
S O F T W A R E QUALITY:

BARBARA KITCHENHAM, National Computing Centre
SHARI LAWRENCE PFLEEGER, Systerns/Software, Inc.

n the recent past, when bank ; context is important. Errors toler-
statements contained errors ated in word-processing software
or the telephone network may not be acceptable in control
broke down, the general pub- software for a nuclear-power plant.

lic usually blamed “the computer,” i Thus, we must reexamine the
making no distinction between i meanings of “safety-critical” and
hardware and software. However, “mission-critic.al” in the context of
high-profile disasters and the ensu- software’s contribution to the
ing debates in the press are alerting i larger functionality and quality of
more people to the crucial nature ! products and businesses. At the
of software quality in their every- same time, we must ask ourselves
day lives. Before long, we can ex- who is responsible for setting qual-
pect increasing public concern ity goals and making sure they are
about the pervasiveness of soft- achieved.
ware, not only in public services
but also in consumer products like i WHAT DOES QUALITY
automobiles, washing machines, REALLY MEAN?
telephones, and electric shavers. i
Consequently, we software profes- ! Most of us are affected by the
sionals need to worry about the ! quality of the software we create
quality of all our products - from because our organization’s viability
large, complex, stand-alone sys- depends on it. And most software-
tems to small embedded ones. ! related tools and methods - in-

So how do we assess “adequate” ; cluding those described in IEEE
quality in a software product? The Sofcware - claim to assess or im-

I

12 0 7 4 0 J A N U A R Y 1996 7 4 5 9 / 9 6 / $ 0 5 00 0 1 9 9 6 I E E E

prove software quality in some way. So
we must question what we and our cus-
tomers mean by software quality.

A good definition must let us mea-
sure quality in a meaningful way.
Measurements let us know if our tech-
niques really improve our software, as
well as how process quality affects prod-
uct quality. We also need to know how
the quality we build in can affect the
product’s use after delivery and if the in-
vestment of time and resources to assure
high quality reap higher profits or larger
market share. In other words, we want to
know if good software is good business.

Recent articles have raised this ques-
tion, but the answer is still far from clear.
Still, most people believe that quality is
important and that it can be improved.
Companies and countries continue to
invest a great deal of time, money, and
effort in improving software quality. But
we should try to determine if these na-
tional initiatives have directly affected
and improved software quality. The an-
swer may depend on how you approach
quality improvement. Some companies
take a product-based approach, while
others focus on process; both strategies
have led to Malcolm Baldridge awards

for overall product quality.
In their more general questioning of

quality goals and techniques, Roger
Howe, Dee Gaeddert, and Maynard
Howe pointed out that most quality ini-
tiatives either fail (by drowning in a sea
of rhetoric) or cannot demonstrate suc-
cess because no financial r e t u n can be
identified.’ In this special issue, we ques-
tion software quality in the same way.
We consider the meaning of software
quality, how we assess it, and whether
the steps we are taking to improve it are
really worthwhile.

VIEWS OF SOFTWARE QUALITY

In an influential paper examining
views of quality, David Gamin studied
how quality is perceived in various do-
mains, including philosophy, economics,
marketing, and operations management.’
H e concluded that “quality is a complex
and multifaceted concept” that can be de-
scribed from five different perspectives. + The transcendental view sees quality
as something that can be recognized but
not defined. + The user view sees quality as fitness
for purpose.

+ The manujicturing view sees qual-
ity as conformance to specification. + The product view sees quality as tied
to inherent characteristics of the product. + The value-based view sees quality as
dependent on the amount a customer is
willing to pay for it.

Transcendental view. This view of soft-
ware quality is much like Plato’s descrip-
tion of the ideal or Aristotle’s concept of
form. Just as every table is different but
each is an approximation of an ideal
table, we can think of software quality as
something toward which we strive as an
ideal, but may never implement com-
pletely. When software gurus exhort us
to produce products that delight users,
this delight represents the strived-for
“recognition” in the transcendental def-
inition of quality.

User view. Whereas the transcenden-
tal view is ethereal, the user view is more
concrete, grounded in product charac-
teristics that meet the user’s needs. This
view of quality evaluates the product in
a task context and can thus be a highly
personalized view. In reliability and per-
formance modeling, the user view is in-

EOFTWARE QUALITY SURVEY
IASL year we invited readers lo air

their view on soft~r are quality by coni-
plctiiig a short questiomiairc. As
proniisetl? we report the results of the
sui-vey here. \,\’e thank those who coiii-
pleted the questionnaire. Of the 27 re-
spondents, 1; uwe froni rhe US, live
froni Europe, and fiw from Asia - sim-
ilar to the distribution of lb.’/*,‘f; .’ii!~mm
reiiders. Respondents l~ackground cxpc-
rience w a s mixed and soiuc indivitluals
marked several categor
nine marks in developmeni and seven iii
rescarch. Of‘the 12 who markecl “other,”
five \\rote in “qmalin- asstirmce.”

:\Ithough this is ncithcr ;I large nor
rcprcsenrati\ e saniple, we hope that thc
responses will rnaltc !;OLI think ahout
your own perspective on quality and cx-
arniuc how qii;ility is effected hy the
tiest-liractice activities ! ~ L I irnplenient.

Views of quality. \.Vc ;isLcd respon-
tlcnts to suggest thcir own quality cleti-
nitions :ind then assessed thein against

I I I , I I ~ I I ~ ~ I ~ ~ I I I I ~ ~ I ~ ~ i i w (17 and 13, rcspcc-
ti \L*l ! I . I loi\c~\.ci., 14 respondents sus-
qcstcd definitions tha t covered two or
more different views. Other vicwpoiii ts
included product (nine reslioiidents),
tr,i n scen de n tal (thrcc), and \,a I ue (fire).

O f the 27 respondents, I8 strongly
agreed and seven aprccd tha t software
q t d i t ~ constituted a prol)leiii. \Vhcn
asked i f a cl~~iIit!-in:iiiageiiieiit systciii
alone could solve tlic q i d i t y problein.
18 disagreed, thrcc :igrcetl, nnd t ~ v o re-

Opinions were inixc ’ .. I . , ‘a. :‘.: .
S~l~Jlld~ll~S S L l . O l l g l ~ >lgrCcd.

qualit!! is nioic o r Icss i b . . i . : I , , : : :I

time to market: 17 thought time to
inarket was oFeqti:il or greater inipor-
tance than quality i i i i (l w x ’ i i ilioiigli~
qii;lli t!, n as no re i i I I I) (i11;i 111 !I 1 1 I’CY Iiii(I
no opinion). On the relative vdue of
quality ancl protlucti\in; 17 thought
qixility \vas inore important tlian pro-

dtictirity a11d ninc thought protluctivit\..
n:1s of equal or greater importance.

Quality issues. \.\:e asked rcsponilcnts
to select thrce c p l i t y issues from a list
and rank them in terms of inipc)rtance.
Mi. used :i simple ranking ordcr for thc

igning three points to the
item niarkcd as most in ip - f i i n t , two
points to those marked ;is next most im-
portant, and one point to thc third inwr
important issuc.

Respondents ranked speci$ing qu;iI-
ity requirernents ohjcctively as most ini-
portant (28 points), followed 11. scttirig
111) a cl~i~ilit\:-nianagcriieiit spsteni (20
points). This implics that respoideiits
rate a UhIS as necessary - but not suf-
f ic ient - for addressing qiialiri,.
:Ichieving operational quality that
inccts requirements U a s ~.:inl;etl third
(18 points), follon-ed b!; mcasiiring
qunlity achievcincnts (1 7 points), a n d
agreeing wi th thc ctistoiiier o n nhat
qualit!, iiieans (1 5 pints).

I E E E S O F T W A R E

G U E S T E D I T O R S ’ I N T R O D U C T I O N

herent, since both methods assess prod-
uct behavior with respect to operational
profiles (that is, to expected functionality
and usage patterns). Product usability is
also related to the user view: in usability
laboratories, researchers observe how
users interact with software products.

Manufacturing view. The Manufactur-
ing view focuses on product quality
during production and after delivery.
This view examines whether or not the
product was constructed “right the first
time,” in an effort to avoid the costs as-
sociated with rework during develop-
ment and after delivery. This process
focus can lead to quality assessment
that is virtually independent of the
product itself. That is, the manufactur-
ing approach - adopted by I S 0 90013
and the Capability Maturity Model4 -
advocates conformance to process
rather than to specification.

There is little evidence that confor-
mance to process standards guarantees
good products. In fact, critics of this
view suggest that process standards
guarantee only uniformity of output
and can thus institutionalize the pro-
duction of mediocre or bad products.
However, this criticism may be unfair.
Although process standards are usually
based on the principle of “documenting
what you do and doing what you say,”
both CMM and I S 0 9001 also insist
(with different degrees of emphasis) that
you improve your process to enhance
product quality.s

Product view. Whereas the user and
manufacturing views examine the prod-
uct from without, a product view of qual-
ity looks inside, considering the product’s
inherent characteristics. This approach is
frequently adopted by software-metrics
advocates, who assume that measuring
and controlling internal product proper-
ties (internal quality indicators) will result
in improved external product behavior
(quality in use). Assessing quality bymea-
suring internal properties is attractive be-
cause it offers an objective and context-
independent view of quality. However,
more research is needed to confirm that
internal quality assures external quality
and to determine which aspects of inter-

I E E E S O F T W A R E

nal quality affect the product’s use. Some
researchers have developed models to
link the product view to the user view.

Value-based view. Different views can be
held by different groups involved in soft-
ware development. Customers or market-
ing groups typically have a user view, re-
searchers a product view, and the
production department a manufacturing
view. If the difference in viewpoints is not
made explicit, misunderstandings about
quality created during project initiation
are likely to resurface as (potentially) major
problems during product acceptance.

These disparate views can comple-
ment each other in early phases. If the
user’s view is stated explicitly during re-
quirements specification, the technical
specification that drives the production
process can be derived directly from it -
as can product functionality and features.
However, problems can arise when
changes to the requirements occur. At this
point, the user’s requirement for a useful
product may be in conflict with the man-
ufacturer’s goal of minimizing rework.

This is where the value-based view of
quality becomes important. Equating
quality to what the customer is willing to
pay for encourages everyone to consider
the trade-offs between cost and quality. A
value-based perception can involve tech-
niques to manage conflicts when require-
ments change. Among them are “design
to cost,” in which design possibilities are
constrained by available resources and
“requirements scrubbing,” in which re-
quirements are assessed and revised in
light of costs and benefits.

Product purchasers take a rather dif-
ferent value-based view. Part of their job
is to know if a software product repre-
sents value for money to their organiza-
tion. In this context, internal software
measures are irrelevant. Purchasers com-
pare the product cost with the potential
benefits. In her article in this issue,
“Quality Outcomes: Determining Bus-

benefits obtained from investment in in-
formation systems.

iness Value,” Pamela Simmons discusses

MEASURING QUALITY

The perspective we take on quality

influences how we define it. But we also
want to be able to measure quality so we
can establish baselines, predict likely
quality, and monitor improvement.
Here, too, perspective influences our
choice. Users assess software-product
quality in terms of their interaction with
the final product. Product attributes that
contribute to user satisfaction are a mix-
ture of

+ the product’s functions, which are
either present or absent;

+ the product’s nonfunctional quali-
ties (its behavior), which is measurable
within some range; and

+ the constraints that determine if a
customer will use a particular product.

For example, a system may be re-
quired to perform a particular function,
and a nonfunctional requirement may
prescribe that the function be performed
within two seconds of its invocation. At
the same time, the system is constrained
by the function’s cost and availability, as
well as the environment it will be used in.

Past discussions of product quality
have ignored constraints, which are con-
sidered to be the responsibility of man-
agers who consider trade-offs between
quality and cost. Some quality experts
now suggest that all aspects of quality re-
lated to user needs be considered during
definition and assessment. This corre-
sponds to the I S 0 definition of quality,
“the totality of characteristics of an entity
that bear on its ability to satisfy stated and
implied

Measuring the user’s view. When users
think of software quality, they often
think of reliability: how long the prod-
uct functions properly between fail-
ures. Reliability models plot the num-
ber of failures over time.’ These

. -

~~

G U E S T E D I T O R S ’ I N T R O D U C T I O N

models sometimes use an operational
profile, which depicts the likely use of
different system functions.*

Users, however, often measure more
than reliability. They are also concerned
about usability, including ease of instal-
lation, learning, and use. Tom Gilb sug-
gests that these characteristics can be
measured directly.’ For example, learn-
ing time can be captured as the average
elapsed time (in hours) for a typical user
to achieve a stated level of competence.

Gilb’s technique can be generalized to
any quality feature. The quality concept
is broken down into component parts
until each can be stated in terms of di-
rectly measurable attributes. Thus, each
quality-requirement specification in-
cludes a measurement concept, unit, and
tool, as well as the planned level (the tar-
get for good quality), the currently avail-
able level, the best possible level (state-
of-the-art), and worst level. Gilb does
not prescribe a universal set of quality
concepts and measurements, because dif-
ferent systems will require different qual-
ities and different measurements.

Measuring the manufacturer’s view. The
manufacturing view of quality suggests
two characteristics to measure: defect
counts and rework costs.

Defectcounts. Defect counts are the num-
ber of known defects recorded against a
product during development and use.
For comparison across modules, prod-
ucts, or projects, you must count defects
in the same way and at the same time
during the development and mainte-
nance processes. For more detailed
analysis, you can categorize defects on
the basis of the phase or activity where
the defect was introduced, as well as the
phase or activity in which it was detected.
This information can be especially help-
hl in evaluating the effects of process
change (such as the introduction of in-
spections, tools, or languages).

The relationship between defects
counts and operational failures is unclear.
However, you can use defect counts to
indicate test efficiency and identify
process-improvement areas. In addition,
a stable environment can help you esti-
mate post-release defect counts.

I E E E S O F T W A R E

To compare the quality of different
products, you can “normalize” defect
count by product size, to yield a defect
density. This measure lets you better
compare modules or products that differ
greatly in size. In addition, you can “nor-
malize” postrelease defect counts by the
number of product users, the number of
installations, or the amount of use. Divi-
ding the number of defects found during
a particular development stage by the
total number of defects found during the
product’s life helps determine the effec-
tiveness of different testing activities.

Rework costs. Defects differ in their effect
on the system: some take a little time to
find and fix; others are catastrophic and
consume valuable resources. To monitor
the effect of defect detection and correc-
tion, we often measure rework costs -
the staff effort spent correcting defects
before and after release. This cost of
nonconformance supports the manufac-
turing view.

Rework is defined as any additional
effort required to find and fix problems
after documents and code are formally
signed-off as part of configuration man-
agement. Thus, end-phase verification
and validation are usually excluded, but
debugging effort during integration and
system testing is included. To compare
different products, rework effort is some-
times “normalized” by being calculated
as a percentage of development effort.

Because we want to capture the cost
of nonconformance, we must be sure to
distinguish effort spent on enhance-
ments from effort spent on maintenance.
Only defect correction should count as
rework. It is also important to separate
pre- and postrelease rework. Postrelease
rework effort is a measure of delivered
quality; prerelease rework effort is a mea-
sure of manufacturing efficiency. If we
zan attribute the prerelease rework effort
to specific phases, we can use it to iden-
tify areas for process improvement.

Developers and customers alike are
interested in knowing as early as possible
the likely quality of the delivered prod-
uct. But the relationship between post-
delivery failure and defects, structural
measures, and other predelivery infor-
mation is far from clear. In 1984, the

Esprit-funded Request project con-
cluded that there were no software-prod-
uct metrics that were likely to be good
predictors of final product qualities.”
Twelve years later, there is no evidence of
any significant improvement. Much use-
ful software-metrics research concen-
trates instead on linking software-prod-
uct measures to error-prone modules.

An example of this type of work is
found in the article by Taghi Koshgoftaar
and colleagues, “Early Quality Pre-
diction: A Case Study in Telecommu-
nications,” in this issue. However, re-
searchers have provided no convincing
evidence that module-level measures are
consistently related to external, behav-
ioral properties of the product as a
whole. Indeed, there are major technical

difficulties in assessing such relation-
ships; correlating system-level measures
with simple module-level statistics, such
as means, are unlikely to be appropriate.

Capturing quality data. The way we mea-
sure quality depends on the viewpoint we
take and the aspect of quality we want to
capture. Peter Mellor provides guidelines
for defining incidents, failures, and faults
that can help you capture raw data for re-
liability assessment.” This type of data
can measure other aspects related to the
user view of quality. Proper classification
of incidents lets us identify potential us-
ability problems (that is, incidents result-
ing from misuse of the software or m i s -
understanding of the user manuals and
help systems). In addition, information
about the time and effort needed to diag-
nose the cause of different priorities and
correct any underlying faults can give 11s
useful information about system main-
tainability. This sort of data is often used
to monitor service-level agreements that
define the obligations of software-main-
tenance organizations.

p v e 1 . McCall’s quality model defines sojiware-product qualities us a hierarchy
t o n , cvzteria, and metrics.

Capturing data associated with other
quality aspects -particularly those asso-
ciated with the product and manufactur-
ing view - is usually part of a company’s
software-measurement system. The par-
ticular measures an organization collects
will depend on its goals and management
requirements. Techniques such as the
Goal-Question-Metric paradigm devel-
oped by Vic Basili and colleagues’2 can
help us identify which measures will help
us monitor and improve quality.

MODELING QUALITY

To understand and measure quality,
researchers have often built models of
how quality characteristics relate to one
another. Just as Gilb decomposed quality

*

into various factors, so have others de-
picted quality in a hierarchical way. In the
past, many researchers developed soft-
ware quaky models that were intended
to be comprehensive and applicable to all
software development.

McCall’s quality model. One of the earli-
est quality models was suggested by Jim
McCall and colleagues.13 As shown in
Figure 1, the model defines software-
product qualities as a hierarchy of factors,
criteria, and metrics. The arrows indicate
which factors the criteria influence.

A quality factor represents a behav-
ioral characteristic of the system. A qual-
ity criterion is an attribute of a quality
factor that is related to software produc-
tion and design. A quality metric is a

neasure that captures some aspect of a
pality criterion. Thus, the 11 quality
-actors contribute to a complete picture
If software quality.

One or more quality metric should be
issociated with each criterion. Thus, as
h e figure shows, you can measure porta-
d i t y by combining self-descriptiveness,
nodularity, software-system indepen-
dence, and machine independence. The
netrics are derived from the number of
‘yes” responses to questions whose an-
jwers are subjective, such as “Is all docu-
mentation structured and written clearly
md simply such that procedures, func-
hons, algorithms, and so forth can easily
be understood?” Dividing the number of
yes responses by the number of questions
gives a series of values in the range 0 to
1. The measures can be composed into
either measures of specific factor quality
or the product’s quality as a whole by
considering the relevant selection of
questions .

However, there are problems with
values derived in this way. The degree of
subjectivity varies substantially from one
question to another, even though all re-
sponses are treated equally. This varia-
tion makes combining metrics difficult,
if not impossible. Moreover, when ap-
propriate, response complexity should
be reflected in a richer measurement
scale. For example, while it is reasonable
to expect a yes-or-no response to the
question, “Does this module have a sin-
gle entry and exit point?” questions
about documentation clarity probably
require a multiple-point ordinal scale to
reflect the variety of possible answers.

IS0 9126. More recently, interna-
tional efforts have led to the develop-
ment of a standard for software-quality
measurement, I S 0 9126.14 The stan-
dards group has recommended six char-
acteristics to form a basic set of inde-
pendent quality characteristics. The
quality characteristics and their defini-
tions are shown in Table 1.

The standard also includes a sample
quality model that refines the features of
IS0 9126 into several subcharacteristics,
as Figure 2 shows. The arrows in the fig-
ure indicate how the characteristics are
decomposed into subcharacteristm.

J A N U A R Y 1996

The standard recommends measuring
the characteristics directly, but does not
indicate clearly how to do it. Rather, the
standard suggests that if the characteristic
cannot be measured directly (particularly
during development), some other related
attribute should be measured as a surro-
gate to predict the required characteristic.
However, no guidelines for establishg a
good prediction system are provided.

Although the I S 0 9126 model is sim-
ilar to McCall’s, there are several differ-
ences. Clearly, the IS0 model uses a dif-
ferent quality framework and termi-
nology, and the term “quality character-
istic” is used instead of quality factor. The
other elements of the IS0 framework (as
defined in associated guidelines) are:

+ quality subcharacteristics to refine
the characteristic,

+ indicators to measure quality sub-
characteristics, and

+ data elements to construct an indi-
cator.

(Indicators are usually ratios derived
from data elements. For example, the
fault rate can be defined as the ratio of
number of faults to product size.)

In addition to the different terminol-
ogy, there are structural differences be-
tween the models. Unlike earlier Amer-
ican models, the IS0 framework is
completely hierarchical - each subchar-
acteristic is related to only one character-
istic. Also, the subcharacteristics relate to
quality aspects that are visible to the user,
rather than to internal software proper-
ties. Thus, the IS0 model reflects more
of a user view, while the McCall model
reflects more of a product view.

Model problems. The two models pre-
sented here are representative of older
quality models. Although their ap-
proaches differ, the models share com-
mon problems. First, they lack a rationale
for determining which factors should be
included in the quality definition. They
also lack a rationale for deciding which
criteria relate to a particular factor. Thus,
the selection of quality characteristics and
subcharacteristics can seem arbitrary. For
examde. it is not clear whv Dortabilitv is a

i l

top-l&el characteristic of IS0 9126; but :

interoperability is a subcharacteristic of i F i p r e 2. The I S 0 9126 sample qua@ model refines the standard’sfeatures into
functionality. This lack of rationale makes j subcharacterisitics, as the arrows indicate.

I E E E S O F T W A R E I

it impossible to determne if the model is
a complete or consistent definihon of
quality.

Second, there is no descriphon of how
the lowest-level metrics (called lndicators
iii the IS0 9126 model) are composed
into an overall assessment of hgher level
quality characteristm. In parncular, then,
there is no means for verifying that the
chosen metrics affect the observed behav-
ior of a factor. That is, there is no attempt
to measure factors at the top of the her-
archy, so the model is untestable.

~~omey’§ model. Geoff Dromey has de-
veloped a model that addresses many of
these problems. Dromey points out that
hierarchical models that use a top-down
decomposihon are usually rather vague III

their definitions of lower levels. They thus
offer little help to software developers who
need to build quality products. Dromey
believes that it is impossible to build high-
level quality attributes such as reliability or
maintainability into products. Rather, soft-
ware engneers must build components
that exhibit a consistent, harmonious, and
complete set of product properties that re-
sult in the manifestations of quality attrib-
utes. His article, “Cornering the Ch-
mera,” in t l s issue, describes his approach
in more detail.

Drorney’s approach is important be-
cause it allows us to verify models. It es-
tablishes a criterion for including a par-
ticular software property in a model
(that is, that a quality defect can be as-
sociated with the concept) and a means

of establishing when the model is in-
complete (that the model cannot clas-
sify a specific defect).

Modeling process quality. Another ap-
proach to quality modeling is to look at
process. John Evans and John Marciniak
suggested a full process model analo-
gous to the product quality models de-
scribed above.ls The quality implications
of a specific software-development
process are also of interest. For example,
in “Support for Quality-Based Design
and Inspection” in this issue, Ilkka
Tervonen discusses how to integrate the
inspection process with designing for
quality by justifying different develop-
ment decisions based on their impact on
quality requirements.

J A N U A R Y 1996

G U E S T E D I T O R S ’ I N T R O D U C T I O N

THE BUSINESS VALUE OF QUALITY

In the last few decades, software has
grown to become a vital part of most
companies’ products and services, With
that growth comes our responsibility for
determining how much software con-
tributes to the corporate bottom line.
When a telephone company cannot im-
plement a new service because the
billing-system software cannot handle
the new features, then lack of software
quality is a corporate problem. When a
national gas utility must spend millions of
dollars to fix a software glitch in moni-
toring systems embedded in gas meters
throughout the country, then small soft-
ware defects become big headaches. And
when software problems stop the assem-
bly line, ground the plane, or send the
troops to the wrong location, organiza-
tions realize that software is essential to
the health and safety of business and peo-
ple. Little research is done into the rela-
tionship between software quality and
business effectiveness and efficiency. But
unless we begin to look at these issues,
companies will be unable to support key
business decisions.

In particular, we must look more care-

fully at how our methods and tools affe
software quality. Businesses take big ris
when they invest in technology that h
not been carefully tested and evaluate
The Desmet project, funded by the LIE
Department of Trade and Industry, h
produced guidelines for how to condu
case studies and experiments in suppo
of technology evaluation.16

But looking at the software alone
not enough. We must see it in the conte
of how it is used by business to determii
if investment in higher software quality
worthwhile. As Ed Yourdon pointed OL

sometimes less-than-perfect is goc
enough;l7 only business goals and prior
ties can determine how much “less th:
perfect” we are willing to accept. In the
article, “Software Quality in Consuml
Electronic Products,” Jan Rooijmans ar
colleagues take up this issue with a di
cussion of the problems and challeng
associated with producing consumc
electronic products.

uality is a complex concep
Because it means different thin!

to different people, it is highly contex
dependent. Just as there is no one aut(

REFERENCES
1. R. Howe, D. Gaeddert, and M. Howe, Quality on Trial, McGraw-Hill Europe, Maidenhead, England,

2. D. Gamin, “What Does “Product Quality” Really Mean?” Sloan Management Review, Fall 1984, pp.

3. I S 0 9001 Quality Systems - Model for Quality Assurance in DesigdDevelopment, Production, Installation,

4. M. Paulk, et al., “Capability Maturity Model, Version 1.1,” IEEE Software, July 1993, pp. 18-27.
5 . M. Paulk, “How I S 0 9001 Compares With the CMM,” IEEE Software, Jan. 1995, pp. 74-83.
6. I S 0 8402 Quality Management and Quality Assurance - Vocabulary, International Organisation for

7. Special issue on reliability measurement, IEEE Sofhare, July 1992.
8. J. Musa, “Operational Profiles in Software-Reliability Engineering,” IEEE Softwan, Mar. 1993, pp.

9. T. Gilb, Phczpals of Software Engineering Management, Addison-Wesley, Reading, Mass., 1987.

1992.

25-45.

and Servicing, International Organisation for Standardization, Geneva, 1994.

Standardization, Geneva, 2nd Edition, 1994.

14-32.

10. G. Frewin et al., “Quality Measurement and Modelling - State of the Art Report,” Request Report
to the CEC Esprit program, R1.l.l , 1984 (available from the European Commission, Brussels).

11. J.A. McCall, P.K. Richards, and G.F. Walters, Factors in Software Quality, Vol. 1 ,2 , and 3, AD/A-049-
014/015/055, Nat’l Tech. Information Service, Springfield, Va., 1977.

12. IS091 26 Infirmation Technology - Softwam Product Evaluation - Quality Characteristics and Guidelines
fov Their Use, International Organisation for Standardization, Geneva, 1992.

13. P. Mellor, “Failures, Faults and Changes in Dependability Measurement,”y. Infoormation and Software

14. V Basili and D. Rombach, “The TAME Project: Towards Improvement-Oriented Software

15 M. Evans and J. Marciniak, Software Qualiq Assnrance andManagement, John Wiley & Sons, New

16 B. Kitchenham, L. Pickard, and S. Lawrence Pfleeger, “Case Studies for Method and Tool

17 E. Yourdon, “When Good Enough Software is Best,” IEEE Software, May 1995, pp. 79-81.

Technology, Oct. 1992, pp. 640-654.

Environments,” IEEE Trans. Software Eng., June 1989, pp. 758-773.

York, 1987.

Evaluation,” IEEE Software, July 1995, pp. 52-62; correction, Sept. 1995, pp. 98-99.

mobile to satisfy everyone’s needs, so too
there is no universal definition of quality.
Thus, there can be no single, simple mea-
sure of software quality acceptable to
everyone. To assess or improve software
quality in your organization, you must
define the aspects of quality in which you
are interested, then decide how you are
going to measure them. By defining qual-
ity in a measurable way, you make it eas-
ier for other people to understand your
viewpoint and relate your notions to their
own. Ultimately, your notion of quality
must be related to your business goals.
Only you can determine if good software
is good business. +

Barbara Kitchenham is a software-encineerine
consultant at the National
Computing Centre. Her
interests are software met-
rics and their application
to project management,
quality control, and evalu-
ation of software technolo-
gies. She was a program-
mer for ICES operating
system division before be-

coming involved with a number of UK and
European research projects on software quality, soft-
ware-cost estimation, and evaluation methodologies
for software technology. She has written more than
30 papers on software metrics.

Kitchenham received a PhD from the University
of Leeds. She is an associate fellow of the Institute of
Mathematics and Its Applications and a fellow of the
Royal Statistical Society.

Shari Lawrence Pfleeger is president of Systems/

and Mitre, as well as a vis-
iting professorial research fellow at the Centre for
Software Reliability in London. She has written
three software-engineering texts and several dozen
articles.

Pfleeger received a PhD in information technol-
ogy from George Ma>on University. She is an adviser
to IEEE Specwum, a member of the ACM, and asso-
ciate editor-in-chief of IEEE Software.

Address questions about this article to
Kitchenham at National Computing Centre, Oxford
House, Oxford Rd., Manchester M1 7ED, UK; bar-
bara.lutchenhamQncc.co.uk.

I E E E S O F T W A R E

http://bara.lutchenhamQncc.co.uk

