the model. view
and controller together via instance variables and dependents.

User interface Component Hierarchy

The classes View and Controller. along with the other abstract
classes. provide the framework for views and controllers in the
Smalltalk-80 implementation of the Model-View-Controller
metaphor. The system also contains various subclasses of View
and Controller that provide the pieces of user interface
functionality required by interactive applications. These. user
interface components include menus, text. and forms. These
components are pieced together to form the standard system
views of the Smalltalk-80 application development environ-
ment. and can be reused or subclassed for system applications.
They form the kernel of the component library of model-build-
ing tools and user interaction components that can be easily
“pulled off the shelf” and “plugged™ together to create interac-
tive applications. We list some of them here. but in most cases
we only use the names of the subclasses of View: it is assumed
that each is used with one or more appropriate Controlier sub-
classes.

SwirchView and ListView are two subclasses of View that
provide static or dynamic menu behavior. SwitchViews are
used. for example. in the instance/class switch of the system
browser or the iconic menu of the form editor. They behave as
a switch; they can either be on or oft. and when the user clicks
the mouse button on them, they will notify their model. These
are typically used as menus of text or forms. or “buttons.”

A ListView is a scrolling menu of text items. such as those
used in the upper four subviews of the system browser (shown
in Figure 11). It will inform its model when the user has made
a new selection in the list. Figure 3 shows examples of the use
of subclasses of SwitchViews (in the iconic menu of the Form-
Editor, the paint program) and ListViews (in the Browser’s
category list subview).

Prompters and Confirmers are simple views that can be used
for eliciting user input. They are started up by giving them a
string for their query or prompt. and can return either a string
value (in the case of Prompters) or a Boolean value (in the case
of Confirmers).

Because thev can be considered as belonging more to the

Figure 8. File-based TextEditorView and Menus

Please type a file name:

friename.st

Are you certain that you
want to remove this method?

yes ¢t

no

Figure 7. Examples of simple and hierarchical menus

agamn restore dispiay

undo garbage collect

copy exit project

cut browser

paste workspace

CERI file list
print it file eaitor
inspect terminai
accept mail reader

cancel project
format screen saver
spawn system transcript Blank
explain ystem workspace answer
aracoo susoend forward
Style save Jeiele copy
font auit undelete RCTION reques
move
hardcopy
ardcopy below
save

controller-sensor interface. pop-up menus are implemented as a
special kind of MVC class. Class PopUpMenu is a subclass of
Object and provides its own scheduling and displaying be-
havior. They are typically invoked by a MouseMenuController
when the user pushes a mouse button. When invoked, PopUp-
Menus by default return a numerical value that the invoking
controller uses to determine the action to perform. There are
several subclasses of PopUpMenu. some that implement hierar-
chical (multi-level) menus and others that return symbols in-
stead of numerical values upon item selection. Examples of
tvpical menus are shown in Figure 7.

A number of view/controller subclasses provide text han-
dling components. Class StringHolderView and class TexrView

/HSEventlistview-HSsearr 1.t}

3

st up vanabias
TopView = :
StandardSystemView —>

top * dox top.

taft * box left.

box * seif insatD

bottom * Box bo

night * box right.

Count numbaer of oct

octave * ((botto
(5 + (pitehScale * 4

pitchGrain))) asinteg

vt [Subview =
ccoupzy - TextEditorView
paste .
a0 1t
print it{ -
INSPeGT
e T Controller =
Ret TextEditor (manages
spawn the pop_up menu)

aPen * "QO°Pen new.

August September 1988 JOOP 31

Figure 9. Simple Workspace View and Menu

‘ WOND‘CO!

J+ 4 7

agan
undo
copy
cut
paste
00 1t
rint it
nipect
pCCopt
cance

provide views of text used in Workspaces. Editors. Transcripts.
and other instances where text is displayed. The Controller sub-
classes ParagraphEditor and TexiEdiror have the standard text-
editing functionality and are used in many text editor subviews.
The lavout of a file-based text editor view is shown in Figure 8
along with the names of its components.

In addition to these view types. there are several other clas-
ses provided within the system that are used in building MVC
user interfaces. These include the special controller classes

Figure 10. Inspector Examples—Simple. Array and Dictionary Inspec-
tors

mentioned earlier: MouseMenuControlier and NoConrroller:
and the class /nputSensor that is used for monitoring user input.
There is a global object called Sensor that is the sole instance
of the class InputSensor. It is used 10 model the user’s input
devices such as the mouse and the kevboard. One can send
query messages to Sensor such as anyButtonPressed. or one
can wait for a user action with messages such as waitBlue-
Button. One need normally never refer to Sensor. since it is
used in the implemen1ation of the more basic controller classes.
but many types of special user interface components. especial-
ly those that track the mouse directly (for rubber-band lines. for
example). use it.

Program Development Support Examples

Workspaces. inspectors. browsers. debuggers. and various
editors are among the svstem views provided in the Smalltalk-
80 software development support environment. They serve now
as examples of piecing together subviews from the view and
controller components collection with appropriate models to

‘ SystemDictionary
; CRFitinThe8!{ s DispiayScreen
A"IYI CSheliPort
-cee-{(1234) Cursor
== self YT Curve
Point l 1 uneo nspect -
T~ s5ea3 g cooy Feterences :?s:o
3¢ cut 00 fieid |
X i 4 paste remove [~9 ‘:&Y
Y 90 it Dictionary
S paste
frazecy prnt it Dictionarying 00 1T
"’"C: ‘Disola print it
ucri::r:l DisplayBitma nspect
garce, Dispia yMeoiy laczept
DisplayObjec cancel
DisplayScan
Figure 11. System Browser view lavout and browser menus
Category, Class, Protocol and Message Lists
System Brow-_Zri /
Cotiections-Lrray{ DisplayObject intalize-Aledse |[--~es-cecco 1 e o0t o Tile OUt .] eeemceoceces ey
Coliections=Stread DisplayScreen accesiing extent: i print out I3 print out file out t
Colections-Suppoq Display Text copying extentorset: |1 spawn Pt/ spawn print out T Pont ovt
Graphics-Primitive| Form_ | displeying | ex{entorfsechits | 353 catenoryls® awn higrarchy| spawn -1 __Spawn
SrepRiti-Display ¢ intiniteForm gisplay box acces{offset O rename Rierarchy 400 protocoipxpia sencers
ths Opagueform pattern offset: W remove 99 sefinition rename r fmpiementors
Graphics=Views bordening size i TYTYT] ho commant rgmove ds me3sages
efaagl Cigwy .:" o protocols Snom— move
- - agan remove |
sxtent: extent offset. its: aBitmap TG Class st var refs undo
*Creats a virtu AP with width » (extent x) and height = TRIPECTOr Mush "‘c::’:‘r';;:" copy
(extent y) TextMeny »e Ting meathod cut
with the bits o aBitmap.* [TextMeny Tename paste
[IR
labetls: romove cut p::(it{© iT\print
width « ext it\inspect\accepticancel’ withCRs nspect
height « exfent y. lines: #(2 5 8) Bccept
offset « afoint selgctors: #(again undo copy) ;5"‘“(' n cut paste dolt printit
bits « aBifmap inspectit accept cancei)]. ,:T:n
N + TaxtMenu loxpiain
7 | *
instance/class Code view
switches

32 JOOP August/'September 1988

tions.

Workspaces

The workspaces in the system are StringHolderView/String-
Holder controller combinations installed as the single subview
of a StandardSystemView. Their model is an instance of String-
Holder, which merely holds onto an instance of Text, a String
with formatting information. The menu messages implemented
by StringHolderController correspond to the basic text editing
and Smalltalk-80 code evaluation commands as shown in the
menu in Figure 9.

Inspectors

The inspectors in the system are implemented as two views.
A ListView contains the instance variable list (left side), and a
TextView displays the value of the selected instance variable
(right side). An instance of InspectorView serves as their com-
mon superview, and an instance of StandardSystemView serves
as its superview for scheduling purposes. The model for these
views is an instance of Inspector.

Inspectors can be used to view any object. A separate class,
Inspector. serves as the intermediary or filter for handling ac-
cess 10 any aspects of any object. As a result, no extra protocol
is needed in class Object. Using intermediary objects between
views and “actual™ models is a common way to further isolate
the viewing behavior from the modeling application.

It is possible to build a more appropriate interactive interface
to composite objects by subclassing the inspector for use with

Figure 12, Debugger view layout and debugger’s menus

Message-Sending Stack List
[Grar interrupt]

Smaiinteger ciass(Benaviorpynnentsfrom: v
Smailinteger(Object)>disKindOf
Rectangle>>expandBy:
BrowserViaw(View)>>dispiayBox
BrowserView(View))>containsPoint:

Selected Method
Code View

Method temporary

Receiver Object
variable Inspector

Inspector

1Zed IN3PECIONS [OF COMPITA UUJEC Sutin wd ok v o crmne e
selves or application-specific classes such as event lists.

Browsers

As with inspectors, intermediary objects are used to model
the system code browser behavior. An instance of class Brow-
ser is the intermediary model for each system browser. repre-
senting the query paths through the system class hierarchy to
the class organization and the classes. As dependents of the
Browser model. there are the four list views (for Class
Categories, Classes, Message Protocols and Messages), a code
(text) view (for the method code of the selected message or a
class definition template). and two switch views (for selective
browsing of class and instance messages as shown in Figure
11). Class Browser has separate protoco! for each of the various
subviews of the browsers.

Each of the subviews sends different messages to the model
to query the values of an aspect of the system code. Each of the
controllers sends different messages when the aspect should be
changed.

For example. when the user selects a new class in the class
list subview, the controller for that subview sends the message
className: newClassName to the Browser. The Browser sets
up its new state accordingly. This involves sending the mes-
sages self changed: #protocol and self changed: #text. In
response to the corresponding update: messages, the category
subview, the class and instance switches, and the class subview
do nothing. The protocol subview asks the Browser for the new
list of protocols to display and displays it. The message list
subview clears itself. and the text subview asks the Browser for

‘Uur lntnrrup!l

RectanqleyyexpandBy:

Zowsarvigm(View))dispiayBox
full stack Fvigw)ddcontainsPoint:
proceed lgcandardSystamview)>dcontainsPoint:
restart again
senders unao
impiemantors{ita TopY
messages la Rectangie that is oud cyuc the receiver by
"': paste
sen.
Asctangis, Point, or g 99 1t
Ant It
N3pect
(deita isKingOf: Mectangle) ccapt
IfTrue: {*Mectangie cancat
origin: origin - deformatiy
corner: comer + [3P4™ Lingr)
Wrxpiain

ifFaise: [*Rectangle
origin: origin - delta
comer + deita]

again again
undo ungo
""""] 0@70 co| COPY soee==-10 copy
ST 1 ca@1a4] SNt £Om cut
ongin paste|] | -emeewe-e naste
COranNspect 80t nsoect ot
-------- print it !_] pring it
nspece nspect
faccept [sccept
cancel cancal

August/September 1988 JOOP 33

the current text 1o displayv. which is the new class template. In
this way. the six view/controller pairs sharing the single model
work to produce the desired effect.

There are several other types of Browser found in the
Smalltalk-80 system. Note the middle group of menu items in
the upper-right subview (The MessageList) of the System
Browser shown above. The menu items senders, implemen-
tors, and messages can be used 10 open new browsers (called
MessageSet Browsers) on a small subset of the system mes-
sages—namely all the senders of the currently selected mes-
sage. all other implementors of the same message. or all mes-
sages sent from within the method of the currently selected
message. Other Browsers exist, for example. to assist in change
management (ChangeSet Browsers) or system recovery
(ChangeList Browsers).

Debuggers

Class Debugger is defined as a subclass of class Browser. so
that it can inherit the cross-referencing behavior (menu mes-
sages for querying senders. implementors. and messages used
in a method). It also inherits and augments the code view be-
havior. The upper subview. which is a context list (i.e.. a mes-
sage-sending stack). is a list view that uses protocol defined in
class Debugger for displaying the system’s message sending
context stack as a list view.

Unlike the system browser. the Debugger is not the only
model involved in the debugging application. There is a
separate Inspector model for each of the two inspector sub-
views that comprise the four lower subviews. The Debugger in-
stance holds onto those two Inspector objects as two of its in-
stance variables: it explicitly changes the objects they are
inspecting whenever a new context is selected. This is an ex-
ample of using cooperating model objects with independent
coordinated views. It also shows an advantage to having the In-
spector class as a filter on the object: the object used as the
“model™ of the Inspector object can change. while the views
and controllers refer to a consistent model.

Object Editors in Smalltalk-80 Applications

Along with the user interaction paradigms of browsing and in-
specting, editing is one of the most important aspects of applica-

tions and software development tools. Among the standard editors
available in Smallalk-80 systems are text and file editors. form and
bitmap editors for graphics. and file svsiem editors for source code
and resource management. Many Smalltalk-80-based applications
implement new graphical editors for the structured objects that are
specific to their application domains. such as charts. graphs. maps.
networks. spreadsheets. animations. event lists. or database
contents.

View/Controller Factoriﬁg and Pluggable Views

Originally. the program environment tools were implemenied
so as to have the models know nothing about their views and
controllers and to use subclassing as the stvle for differentiating
behavior. In this style. for example. all the knowledge for creat-
ing the appropriate pop-up menus is in the class. and there is a
different class for each tvpe of view. Each of these classes has
class variables to hold the menu and the corresponding mes-
sages. and those class variables are bound to instance variables
at insiance creation time. Associated with each of these dif-
ferent controller classes was a new view class. This is still how
some of the system views are implemented. and it has a number
of advantages. such as clean factoring of svstem components.

We noticed. however. that many of these different controlier
and view classes shared a large number of properties. especial-
ly those that implemented list views. One similarity was that
the models were almost always some sort of filter class that al-
ready knew about the lists and the selected item in the list.

The view classes tended to be identical except for the one
message. defaultControllerClass, which is used to create the
different controllers. The controliers were quite similar except
for the particular set of menu items and the messages they sent
themselves when an item was selected. Finally. the controller
messages were almost always. passed directly on to the model:
that is. the method for message aMessage, which was sent to
the controller when the menu item aMessage was selected. was
almost always implemented as Tmodel aMessage.

It would be easier for the application developer if these dif-
ferences (e.g., the message sent to the model to generate the
list) were not implemented by different view/controller classes.
but were made parameters (instance variables) of a single class.
This is the notion called pluggable views. Rather than building
a new kind of view (e.g.. a new kind of list view) by creating
two new classes. the developer creates an instance of an exist-

Figure 13. Setup message for the class list view in the browser using a pluggable SelectionInListView

classlListView « SelectioninListView
on: aBrowser
aspect: #className
change: #className:
list: #classList
menu: #classMenu
initialSelection: #className.

self addSubView: classListView
in: myAreaRectangie
borderWidth: 1

“model of the SelectioninListView"
"message to get the selected item”
"message sent on item selection”
"message sent to generate list”
“message sent to get menu*®
"message sent to get initial selection”

“relative area filled by SubView”
"border to adjacent SubViews"

"an instance of SelectioninListView"

"Add a subview to the TopView"

34 JOOP August’September 1988

item selection definitions.

In some sense. this is an engineering trade-off. because it has
less tlexibility than entirely new class definitions and can lead
to having controller information in the models. It does.
however. reduce the number of different things the developer
needs to do to get an application together. as well as the num-
ber of different classes needed.

An example of the use of pluggable views is the implementa-
tion of the system browser list subviews. The original implemen-
tation had a special subclass of ListController for each of the list
subviews. Each of these classes had its own definition of the
menus and messages to send when the menu item was selected.
and its own message to send when a new list item was selected.
The current pluggable impiementation has four instances of the
same class. SelectionInListController. with parameters that repre-
sent the messages to be sent to the model when the selection
changes. and to create an appropriate menu when the proper
mouse button is pressed. The Browser model knows about the
four local menus and receives the corresponding messages.

The use of the setup message for adding a pluggable
SelectionInListView to a composite view is demonstrated in the
Figure 13. This code segment comes from the actual view in-
itialization for the BrowserView. It defines a SelectionInList-
View in the subview area described by the rectangle myArea-
Rectangle. It uses the messages and the menu referred to in the
figure.

The pluggability of SelectionInListViews is afforded by the
class message shown here. namely on:aspect:change:list:-
menu:initialSelection:. The message addSubView:in:border-
Width: is defined in class View for the composition of com-
plex view/subview layouts. Messages of this type are the
essence of subview pluggability and examples of their use and
utility are available through out the system’s user interface
classes. Several other classes of pluggable subviews implement
similar instantiation (plugging) messages.

Another example of a pluggable view is the text view used in
many system views. In this case, one wants to plug a text editor
subview into a view and tell it the messages needed for it 1o ac-
cess its new text contents. to set its model’s text. and to display
its menu. The message that is implemented in the class Code-
View for this is on:aspect:change:menu:initialSelection:
(note the similarity between this and the message used above
for a pluggable SelectionInListView). The example message in
Figure 14 is the entire method used to define a FileEditor view
such as the one shown in Figure 8.

Several of the other views can be used with pluggable instan-
tiation messages. These include the switch views (which one
passes a label. the messages they send to determine their state
and respond to being pressed). and confirmers and prompters
{one passes them a message or prompt and they return strings
or Boolean values).

Models and MVC Usage

Class Object contains behavior that supports Model's
functionality. i.e.. the ability for any object to have dependents. and

ADIC Ol Ciddy UDJCCL CdiiTd L4 it Tt i i NN .
models and whose corresponding values are collemons of tho>; '
models’ dependents. Class Object also implements the message
protocol to deal with adding and removing dependents. For ex-
ample. when some object (like aModel) receives the message add-
Dependent: someView, then someView is added to the collection
found in the DependentFields dictionary at kev aVodel.

Since views and controllers hold direct pointers to their
models, the DependentFields dictionary creates a type of cir-
cularity that most storage managers cannot reclaim. One by-
product ot the release mechanism is to remove an object’s de-
pendents which will break these circularities. so this s typically
not a problem except when developing an MVC application. The
corresponding circularities that result from using instances of
Model are the direct kind that most storage managers can reclaim.
Therefore. we encourage the use and subclassing of Model.

There are several more sophisticated aspects of advanced
MVC application that are not covered in this article. These in-
clude the use of windows and viewports, flexible scrolling
frameworks. text composition and fonts. and view composition
with nonscaling subviews. These issues can be studied via their
usage within the Smalltalk-80 system or through examples
found in Smalltalk-80 system applications. Interested readers
are also referred to back issues of the ParcPlace Newsletter
(formerly the Smallialk-80 Newsletier) from ParcPlace Systems
and the OOPSTAD HOOPLA Newsletter (see addresses in the
reference list).

MVC Implementation Examples

Presented next are three MVC implementation examples: one a
full application for a very simple view type (a Counter view);
one a new application view using pluggable components (the
Organizer view); and one a condensed listing for the viewing
components of a more complex application (the Financial-
History view discussed earlier and shown in Figure 2).

CounterView Example

The Counter demonstration and tutorial example is part of
the standard Smalltalk-80 Version VI 2.2 release package and
was originally written by Michael Hanus of the University of
Dortmund. [t implements a model (an instance of class
Counter) that is a simple numerical value and view (a Counrer-
View) on it which shows the value of the Counter. The control-
ler (CounterController) implements a menu allowing one to in-
crement or decrement the Counter’s value. The complete code
for these three classes follows.

First one must define a class named Counter as a subctass of
Model in the system class category named Demo-Counter.
Counter has one instance variabfe for its value.

Mode! subclass: #Counter
instanceVariableNames: 'value'
classVariableNames: '’

August September 1988 JOOP 35

Figure 14. Open Message for a FileEditorView using a Pluggable CodeView.

FileModel class methodsFor: 'Instance creation’
open: aFileModel named: aString

| topView codeView |

fopView « StandardSystemView model: aFileModel
label: aString '
minimumSize: 180@180.
codeView « CodeView
on: aFileModel
aspect: #ext
change: #acceptText:from:
menu: #textMenu
initialSelection: nil.
topView addSubView: codeView
in: (0@0 extent: 1@1)
borderWidth: 1.

topView controller open

~Scheduled a view whose model! is aFileModel and whose label is aString.”
“local variable for my top-level view and 1 subview"
“set up the top-level standard system view"

“pluggable CodeView setup message”

"it takes its model and the foliowing:"
"message sent to the model to get the text”
"message sent to accept a new text"
"message sent to get text view's menu”
"initially-selected text”

"add the code view as the sole subview”
"use the entire view's area”

"with a 1-pixel border”

"open the default controller to start up view”

poolDictionaries: **
category: 'Demo-Counter’

Next, one adds methods to Counter for initializing new counter
instances and for accessing their values. These messages will
then be understood by all Counter instances.

Counter methodsFor: ‘initialize-release’
initialize

“Set the initial value to 0.”

self value: 0

Counter methodsFor: ‘accessing’

value
“Answer the current value of the receiver.”
Tvalue

value: aNurnber
“Initialize the counter to value aNumber.”
value « aNumber.
self changed“to update displayed value”

Counter methodsFor: ‘operations’
decrement
“Subtract 1 from the value of the counter.”
self value: value -1

increment
“Add 1 to the value of the counter.”
self value: value + 1

Add the method to class Counter to be used for getting a new
counter instance.

Counter class methodsFor: ‘instance creation’
new

36 JOOP August/September 1988

“Answer an initialized instance of the receiver.”
Tsuper new initialize

Now define a class for the controller, along with the methods
to define the menu it uses and those that implement the menu
functions by passing them along to the model. The controller
inherits all its instance variables from its superclasses.

MouseMenuController subclass: #CounterController
instanceVariabieNames: '’
classVariableNames: '’
poolDictionaries: *’
category: ‘Demo-Counter’

CounterController methodsFor: ‘initialize-release’
initialize
“Initialize a menu of commands for changing the
value of the model.”
super initialize.
self yellowButtonMenu: (PopUpMenu labels:
'Increment\Decrement’ withCRs)
yellowButtonMessages: #(increment decrement)

CounterController methodsFor: ‘menu messages’

decrement
“Subtract 1 from the value of the counter.”

self model decrement

increment
“Add 1 to the value of the counter.”
self model increment

CounterController methodsFor: ‘control defaults’
isControlActive
“Take control when the blue button is not pressed.”

Tsuper isControlActive &
sensor blueButtonPressed not

Next. define the class CounterView as a subclass of View with
no additional instance variables. :

View subclass #CounterView
instanceVariableNames: '’

" classVariableNames: '’
poolDictionaries: "'
category: ‘Demo-Counter’

Add to it methods for displaying the state of its model (a
Counter) in the view shown in Listing 1.

Define a method for updating the view when the model chan-
ges. The model’s sending a self changed message will cause
the view to be sent an update message.

CounterView methods for ‘updating’
update: aParameter

“simply redisplay everything.”

self display

Another method is needed to return the class of the default con-
troller used within a counterView.

CounterView methodsFor: ‘controlier access’
defaultControllerClass
“Answer the ciass of a typically useful controller.”
TCounterController
CounterController‘initialize-release’

Finally. a method is needed to open up a new counterView and
set up the model and controller for it. The resulting view and its
menu are shown in Figure 15.

Discussion

The code presented so far is the most trivial sort of complete
MVC implementation. Suppose now that we wish to add push-
buttons to the view instead of having menu items to increment
and decrement the value of the counter. Using pluggable button

Listing 1.

views. this can easily be done by writing a new open method
for the CounterView. as shown in Listing 2.

In the open method, one sees the setup of the view as a com-
position of its three subviews. The subview placement is done
via the definition of relative rectangles. These relative rec-
tangles are displayed in the left-hand figure in Figure 16. The
definitions of the two SwitchViews and their Buttons sets their
actions so that they send the increment and decrement mes-
sages to the model of the view. This will then have the desired
effect of changing the value of the model (a Counter).

Hierarchical Text Organizer

The second example is the implementation of a simple brow-
ser view on a 2-level hierarchical text. It presents a view with
two subviews: a list of topics and a text view for the selected
topic’s text. The model is an organizer. which holds onto its or-
ganization in a dictionary of text keys and text values. The keys
are used in the topic list view and the values are the contents of
the text view. The layout and menus of an organizer are shown
in Figure 17.

The Organizer is included here as an example of a more
sophisticated use of pluggable views and also as an example of
MVC class factoring. In this example, the single class (Or-
ganizer) implements the functionalitv of the model and the
view and also defined the menus used in the view's two sub-
views.

The organizer class has two instance variables; its organiza-
tion dictionary and the currently selected category (topic, sec-
tion).

Model subclass: #0rganizer
instanceVariableNames:‘organization’
currentCategory’
classVariableNames:”
poolDictionaries:”
category: ‘Interface-Outlines’

The most basic messages to an organizer are for setting it up
and for accessing the organization by category.

Organizer methodsFor: ‘initialize-release’
initialize

CounterView MethodsFor: ‘displaying’
displayView
“Display the value of the model in the receiver’s view.”
| box pos displayText|
box « self insetDisplayBox.

pos « box origin + (4 @ (box extent y / 3)).

displayText displayAt: pos

“get the view’s rectangular area for displaying”
“Position the text at the left side of the area, 1/3 of the way down”

“concatenate the components of the output string and display them”
displayText « (‘value:, self model value printString) asDisplayText.

August-September 1988 JOOP 37

Listing 2.

CounterView class methodsFor: ‘instance creation’
openWithGraphicalButtons

“Open a view for a new counter that has fixed graphical buttons (whose forms are
generated from the '+ and ‘- characters and displayed on white backgrounds)
for incrementing and decrementing the value.”

“CounterView openWithGraphicalButtons”

| aCounterView topView incrButton decrButton incrSwitchView dechwitc_:hViewl
“top view = StandardSystemView”

topView « StandardSystemView new label: ‘Counter’.

topView minimumSize: 120 @ 80.
topView maximumSize: 600 @ 300. »
topView borderWidth:2 “set window border”

“main counter subview”
aCounterView « CounterView new model: Counter new.
aCounterView insideColor: Form white.
“add main CounterView to topView in the right-hand 60%"
topView addSubView: aCounterView
in:(0.4 @ O extent: 0.6 @ 1)
"a view's area is defined to be”
borderWidth:0
“the rectangle 0@0 to 1@1”

incrButton « Button newOff
“define increment button and give it its action Buttons are used in Switches”

incrButton onAction: [aCounterView model increment].
“put it in a switchView”
incSwitchView « SwitchView new model: incrButton
“whose label is a form”
incrSwitchView label: (‘+' as DisplayText magnifyBy: 2@2).
“surrounded by white”
incSwitchView insideColor: Form white
“add the increment switch to topView”

topView addSubView: incrSwitchView

in: (0@0 extent: 0.4 @ 0.5) “put it in the top-left corner”
borderWidth: (0@0 extent: 2@1). “Border is defined as left, top, right, bottom”
decrButton « Button newOff. "define the decrement switch”

decrButton onAction: [aCounterView model decrement].
decrSwitchView « SwitchView new model: decrButton.
“its form is also put in there”

decrSwitchView label: ('~" asDisplayText magnifyBy: 2@2).
decrSwitchView insideColor: Form white

topView addSubView: decrSwitchView “add it in the lower-left”
in: (0 @ 0.5 extent: 0.4 @ 0.5) “under the increment button”

borderWidth: (0@1 extent: 2@0). “start up topView's controller”
topView controller open .

38 JOOP August'September 1988

Grganizer class methodsFor: ‘creation’
new
“make a default new Organizer”
Tsuper new initialize

Organizer class methodsFor: ‘loading’
load: aFileName
“Read a new Organization in from the given file using empty lines and double empty lines as the default
separators. Many other formats can be parsed”
“Organizer load: ‘DT.ws'."
| file org crl
file « (FileStream oldFileNamed: aFileName).
cr « Character cr.
org « self new.
org parseFrom: file
entrySeparatorString: (String with: cr with: cr with: cr)
keySeparatorString: (String with: cr with: cr).
Torg

Organizer class methodsFor: ‘view creation’
openFile: aName
“read a new Organizer from the given file”

“Organizer openFiie: ‘DT.ws’.
Tself openOn: (self load: aName) label: aName

openOn: anOrganization label: aLabel
“open an Organizer view on the given organization”
“Organizer openOn: Organizer new label: ‘Maintenance

"

| topView listView textView |

topView « StandardSystemView “top-level view”
model: anOrganization
label: alLabetl
minimumSize: 250@250.

topView borderWidth: 1.

listView « SelectioninListView “glug in topic list view”
on: anOrganization “model of list”
aspect: #organization
change: #organization: “‘message sent to set new list”
list: #organizationlList “message sent to get list”
menu; #organizationMenu “message sent to get menu”
initialSelection: #currentCategory.
textView « CodeView “plug in text editor view”
on: anOrganization “with its model”
aspect: #text “and its aspect accessing message”
change: #acceptText: “and change message”
menu: #extMenu. “and its menu accesdsing message”

“plug in a special controller for the text view”
textView controller: AlwaysAcceptCodeController new.
“plug the subviews into the top view”
topView addSubView: listView
in: (0@0 extent: 1@0.3) “list view in the top 30%"
borderWidth: 1.

topView addSubView: textView
topView controller open
in: (0@0.3 extent: 1@0.7) “text view in the bottom 70%”
borderWidth: 1

uopView controller open

August/September 1988 JOOP

39

Figure 13. View layout and menu of the simple CounterView

CounterView class methodsFor: ‘instance creation '
open .
“Open a view for a new counter.”

"select and execute this comment to test this method”

*CounterView open.”

| aCounterView topView |

aCounterView « CounterView new
model: Counter new.

aCounterView borderWidth: 2.
aCounterView insideColor: Form white.

“the top-level view”
topView « StandardSystemView new
label: 'Counter .

topView minimumSize: 80@40.
topView addSubView: aCounterView.

"start up the controlier”
topView controller open

“create the counter display view”
"a new CounterView instance”
‘with a Counter as its model”

“give it a borderWidth”
*and white insides”
“a new system window"

“labelled ‘Counter' ~

*at least this big”
"add the counterView as a subView"

Counter

vaiue: O
Increment
Decrement

“set up a new empty Organizer. Its organization is
an empty dictionary.”
organization « Dictionary new

Organizer methodsFor: ‘organization list’
currentCategory

organizationList
“return the list of organization keys (lopics), the
keys of the dictionary”
Torganization keys asSortedCollection

organization: aCategory
“set the current category and signal that the or-
ganization text has changed”
currentCategory « aCategory.
self changed: #text

addCategory
“Add a new category, prompting the user (with a Fill-
InTheBlank) for its name”
| newCategory |
NewCategory « FillinTheBlank
request: ‘New Category’ initialAnswer: (7).
newCategory =" ifTrue: [Tself].
organization at: newCategory put: Text new.
currentCategory « newCategory.
self changed: #organization

removeCategory

40 JOOP August/September 1988

“prompt the user and remove the current category
from the organization”
(BinaryChoice message: ‘Are you certain that you
want to remove category’, currentCategory, ‘?’)
ifTrue:
[organization removeKey: currentCategory.
currentCategory « nil.
self changed: #organization)

renameCategory
“prompt the user for a new name and rename the
current category”
| newCategory
newCategory « FillilnTheBlank
request: ‘New Category’
initialAnswer: (currentCategory).
newCategory = " ifTrue: [Tself].
organization at: newCategory put: {organization at:
currentCategory).
organization removeKey: currentCategory
currentCategory « newCategory.
self changed: #organization

organizationMenu
“return the menu to be used in the 1opic key list”
currentCategory == nil
ifTrue: [TActionMenu ActlonMenulabels ‘add
category’ selectors: #(addCategory)].
TActionMenu ActionMenulabels: ‘add
category\rename\remove’ withCRs
selectors: #(addCategory renameCategory remove-
Category)

FIZUIE LU Cuviulingic) 3Ch. ding i8uiliig Vil v Il Ut Ul 6w vt

View with graphical buttons
Counterl

-+

-0@0 6 0.0

valk O

Figure 17. Organizer view showing list and text views and menus

System Workspace Orgamzerl
. Flies

FOTCAanges

B System Support

F: Terminai Support

G: Clocks

add category|
rename
remove

Smalitaik noChanges. “empty the change set"

(FileStream fileNamed: ’fileName.st’) fileOutChanges.[again
(FiieStream fileNamed: 'fileName.st’) fileOutChangesf_undo fs.

copy

ChangeListView open. *browse the current ch ngze
ao it

Smailtaik changes. ‘access the change set print it

‘remove all changes to a class from the cha :cs::::
Stream removeFromChanges. cancel

The text-related messages allow the user to query and set the
text value for the currently selected category, as shown in
Listing 3.

Organizer methodsFor: ‘text’

text
“answer the text for the current category”
currentCategory == nil ifTrue: [TText new].
Torganization at: currentCategory copy

acceptText: aText
“this is sent to accept the changed text from the
text subview”
currentCategory == nil ifTrue: [Tfalse].
organization at: currentCategory put: aText copy.
Ttrue

textMenu
“answer the menu used in the text subview”
TActionMenu
labels: ‘again\undo\copy\cut\pasteido it\print it\in-
spectiaccepticancel’
withCRs
lines: #(25 8)
selectors: #(again undo copySelection cut paste
doit printlt
inspectit accept cancel)

The methods used to parse streams assume that special strings
are used for separating entries from their keys and for separat-

many common file formats (such as System Workspaces.
password files. or tables) to be parsed with organizers.

Organizer methodsFor: ‘parsing’
parseFrom: aStream entrySeparatorString: entryStr
keySeparatorString: aKeyStr
“read an organization from the given stream using
the two given strings to
parse the contents into entries and values”

ltmp key body |
[aStream atEnd] whileFalse:
[tmp « ReadStream on: (aStream upToAll: entry-
Str).
key « tmp upToAll: aKeyStr.
body « tmp upToEnd asText.
organization at: key put: body]

The class messages for organizers provide for the creation of
new instances and the simple loading of standard files.

The organizer described above can be used, for example, for
creating a browser on the contents of the Smalltalk-80 system’s
System Workspace, as shown in Figure 17.

FinancialHistory Example View Setup

On the following pages is a condensed version of the source
code (Listings 4 and 35) for the classes FinancialHistory,
FinancialHistorvView, and FinancialHistoryController as
described in depth in [Goldberg and Robson 83] and the Parc-
Place Systems Smalltalk-80 VI 2.3 release fileset. Figure 2
shows the view layout and standard menu for the Financial-
History example. Included here is the method text for the
MVC-related setup and interaction messages.

The controller class implements the default menus for use
within FinancialHistoryView as shown below. It carries out
user queries and sends messages to the model to change the
state (such as after spending or receiving money).

Only the receive message for the controller is shown above;
the spend message is closely analogous to it.

The class FinancialHistoryView simply contains the view
setup message for plugging the two BarChartViews into a top-
View and starting the appropriate controller.

View subclass: #FinancialHistoryView
instanceVariableNames: '’
classVariableNames: '’
poolDictionaries: '’
category: ‘Demo-FinancialTools’

FinancialHistoryView methodsFor: ‘controller access’
defaultControllerClass
TFinancialHistoryController

The setup message defines the topView and inserts the sub-
views into it. The BarChartViews are defined in the support

August/September 1988 JOOP 41

Listing 4.

instanceVariable Names: '’
pooiDictionaries: "’

category: ‘Demo-FinancialTools’

initialize
“initialize me and set up the appropriate menus”
super initialize.
self initializeYellowButtonMenu

FinancialHistoryController methodsFor: ‘private’

initialize YellowButtonMenu

self yeliowButtonMenu: FHYellowButtonMenu
yellowButtonMessages: FHYellowButtonMessages

initialize
“Specify the yellow button menu items and actions.”
FHYellowButtonMessages « #(spend receive).
receive
| receiveFrom amount |

receiveFrom =" ifTrue: [Tself].

amount =" ifTrue: [Tself].

model receive: amount from: receiveFrom.

classVariableNames: '‘FHYellowButtonMenu FHYellowButtonMessages

FinancialHistoryController methodsFor: ‘initialize-release’

FinancialHistoryController methodsFor: ‘menu messages’

MouseMenuController subclass: #FinancialHistoryControlier

“plug in my menu and its messages from the class variables”
“The message yellowButtonMenu: yellowButtonMessages: is implemented for all mouse-menu-controllers”

FinancialHistoryControlier Class methodsFor: ‘class initialization’

FHYeliowButtonMenu « PopUpMenu labels: ‘spend\receive’ withCRs.

“Ask what amount is being received from what and send the appropriate message to the model.”

“prompt the user with a FillinTheBlank prompter”
receiveFrom « FillinTheBlank request: ‘Receive from what?'. ,
“return it he/she answers blank”
amount « FillinTheBlank request: ‘How much from’, receiveFrom, ‘?".

“read a number out of this string”
amount « Number readFrom: (ReadStream on: amount).

“send it on to the model”

classes for the FinancialHistory example and are the bar chart
elements seen in Figure 2.

The three examples presented here show some of the sophis-
tication possible using the Model-View-Controller paradigm
and methodology in the Smalltalk-80 system. Readers are en-
couraged to browse the Smalltalk-80 system interface classes
or read the other references to see many more examples of
MVC programming.

Summary

The Model-View-Controller metaphor is a way to design and
implement interactive application sofiware that takes advantage
of modularity. both 10 help the conceptual development of the
applications, and to allow pieces already developed for one ap-
-plication to be reused in a new application.

The metaphor imposes a separation of behavior between the

48 JOOP August'September 1988

actual mode] of the application domain. the views used for dis-
playing the state of the model. and the editing or control of the
model and views.

We have implemented the metaphor in the Smalltalk-80 sys-
tem and have used this implementation both to create the basic
programming development tools used in the system, and to
develop a diverse collection of applications.

Acknowledgements

The Smalitalk-80 Programming System and the MVC user in-
terface paradigm were developed over several years by
numerous members of the Systems Concepts Laboratory at the
Xerox Palo Alto Research Center (PARC).

Several of our colleaques at Xerox PARC and ParcPlace Sys-
tems reviewed and contributed to this paper. We are indebted to
them for their assistance.

FinancialHistoryView class methodsFor: ‘instance creation’

open: aFHModel

“open and schedule the MVC application for the Financial History given as the argument to this message”

| aFHView aBCView topView |
topView « StandardSystemView new.

topView model: aFHModel.

topView borderWidth: 2.

topView insideColor: Form lightGray.
topView label: ‘Financial History'.

“label the view”
“make it big” .

topView minimumSize: 400@300.

. “make the FHView for insertion into topView’
aFHView « FinancialHistoryView new model: aFHModel.
“add the FHView as a subview of topView"
“use the entire area of topView"

topView addSubView: aFHView.

define the expenditures BarChart”
aBCView « BarChartView new model: aFHModel expenditures.

“its model is the expenditures dictionary”

“its area is the given absolute region”

aBCView insideColor: Form white.
aBCView borderWidth: 2.

“it has no controiler”

aBCView controlter: NoController new.

“add it as a subview”

aFHView addSubView: aBCView
in: (0.04@0.05 extent: 0.44@0.9)
borderWidth: 2

“define the incomes BarChart similarly
“its model is the incomes dictionary”
aBCView « BarChartView new model: aFHMode! incomes.

aBCView insideColor: Form white.
aBCView borderWidth: 2.
aBCView controller: NoController new

“add it as a subview”

aFHView addSubView: aBCView

in: (0.52@0.05 extent: 0.44@0.9)

borderWidth: 2.

“open the new top-level controller for the application:
topView controller open

“define the top view (application window)"

“make the background light gray”

“plug in the mode!”

"

References

Adele Goldberg. Smualltuik-80: The Imeractive Programnung Environment. Ad-
dixon-Weslev Pubiishers. Menio Park. 1983.

Adele Goidberg and David Robson. Smalltalk-80: The language and its Implemen-
tarion. Addison-Wesley Publishers. Menlo Park, 1983,

ParcPlace Svstems Newsletrer. Numbers 1-14 are now available from ParcPlace
Systems. 2400 Geng Road. Pato Alto. CA 94303.

HOOPLA (Huoray for Ohject-Oriented Programming Languages!). Newsletter of
OOPSTAD (Object-Oriented Programming for
Developers Association). Available from OOPSTAD. P.O. Box 15635. Everett.
WA 98206,

Smaltalk Applications

Further Reading
Stephen T. Pope. Smalltalk-80 Applications Bibliography. Smalltalk-80 Newsletrer
#/1. ParcPlace Systems. September 1987,

Trygve Reenskaug. User-Oriented Descriptions of Smalltalk Systems. Byre.
August, 198].

Ralph E. Johnson. Model:View. Controller. Deparntment of C. S.. U. of Illinois. Ur-
bana-Champaign. November 1987,

Sam S. Adams. “MetaMethods: The MVC Paradigm™. in: HOOPLA! (Hooray for
Object-Oriented Programming Languages!). Vol. 1 Number 4. July. 1983.

To find out more about the use of the MV C classes within the Smalitaik-80 sys-
tem. interested readers are referred to the svstem itself. Using the MessageSet
browsers for browsing all senders of the pluggable view initialization messages
can be very informative. Examples of these might be found in the “plugging”™ mes-
sage on:aspect:change:menu:initialselection: which is implemented in class
CodeView or the parallel messages in the other pluggable view classes such as
SelectionInListView or SwitchView.

One can aiso browse all references to the simple interactive user interface clas-
ses (such as FilllnTheBlank or BinaryChoicer. or the open messages for the
system'’s application views. For examples of advanced interaction usage. looking
at implementors of the message controlActivity can be instructional.

August September 1988 JOOP 49

