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Computer programs can be written many different ways and still achieve the same 
effect• Until recently, programmers have had little reason to favor one method of ex- 
pressing code over another. We have come to learn, however, that functionally 
equivalent programs can have extremely important stylistic differences. 

Good programming style cuts across application areas, technique alad language. 
Programs written with good style are easier to read and understand, and often smaller 
and more efficient, than thOse written badly. Yet few programmers have ever been 
taught what style is, as we can see from even cursory inspection of their code. Even the 
techniques of structured programming do not ensure that code will be good; "structured" 
programs can be just as bad as their unstructured counterparts. 

This paper is a survey of some aspects of programming style, primarily expression 
and structure, showing by example what happens when principles of style I are violated, 
and what can be done to improve programs. To add the ring of truth to our discussion, 
the examples are all taken verbatim from programming textbooks. 
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I. INTRODUCTION 

Five or ten years ago, if you had asked 
someone what good programming style was, 
you would likely have received (if you didn't 
get a blank stare) a lecture on 

1) how to save microseconds. 

2) how to save words of  memory. 

3) how to draw neat flowcharts• 

4) how many comments to write per line of  
code. 

But our outlook has changed in the last 
few years. E.W. Dijkstra [4] argues that pro- 
gramming is a job for skilled professionals, not 
clever puzzle solvers. While attempting to 
prove the correctness of  programs, he found 
that some coding practices were so difficult to 
understand that they were best avoided. His 
now famous letter, "Go  To Statement Con- 
sidered Harmful" [5], began a debate, not yet 
completed, on how to structure programs 
properly• (See [10, 14], for instance•) 

Harlan D. Mills [1], using chief program- 
mer teams and programming with just a few 
well understood control structures (which did 
not include the GOTO), was able to report [12] 
the on-time delivery of  a large application 
package with essentially no bugs. Clearly, if 
such results could be consistently reproduced, 
programming would be raisod from the status 
of  black art. 

The final word is not yet in on how best 
to write code. G.M. Weinberg [13|, approach,  
ing the problem as both a psychologist and a 
programmer, is studying what people do well, 
and what they do badly, I so we can have a 
more objective basis for deciding what pro- 
gramming tools to use. Programming 
languages are still evolving as we learn which 
features encourage good programming [6]. 
We have learned that the way to make pro- 
grams more efficient is usually by changing al- 
gorithms, not by wrmng I very tight but in- 
comprehensible code [8]. I And people who 
continue to use GOTOs, out of  preference or 
necessity, are at least thinking more carefully 
about how they use them [9]. 
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We feel, however,  that programming 
style goes beyond even these considerations. 
While  writing The Elements of Programming 
Style [7], we rev iewed hundreds  of  published 
programs, in textbooks and in the recent 
literature. It is no secret  that imperfect  pro- 
gramming practice is common - -  we found 
plenty Of evidence of  that. There  are even 
bug-infested and unreadable  "s t ruc tured"  pro- 
grams. Writ ing in teams, using proper struc- 
tures, avoiding GOTOs - -  all are useful in- 
gredients in the manufacture  of  good code. 
But they are not enough. 

Today, if you asked someone  what good 
programming style is, you would (or should!) 
get quite a different lecture, for we now know 
that neat flowcharts and lots of  comments  
can ' t  salvage bad code, and that  all those mi- 
croseconds and bytes saved don ' t  help when 
the program doesn ' t  work. Today 's  lecture on 
"Wha t  is good programming s tyle?"  would 
probably be more like this... 

Expression: 

At the lowest level of  coding, individual 
s tatements  and small groups of  s tatements  
have to be expressed so they read clearly. 
Consider the  analogy with English - -  if you 
can ' t  wri te  a coherent  sentence,  how will you 
put together paragraphs, let alone write a 
book? So if your individual program state- 
ments  are incoherent  and unintelligible, what  
will your subrout ines  and operating systems 
be like? 

Structure: 

The larger structure of  the code should 
also read clearly - -  it should hang together 
the same way a paper or a book in English 
should. It should be written with only a 
handful  of  control-flow primitives, such as /f- 
then-else, loops, statement groups (begin-end 
blocks, subrout ines) ,  and it probably 

t shouldn ' t  contain any GOTOs. This is one as- 
r pect of  what we mean by structured program- 
'ming .  Coding in this set of  well-behaved 
structures makes code readable, and thus 
more understandable,  and thus more likely to 
be right (and incidentally easier to change and 

i debug).  

The data structure of  a program should 
be chosen with the same care as the control  
flow. Choose a data representat ion that  makes 
the job  easy to program: the program 
shouldn ' t  have to be convoluted jus t  to get 
around its data. 

Robustness: 

A program should work. Not just  on the 
easy cases, or on the weU-exercisod ones, but  
all the time. It should be written to defend it- 
self  against bad data from the outside world. 
"Garbage in, garbage out"  is not a law of  na- 
ture; it just  means  that a programmer shirked 
his responsibili ty for checking his input. Spe- 
cial cases should: work --  the program should 
behave  at its boundaries.  For instance, does 
the sorting program correctly sort  a list with 
just  one e lement?  Does the table lookup 
routine work when the table is empty'? 

Computing Surveys, Vol. 6, No. 4. December 1974 
I 



l~rogramming Style: Examples and Coun~exam~s I t  305 

Efficiency and Instrumentation: i 

Only now should the lecture on style get around to "elficiency." ~ o t  that we don't  care 
how fast a program runs or how much memory it takes, but until we have a working piece of 
code, we don't always know where it spends its time. And until we knoW that, talk of changing 
it "for efficiency" is foolish. Write the whole program clearly. I f  it is then too slow or too big, 
change to a better algorithm. (Since you wrote it clearly, change will be easY~) If  the algorithm is 
already the "best," then measure the program, and improve the critical parts; leave the rest 
alone. 

Documentation: 
If you write code with care in the detailed expression, using the fundamental structures 

and choosing a good data representation, most of the code will be self-doCumenting --  it can be 
read. Much of the need for detailed flowcharts and comments on every line will go away. Anti 
you will have less worry about the inevitable discrepancies between flowchart, comments, and 
code. 

The approach in the "lecture" we just gave seems to lead to better (more reliable, more 
readable, and usually faster and shorter) code. In this paper we will talk mostly about expres- 
sion and structure, with occasional digressions to robustness, efficiency, and documentation. 
Our presentation here is necessarily brief; all of these questions are more i fully discussed in [7]. 
As we did there, to illustrate our points and to show what can go wrong whengood style is for- 
gotten, we have chosen a set of "real" programs. Each one is taken vertratlm from some pro- 
gramming textbook. (We will not cite any texts by name, for we intend no criticism of textbook 
authors. We are all human, and it is all too easy to introduce shortcomings into programs.) 

The examples are all in Fortran and PL/I; none contain particularly tlitf~eult constructions. 
If you have even a reading knowledge of some high level language you sl~ould be able to follow 
the examples without difficulty. The principles illustrated are applicable in ~all languages. 

II. EXPRESSION 

Being too Clever 
Our favorite example, the one we feel best underlines the need for something, that can 

only be called good style, is this three line Fortran program: 

DO 1 I=1 ,N 
DO 1 J=l ,N 

1 X ( I , J ) = ( I / J ) * ( J / I )  i 

It is an interesting experiment to ask a group of student Fortran prograrnrners what this excerpt 
does. After thirty seconds or so, perhaps a third to a half of them will tentatively agree that 
they know what it does. Even after a minute of study, there are still pu~ l ed  looks. When the 
group is quizzed, one finds that only a few actually got the correct answer. 

What does it do? It relies on Fortran's truncating integer division: if I is less than J, l/J is 
zero; conversely, if J is less than I, J/I  is zero. Only when I equals J do wel have a non-zero pro- 
duct, which happens to be one. Thus the code puts ones on the diagonal of  X and zeros every- 
where else. 

Clever? Certainly, but it hardly qualifies as a good piece of code in any sense. It is neither 
short nor fast, despite its terse representation in Fortran. Worst of all, it is virtually unreadable, 
just because it is too clever for its importance. Even if the trick did happen to prove faster than 
more conventional methods, it should still be avoided, for initializing a matrix must surely be 
but a small part of the program that uses the matrix. It is far more important to make the code 

r 
1 . 4  Computing . .. . 



306 • Brian W. Kemighan and P. J. P/auger 

clear, so people can debug, maintain and modify it. 

There is a principle of style in English that says, "Say what :you mean, as simply and 
directly as you can." The same principle applies to programming. We mean that if I equals J, 
X(I,J) should be 1; if I is not equal to J, X(I,J) should be zero. So say it: 

DO 20 I = 1, N 
DO 10 J = 1, N 

I f (  I .EQ. J ) X ( I , J )  = 1 .0  
IF (  I .NE. I ) X ( I , J )  0 .0  

10 CONTINUE 
20 CONTINUE 

If  this proves to be too "ineliqcient", then it may be refined into a faster but somewhat less clear 
version: 

DO 20 I = I ,  N 
DO 10 J = 1, N 

10 X ( I , J )  = 0 .0  
20 X ( I r l )  = 1.0 

It is arguable which of these is better, but both are better than the original. Don't make debug- 
ging harder than it already is --  don't be too clever. 

Being too Complicated 

Here is another Fortran example, which is an interesting contrast with the previous one: 

IF(X .LT.  Y) GO TO 30 
IF (Y .LT.  Z) GO TO 50 
SMALL = Z 
GO TO 70 

30 IF (X .LT.  Z) GO TO 60 
SMALL = Z 
GO TO 70 

50 SMALL = Y 
GO TO 70 

60 SMALL = X 
70 

Ten and a half lines of code are used, with four statement numbers and six GOTOs -- surely 
something must be happening. Before reading further, test yourself. What does this program 
do? 

The mnemonic SMALL is a giveaway -- the sequence sets SMALL to the smallest of X, 
Y, and Z. Where the first example was too clever, this one is too wordy and simple-minded. 
Since this code was intended to show how to compute the minimum of three numbers, we 
should ask why it wasn't written like this: 

SMALL = X 
IF( Y .LT.  SMALL ) SMALL = Y 
IF( Z .LT.  SMALL ) SMALL = Z 

No labels, no GOTO's, three statements, and clearly correct. And the generalization to comput- 
ing the minimum of many elements is obvious. 
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i 

Of course, if our goal is to get the job done, rather than teaehin& how to compute a 
minimum, we can write, much more readably than the original, the single statement: 

SMALL = AMINO(X) Y) Z) 

One line replaces ten. How can a piece of code that is an order of  magnitude too large be 
considered reliable? There is that much greater chance for confusion, and hence for the intro- 
duction of bugs. There is that much more that must be understood in order to make evolution- 
ary changes. 

Clarity versus "E~ciency'" 
It seems obvious that a program should be clear, yet clarity is often sacrificed needlessly in 

the name of efficiency or expediency. 

DO 10 I = I , M  
I F ( B P ( I ) + I . 0 ) 1 9 , 1 1 , 1 0  

11 I B N I ( I )  = BLNK 
I B N 2 ( I )  = BLNK 
GO TO 10 

19 B P ( I )  = - 1 . 0  
I B N I ( I )  = BLNK 
I B N 2 ( I )  = BLNK 

lO CONTINUE 

If BP(I) is less than or equal to -1 ,  this excerpt will set BP(I) to - 1  and :put blanks in IBNI(I)  
and IBN2(I). The code uses a hard-to-read Fortran arithmetic IF that branches three ways, two 
almost-duplicated pieces of code, two labels and an extra GOTO, all to avoid setting BP(I) to -1  
if it is already -1 .  

There is no need to make a special case. Write the code so it can be~read: 

10 

DO I 0  I = I ,  M 
I F ( B P ( I )  ,GT.  - 1 , 0  ) 

B P ( I )  = - 1 , 0  
I B N I ( I )  = BLNK 
I B N 2 ( I )  = BLNK 

CONTINUE 

GOTO 10 

Interestingly enough, our version will be more "efficient" on most machine, s, both in space and 
in time: although we may reset BP(I) unnecessarily, we do less bookkeeping. What did concern 
with "efficiency" in the original version produce, besides a bigger, slower, and more obscure 
program? 

Rewriting 
These may seem like small things, taken one at a time. But look what happens when the 

need for clear expression is consistently overlooked, as in this PL/I program which computes a 
set of approximations to the integral of X**2 between zero and one, by adding up the areas of 
rectangles of various widths. 
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TRAPZ: PROCEDURE OPTIONS ( M A I N ) ;  
DECLARE MSSG! CHARACTER (20) ;  

MSSGI = 'AREA UNDER THE CURVE'; 
DECLARE MSSG2 CHARACTER (23) ;  

MSSG2 = 'BY THE TRAPAZOIDAL RULE'; 
DECLARE MSSG3 CHARACTER (16) ;  

MSSG3 = 'FOR DELTA X = 1 / ' ;  
DECLARE I FIXED DECIMAL ( 2 ) ;  
DECLARE J FIXED DECIMAL (2 ) ;  
DECLARE L FIXED DECIMAL (7p6) ;  
DECLARE M FIXED DECIMAL (716) ;  
DECLARE N FIXED DECIMAL (2 ) ;  
DECLARE AREA] FIXED DECIMAL ( 8 t 6 ) ;  
DECLARE AREA FIXED DECIMAL (816) ;  
DECLARE LMTS FIXED DECIMAL (514) ;  

PUT SKIP EDIT (MSSG|) (X (9 ) ,  A (20 ) ) ;  
PUT SKIP EDIT (MSSG2) (X (7 ) ,  A (23 ) ) ;  
PUT SKIP EDIT ( '  ' )  ( A ( I ) ) ;  

AREA = O; 
DO K = 4 TO 10; 

M = ] / K; 
N : K - l ;  

LMTS = .5 * M; 
I = l; 

DO J = 1 TO N; 
L = ( I  / K) ** 2; 

AREA1 = .5 * M * (2 * L) ;  
AREA = AREA + AREA1; 

IF I = N THEN CALL OUT; 
ELSE I = I + 1; 

END; 
END; 

OUT: PROCEDURE; 
AREA = AREA + LMTS; 

PUT SKIP EDIT (MSSG3,K,AREA) ( X ( 2 ) , A ( 1 6 ) , F ( 2 ) , X ( 6 ) ,  
F ( 9 , 6 ) ) ;  

AREA = O; 
RETURN; 

END; 
END; 

Everything about this program is wordy. The output messages are declared and assigned 
unnecessarily. There are far too many temporary variables and their associated declarations. 
The structure sprawls. 

Try going through the code, fixing just one thing at a time --  put the error messages in the 
PUT statements where they belong. Eliminate the unnecessary intermediate variables. Com- 
bine the remaining declarations. Simplify the initializations. Delete the unnecessary procedure 
call. You will find that the code shrinks before your very eyes, revealing the simple underlying 
algorithm. 

Here is our revised version: 
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DECLARE (J,K)  

AREA 

PUT SKIP EDIT 

PUT SKIP; 
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OPTIONS(MAIN); 
FIXED DECIMAL ( 2 ) ,  
FIXED DECIMAL ( 8 , 6 ) ;  

('AREA UNDER THE CURVE', 
'BY THE TRAPEZOIDAL RULE r ) 
( X ( 9 ) ,  A, SKIP, X (7 ) ,  A); 

DO K = 4 TO 10; 
AREA = 0 .5 /K;  

DO J = 1 TO K- l ;  
AREA = AREA + ( ( J / K ) * * 2 ) / K ;  

END; 

PUT SKIP EDIT ('FOR DELTA X = I / ' ,  K, AREA) 
(X(2) ,  A, F(2) ,  X(6) ,  F ( 9 , 6 ) ) ;  

END; , 
END TRAPZ; 

Both versions give the same results, so this was not an exercise in debugging in the tradi- 
tional sense. But if there were a bug localized to this part of a larger system, which version 
would you rather try to fix? Which would you give a higher mark to? Which would you rather 
be in charge of, when changes are necessary? 

The original version reads like a hasty first draft which was later patched. Arriving at our 
"final draft" required no great ingenuity; just a series of almost mechanical steps much as we 
described. Applying the principles of good style, one at a time, gradually eliminates the features 
that make the original version so hard to read. The problem is, most programs never get past 
the "first draft" stage, possibly because the code appears too frightening when viewed all at 
once. 

Programmers sometimes say that they haven't  time to worry about niceties like style -- 
they have to get the thing written fast so they can get on to the next onei (What actually hap- 
pens is they get it written fast so they can get  on to the tedious job of d~bugging, it.) But you 
will soon find that, with practice, you spend less and less time revising, because you do a better 
and better job the first time. 

Much more can be said about how to make code locall: more readable (see [7]), but for 
now we will turn to a topic that has recently become popular -- how to specify control flow with 
good style. 

III, CONTROL FLOW STRUCTURE 

One way to improve the apparently random control flow that several of  our examples have 
demonstrated is to program consciously with just a small set of well-behaved control flow struc- 
tures. One interpretation of "structured programming," in fact, is this way of coding. Although 
this is a narrow view, we will keep to just that aspect for the time being. 

It has been shown [2] that programs can be written using just: 

1) Alternation, such as IF-THEN-ELSE, where the ELSE part may be optional. 

2) Looping, such as WHILE or the Fortran DO loop. Different flavors have the teimination 
test at the beginning or end of the loop. 
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3) Grouping, such as subroutines and compound statements. 

While these tools are sutficient, in the same sense that a Turing machine can perform any of a 
wide class of calculations, it is convenient to add: 

4) CASE switches, which are essentially multi-way IF statements, and 

5) BREAK and ITERATE statements, which exit from a loop or skip to the test portion of a 
loop, respectively. 

Most languages have at best a subset of these forms, so the pragmatic programmer cannot 
hope to avoid the more primitive control statements carried over from earlier days. For exam- 
ple, the simplest way to implement a BREAK in PL/I is to use a GOTO. And in Fortran, of 
course, GOTOs and statement numbers must be sprinkled liberally throughout the best designed 
code. But the basic design of a program should be done in terms of the fundamental structures. 
GOTO's and other primitive language features should be used only to implement the bash; struc- 
tures outlined above. 

While these are well tried and useful forms, there is a tendency to believe that just by us- 
ing them (and only them) one can avoid all trouble. This is false -- they are not panaceas. 
Good style, care and intelligence are still needed. We  can see this just by studying the use and 
abuse of the IF-THEN-ELSE, certainly a simple and fundamental structure in any programming 
language. 

Null THEN 

The following routine is supposed to sort an array of eight numbers into increasing order 
of absolute value: 

DCL A(8); 
GET LIST (A); 
DO I=! TO 8; 

IF ABS(A(I))<ABS(A(I+I)) THEN; 
ELSE BEGIN; 

STORE=A(I); 
A ( I )=A( I+ [ ) ;  
A(I+I)=STORE; 
END; 

END; 
PUT LIST(A); 

The heart of this sequence is a "DON'T" statement -- if the specified condition is true, do 
nothing, otherwise do something. Anything so misleading should put us on guard; and indeed 
we see immediately that the sequence cannot possibly sort correctly because 

1) only one pass is made over the array, and we know simple sorting takes about N passes. 

2) a reference is made outside array bounds when A(I+I)  is accessed on the last iteration 
with I equal to 8. 

There are several ways of doing a simple sort correctly. We could make N-1  passes over 
the array, or we could set a flag every time it is necessary to exchange two elements, so we 
know that an additional pass over the array is needed. Applying this latter fix to the program 
above (and eliminating the subscript range error) should give us a working sort. 

But there is still a lurking bug. Turning the test around so the IF-THEN is stated more 
naturally: 
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IF A B S ( A ( I ) )  >~ A B S ( A ( I + I ) )  THEN DO; 
STORE = A ( I ) ;  
A ( I )  = A ( I + I ) ;  
A ( I + I )  = STORE; 
EXCH = ' I ' B ;  

END; 

reveals that two elements will be exchanged even if they are equal. I f  A contains two equal ele- 
ments, the program goes into an infinite loop exchanging them, because the flag EXCH will be 
set repeatedly. Using a null THEN may seem a small thing, until it adds a day of debugging 
time. 

Even when code is correct, it can be very hard to read. Here's another sorting program, 
which sorts into descending order this time, with an almost-null THEN: 

DO M = 1 TO N; 
K = N- l ;  
DO J = 1 TO K; 
IF ARAY(J) - ARAY(J+I)  >= 0 

THEN GO TO RETRN; 
ELSE; 

SAVE = ARAY(J);  
ARAY(J) = ARAY(J+I ) ;  

ARAY(J+I)  = SAVE; 
RETRN: END; 

END; 

The construction THEN GOTO might be a BREAK statement in disguise, but often it is a 
tipoff that something is amiss. Here it branches around only three statements and not out of the 
loop. Why not turn the test around so no GOTO or label is needed? (The null ELSE has no 
function whatsoever; it only confuses the issue.) And why does the test subtract the two ele- 
ments and then compare against zero, when a direct comparison would be far easier to under- 
stand and free of overflow problems? The program reads like a hasty tran~slation from Fortran 
into PL/I. Revision is easy: 

DO M = 1 TO N - l ;  
DO ! = 1 TO N - l ;  

IF ARAY(J) < ARAY(J+I)  THEN DO; 
SAVE = ARAY(J);  
ARAY(J) = ARAY(J+I ) ;  
ARAY(J+I)  = SAVE; 

END; 
END; 

END; 

The original program worked, but again we were able to improve it with little effort. 

In Fortran, thbre are fewer options when using IFs, for there is no ELSE clause and no 
way to form compound groups of statements. But in the few cases where the language lets you 
write clearly, do so. Don't write like this: 

IF (A( I ) .GT.GRVAL)  GO TO 30 
GO TO 25 

30 GRVAL = A ( I )  
25 . . .  
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A branch around the branch that branches around what we wanted 
what you mean, as simply and directly as you can: 

IF( A ( I )  .GT. GRVAL ) GRVAL = A ( I )  

to do in the first place! Say 

There are now no labels, no GOTOs, and the code can be understood even when read aloud 
over a telephone. (This is always a good test to apply to your code -- if you can't understand it 
when spoken aloud, how easy will it be to grasp when you read it quietly to yourself?) 

ELSE BREAK 

The BREAK statement has 
quence for finding the largest of a 

its uses, but it has to be used judiciously. Consider this se- 
set of positive numbers: 

DCL NEWIN DEC FLOAT ( 4 ) ;  
LARGE DEC FLOAT (4)  INIT ( .OE1);  

/ *  .0 x 10"*1 = .0 x 10 = 0.0 
NEXT_C: GET LIST (NEWIN); 

IF NEWIN >=0 
THEN IF NEWIN > LARGE 

THEN LARGE = NEWIN; 
ELSE GO TO NEXT_C; 

ELSE GO TO FINISH; 
GO TO NEXT_C; 

FINISH: PUT LIST (LARGE); 

*/  

Ignoring the curious zero in the INIT attribute, and the equally curious explanatory comment, 
we can see that this program does indeed use just the structures we mentioned above (the 
GOTOs implement BREAKs and ITERATEs). Therefore it should be readable. But tracing the 
tortuous flow of control is not a trivial e x e r c i s e -  how does one get to that last GOTO 
N E X T C ?  Why, from the innermost THEN clause, of course. 

The ELSE BREAK is just as confusing as the DON'T statement. It tells you where you 
went if you didn't do the THEN, leaving you momentarily at a loss in finding the successor to 
the THEN clause. And when ELSE BREAKs are used one after the other, as here, the mind 
boggles. 

Such convolutions are almost never necessary, since an organized statement of the prob- 
lem leads to a simple series of decisions: 

NEXT_C: 

DECLARE (NEWIN, LARGE) DECIMAL FLOAT (4 ) ;  
LARGE = O; 

GET LIST (NEWIN); 
IF NEWIN > LARGE THEN LARGE = NEWIN; 
IF NEWIN ~ 0 THEN GOTO NEXT C; 

PUT LIST (LARGE); 

What we have here is a simple DO-WHILE, done while the number read is not negative, 
controlling a simple IF-THEN. Of course we have rearranged the order of testing, but the end- 
of-data marker chosen was a convenient one and does not interfere with the principal work of 
the routine. True, our version makes one extra test, comparing the marker against LARGE, but 
that will hardly affect the overall etticiency of the sequence. Readability is certainly improved 
by avoiding the ELSE GOTOs. 
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IF QTY > 10 THEN ~ / * k * /  
IF QTY > 200 THEN " / * B * /  

IF QTY >~ 500 THEN BILL_A = BILL_A + I.OO; / *C* /  
ELSE BILL_A ffi BILL_A + ,50; / * C * /  

ELSE; / * B * /  
ELSE BILL_A ffi ,00; / * A * /  

Those letters down the right hand side are designed to help you figuretout what is going on, but 
as usual, no amount of commenting can rescue bad code. The code requires you to maintain a 
mental pushdown stack of what tests were made, so that at the appropriat e point you can pop 
them until you determine the corresponding action (if you can still remember). You might time 
yourself as you determine what this code does when QTY equals 350. How about 1509. 

Since only one of a set of actions is ever called for here, a frequent Occurrence, what we 
really want is some form of CASE statement. In PL/I, the most general CASE is implemented 
by a series of ELSE-IFs: 

IF condl THEN f irst  case; 
ELSE IF cond2 THEN second case; 

ELSE IF condn THEN nth case; 
ELSE defau l t ;  

If there is no default action, the last ELSE clause is omitted. We can rewrite the example as: 

IF QTY >~ 500 THEN BILL_A = BILL_A + 1 .00 ; ,  
ELSE IF QTY > 200 THEN BILL_A ffi BILL_A + 0.50; 
ELSE IF QTY <= 10 THEN BILL_A ffi 0,O; 

Now all we need do is read down the list of tests until we find one that is met, read across to 
the corresponding action, and continue after the last ELSE. In Fortran, this can be rendered 
similarly as 

IF(QTY .GE. 500.0) BILLA ffi BILLA + 1.0 
IF(QTY .LT. 500.0 .AND. QTY .GT. 200.0) 
IF(QTY .LE. ]0.0)  BILLA ffi 0.0 

BILLA = BILLA + 0.5  

which is best if the relations and actions are simple enough to write one per line and the tests 
are mutually exclusive. Don't let anyone tell you this is not efficient -- it doesn't take all that 
much time to make the whole set of tests, and you're more likely to get the code right the first 
time. If it does take too much time, and you have measurements that prove it, then and only 
then should you re-write it with GOTOs. 

The THEN-IF was the culprit in this example, but we could have given the disease anoth- 
er name. Note the null ELSE clause, required to make the unstacking come out right when one 
of the conditions has no corresponding action. These seemingly useless statements cauterize the 
stumps of any ill-thought-out THEN-IFs buried in the code. A program containing null ELSE 
clauses is suspect, if for no other reason than that it was written by someone bitten by THEN- 
IFs often enough to sprinkle null ELSEs around for insurance. 
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The THEN- IF  does have its uses. It is often the only way to ensure that tests with side 
effects are performed in the proper order, as in 

IF I > 0 THEN 
IF A ( I )  = B ( I )  THEN , . .  

which ensures that I is in range before its use as an index. Some languages provide special 
Boolean connectives [11] which guarantee left-to-right evaluation and early exit as soon as the 
truth value of  the expression is determined; but if you are not fortunate enough to be able to 
program with these useful tools, use THEN-IFs  and don ' t  forget to cauterize. 

Bushy Trees 

Most of  the IF-THEN-ELSE examples we have shown so far have a characteristic in com- 
mon, besides the unreadable practices we pointed out. Each approximates, as closely as the pro- 
grammer could manage, a minimum depth decision tree for the problem at hand. If  all out- 
comes have equal probability, such a tree arrives at the appropriate action with the minimum 
number  of  tests on the average, so we are all encouraged to lay out programs accordingly. But a 
program is a one-dimensional construct, which obscures any two-dimensional connectedness it 
may have. Perhaps the minimum depth tree is not the best structure for a reliable program. 

Let us rewrite the minimum function in PL/I, adhering to the spirit of  the original Fortran, 
but using only IF-THEN-ELSEs:  

IF X >~  Y THEN 
IF Y >~  Z THEN SMALL = Z; 
ELSE SMALL = Y ;  

ELSE 
IF X >~  Z THEN SMALL = Z; 
ELSE SMALL = X ;  

Even though neatly laid out and properly indented, it is still not easy to grasp. Not all the con- 
fusion of  the original can be attributed to the welter of  GOTOs and statement numbers. What 
we have here is a "bushy"  tree, needlessly complex ~ any event, but still hard to read simply 
because it is conceptually short and fat. 

The ELSE-IF sequence, on the other hand, is long and skinny as trees go; it seems to 
more closely reflect how we think. (Note that our revised minimum function was also linear.) 
It is easier to read down a list of  items, considering them one at a time, than to remember the 
complete path to some interior part of  a tree, even if the path has only two or three links. Sel- 
dom is it actually necessary to repeat tests in the process of  stringing out a tree into a list; often 
it is just a matter of  performing the tests in a judicious order. Yet too often programmers tend 
to build a thicket of  logic where a series of  signposts are called for. 

Summary of IF- THEN-ELSE 

Let us summarize our discussion of  IF-THEN-ELSE. The most important principle is to 
avoid bushy decision trees like: 

J F  m m l  

THEN IF . . .  
ELSE . . .  

ELSE IF  . . .  
THEN . . .  
ELSE . . .  
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The bushy tree should almost always be reorganized into a CASE statment,:whieh is im- 
plemented as a string of ELSE-IF's in PL/I. The resulting long thin tree is much easier to 
understand: 

IF . . .  THEN . . .  
ELSE IF .... THEN . . .  

ELSE . . .  

A THEN-IF is an early warning that a decision tree is growing the wrong way. A null ELSE in- 
dicates that the programmer knows that trouble lies ahead and is trying to defend against it. 
And an ELSE BREAK from such a structure may leave the reader at a loss to understand how 
the following statement is reached. 

J 

A null THEN or (more commonly) THEN GOTO usually indicates that a relational test [ 
needs to be turned around, and some set of statements made into a block. I 

The general rule is: after you make a decision, do something. Don't just go somewhere or 
make another decision. If you follow each decision by the action that goes with it, you can see 
at a glance what each decision implies. 

WHILE 
Looping is fundamental in programming. Yet explicit loop control in Fortran or PL/I can 

only be specified by a DO statement, which encourages the belief that all loOps involve repeated 
incrementing of an integer variable until it exceeds some predetermined value. Fortran further 
insists that the loop body be obeyed once before testing to see whether the loop should have 
been entered at all. 

Thinking in terms of DO statements, instead of loops, leads to programs like this sine 
routine: 

20 
30 

DOUBLE PRECISION FUNCTION SIN(X,E) 
THIS DECLARATION COMPUTES SIN(X) TO ACCURACY E 
DOUBLE PRECISION E,TERMySUM 
REAL X 
TERM=X 
DO 20 1=3,10012 
TERM=TERM*X**2/( I* ( I - I ) )  
IF(TERM.LT.E)GO TO 30 
SUM=SUM+(-I**(I/2))*TERM 
CONTINUE 
SIN=SUM 
RETURN 
END 

The program consists entirely of a loop, which computes and sums the terms of a Maelaurin 
series until the terms get too small or a predetermined number have been included in the sum. 

In its most general form, a loop should be laid out as: 

i n i t i a l i z e  
whi le  ( reason for looping)  

body of loop 

This way, the parts are clearly specified and kept separate. But this approach was evidently not 
taken here: 

j 
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1) The program fails to initialize SUM along with TERM and I. 

2) The program mis-states the convergence test, returning immediately on negative values of 
X. i 

3) The convergence test is misplaced, so the last TERM computed is not included in SUM. 
And TERM is computed unnecessarily when the convergence test is met right from the 
start. 

These three bugs can be traced directly to poor structural design. There is also a fourth 
bug: 

4) TERM is computed incorrectly because the "**" operator binds tighter than unary minus 
(another case of being tOO clever?). 

We first write the code in an anonymous language that includes the WHILE. 

SiA : X 
t e r m  : x 
i : 3 

w h i l e  ( i  < 100 & a b s ( t e r m )  > e) 
t e r m  = - t e r m  * x * * 2  / ( i  * ( i  
s i n  = s i n  + t e r m  
i = i + 2 

r e t u r n  

- I)) 

and then translate into Fortran: 

SIN = X 
TERM = X 
DO 20 I = 31 100 ,  2 
IF (DABS(TERM) .LT .  E) 

TERM = -TERM * X * * 2  
SIN = SIN + TERM 

20 CONTINUE 
30 RETURN 

GOTO 30 
/ FLOAT(I  * ( I  - 1 ) )  

In this case, the WHILE becomes a DO followed by an IF. The DO neatly summarizes 
the initialization, incrementing, and testing of I, and keeps the loop control separate from the 
computation. It is a useful statement. The important thing is to recognize its shortcomings and 
plan loops in terms of the more general WHILE. 

In PL/I, the DO-WHILE and DO I=J TO K constructions make the test at the top of the 
loop, which is most often what is wanted. Fortran programs, on the other hand, frequently fail 
to "do nothing gracefully" because DO loops insist on being performed at least once, regardless 
of their limits, even when action is undesirable. For example, this function finds the smallest 
element in an array. 

FUNCTION SMALL(A,N)  
DIMENSION A l l )  
SMALL = A l l )  
DO 1 K = 2 ,N  
I F ( A ( K )  - S M A L L ) 2 , 1 , 1  
SMALL = A (K)  
CONTINUE 
RETURN 
END 

Computing Surveys, VoL 6, No. 4, December 1974 



Programming Style: Examples and Countefexamplcs :o  317 

Clearly it's more efficient to use the DO limits of "2,N" -- it saves a use~e4is eomparison. But 
what if N is one? Don't kid yourself: N will be equal to one some day, .:and the program will 
surely fail when it looks at the undefined A(2). Had we first written this routine with a WHILE 
statement, we would have seen the need for an IF to protect the DO in the translated version. 
Or, we could have written directly: 

SMALL = A(1) 
DO 1 K  = 1,N 

IF( A(K) .LT. SMALL 
1 CONTINUE 

) SMALL = A(K) 

This may be less "efficient" in the small, but the cost of finding the bug in the original, and 
repairing the damage it cost, will certainly outweigh the few microseconds more that our version 
takes. (You have to weigh for yourself the question of whether to test if N i is less than one.) 

IV. DATA STRUCTURE 

Putting the hard parts of a program into an appropriate data structure is an art, but well 
worthwhile. (Imagine doing long division in Roman numerals.) This program converts the year 
and day of the year into the month and day of the month: 

DATES: PROC OPTIONS (MAIN); 
READ: GET DATA (IYEAR, IDATE); 

IF IDATE < 1 I IDATE > 366 I IYEAR < O/THEN RETURN; 
IF IDATE <= 31 THEN GO TO JAN; 
L = 1; 
I = IYEAR/400; IF I = IYEAR/400 THEN GO TO LEAP; 
I = IYEAR/IO0; IF I IYEAR/IO0 THEN GO TO NOLEAP; 
I = IYEAR/4; IF I = IYEAR/4 THEN GO TOzLEAP; 

NOLEAP: L = O; 
IF IDATE > 365 THEN RETURN; 

LEAP: IF IDATE > 181 + L THEN GO TO G181; 
IF IDATE > 90 + L THEN GO TO G90; 
IF IDATE > 59 + L THEN GO TO G59; 
MONTH = 2; IDAY = IDATE - 31; GO TO OUT; 
MONTH = 3; IDAY = IDATE - (59 + L ) ;  GO,TO OUT; G59: 

G90: 

G120: 

G151: 
G181: 

G212: 
G243: 
G273: 

G304: 
G334: 

OUT: 

JAN: 

IF IDATE > 120 + L THEN 
MONTH = 4; IDAY = IDATE 
IF IDATE > 151 + L THEN 
MONTH = 5; IDAY = IDATE 
MONTH = 6; IDAY = IDATE 
IF IDATE > 273 + L THEN 
IF IDATE > 243 + L THEN 
IF IDATE > 212 + L THEN 
MONTH = 7; IDAY = IDATE 
MONTH = 8; IDAY = IDATE 
MONTH = 9; IDAY = IDATE 
IF IDATE > 334 + L THEN 

GO TO G120; 
- (90 + L ) ;  GO TO OUT; 
GO TO G151; 
- (120 + L ) ;  GO .TO OUT; 
- (151 + L) ;  GO TO OUT; 
GO TO G273; 
GO TO G243; 
GO TO G212; 
- (181 + L) ;  GO TO OUT; 
- ( 2 1 2  + L ) ;  GO TO OUT; 
- ( 2 4 3  + L ) ;  GO TO OUT; 
GO TO G334;  

IF IDATE > 304 + L THEN GO TO G304; 
MONTH = 10; IDAY = IDATE - (273 + L) ;  GO TO OUT; 
MONTH = 11; IOAY = IDATE - (304 + L) ;  GO TO OUT; 
MONTH = 12; IDAY = IDATE - (334 + L ) ;  
PUT DATA (MONTH,IDAY,IYEAE) SKIP; 
GO TO READ; 
MONTH=l; IDAY=IDATE; GO TO OUT; 
END DATES; 
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What we have here is a bushy tree to end all bushy trees. The rococo structure of  the calendar 
is intimately intertwined with the control flow in an attempt to arrive at the proper answer with 
a minimum number  of  tests. 

Clarity is certainly not worth sacrificing just to save three tests per access (on the aver- 
age) --  the irregularities must be brought under control. Most good programmers are accus- 
tomed to using subprocedures to achieve regularity. The procedure body shows what is com- 
mon to each invocation, and the differences are neatly summarized in the parameter list for each 
call. Fewer programmers learn to use judiciously designed data layouts to capture the irregulari- 
ties in a computation. But we can see that structured programming can also apply to the data 
declarations: 

DATES: PROCEDURE OPTIONS (MAIN); 
DECLARE MONSIZE(O:I, 1 :12)  INITIAL(  

31p28~31p30,31p30,31 ,31 ,30 ,31 ,30 ,31p  
31,29~31~30~31,30~31,31130~31~30p31);  

READ: 
GET LIST (IYEAR, IDATE) COPY; 

IF MOD(IYEAR,400)=O I 
(MOD(IYEAR~IO0)~=O & MOD(IYEAR~4)=O) 

THEN LEAP = 1; 
ELSE LEAP = O; 

/ *  NON-LEAP * /  
/ *  LEAP * /  

IF IYEAR<1753 I IYEAR>3999 I IDATE<=O I IDATE>365+LEAP THEN 
PUT SKIP LIST('BAD YEAR ! DATE - ' ,  IYEARt IDATE); 

ELSE DO; 
NDAYS = O; 
DO MONTH = ! TO 12 

WHILE ( IDATE > NDAYS + MONSIZE'(LEAP, MONTH) 
NDAYS = NDAYS + MONSIZE(LEAP, MONTH); 

END; 
PUT SKIP LIST(MONTHt IDATE - NDAYSI IYEAR); 

END; 

GOTO READ; 
END DATES; 

) ; 

Most people can recognize a table giving the lengths of  the different months ("Thirty days hath 
September..."), so this version can be quickly checked for accuracy. The program may take a bit 
more time counting the number  of  days every time it is called, but it is more likely to get the 
right answer than you are, and even if the program is used a lot, I/O conversions are sure to use 
more time than the actual computation of  the date. The double computation of  
MONSIZE(LEAP,MONTH) falls into the same category -- write it clearly so it works; then 
measure to see if it's worth your while to rewrite parts of  it. 

Our revised date computation shows an aspect of  modularity which is often overlooked. 
Most people equate modules with procedures, but our program has several distinct modules and 
only one procedure. A date is input, LEAP is computed, the date is validated, the conversion is 
made and the result is printed. Each of  these pieces could be picked up as a unit and planted as 
needed in some other environment with a good chance of  working unaltered, because there are 
no unnecessary labels or other cross references between pieces. (The label and GOTO imple- 
ment  a WHILE,  done while there is still input.) The control flow structures we have described 
tend to split programs into computational units like these and thus lead to internal modularity. 
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V. CONCLUSION 

Three topics we have hardly touched, which are usually associated with any discussion of  
style, are efficiency, documentation, and language design. We think these are straw men, almost 
always raised improperly in a consideration of  only parochial issues. 

Opponents of  programming reform argue that anything that is readable must automatically 
be inel~cient. This is the same attitude that says that assembly languages are preferable to high 
level languages. But as we have seen, good programming is not synonymous with GOTO-less 
programming, and it certainly does not have to be wasteful of time or space. Quite the contrary, 
we find that nearly all our revised programs take no more time and are about the same size as 
the originals. And in some cases the revised version is shorter and faster because unnecessary 
special cases have been eliminated. 

We use few comments in our revisions --  most of the programs are short enough to speak 
for themselves. And when a program cannot speak for itself, it is seldom ~th¢ ease that greater 
reliability or understanding will result by interposing yet another insulating layer of  documenta- 
tion between the code and the reader. Bad programming practice cannot be explained away; it 
must be rewritten. 

Finally, many people try to excuse badly written programs by blaming inadequacies of  the 
language that must be used. We have seen repeatedly that even Fortran can be tamed with 
proper discipline. The presence of  bad features is not an invitation to use !them, nor is the ab- 
sence of good features an excuse to avoid simulating them as cleanly as possible. Good 
languages are nice, but not vital. 

Our survey of  programming style has been sketchy, for there are far too many details that 
must be covered to give a proper treatment here. But there is ample evidence for the existence 
of  some discipline beyond a simple set of restrictions on what types of  statements to use. It is 
called style. 
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