
Programming Style: Examples and Counterexamples

B R I A N W. K E R N I G H A N and P. J. P L A U G E R

Bell Laboratories, Murray Hill, N. J. 07974

Computer programs can be written many different ways and still achieve the same
effect• Until recently, programmers have had little reason to favor one method of ex-
pressing code over another. We have come to learn, however, that functionally
equivalent programs can have extremely important stylistic differences.

Good programming style cuts across application areas, technique alad language.
Programs written with good style are easier to read and understand, and often smaller
and more efficient, than thOse written badly. Yet few programmers have ever been
taught what style is, as we can see from even cursory inspection of their code. Even the
techniques of structured programming do not ensure that code will be good; "structured"
programs can be just as bad as their unstructured counterparts.

This paper is a survey of some aspects of programming style, primarily expression
and structure, showing by example what happens when principles of style I are violated,
and what can be done to improve programs. To add the ring of truth to our discussion,
the examples are all taken verbatim from programming textbooks.

Keywords and Phrases: programming style, structured programming, control-flow struc-
tures.

CR Categories: 2.49, 4.0, 4.6

I. INTRODUCTION

Five or ten years ago, if you had asked
someone what good programming style was,
you would likely have received (if you didn't
get a blank stare) a lecture on

1) how to save microseconds.

2) how to save words of memory.

3) how to draw neat flowcharts•

4) how many comments to write per line of
code.

But our outlook has changed in the last
few years. E.W. Dijkstra [4] argues that pro-
gramming is a job for skilled professionals, not
clever puzzle solvers. While attempting to
prove the correctness of programs, he found
that some coding practices were so difficult to
understand that they were best avoided. His
now famous letter, "Go To Statement Con-
sidered Harmful" [5], began a debate, not yet
completed, on how to structure programs
properly• (See [10, 14], for instance•)

Harlan D. Mills [1], using chief program-
mer teams and programming with just a few
well understood control structures (which did
not include the GOTO), was able to report [12]
the on-time delivery of a large application
package with essentially no bugs. Clearly, if
such results could be consistently reproduced,
programming would be raisod from the status
of black art.

The final word is not yet in on how best
to write code. G.M. Weinberg [13|, approach,
ing the problem as both a psychologist and a
programmer, is studying what people do well,
and what they do badly, I so we can have a
more objective basis for deciding what pro-
gramming tools to use. Programming
languages are still evolving as we learn which
features encourage good programming [6].
We have learned that the way to make pro-
grams more efficient is usually by changing al-
gorithms, not by wrmng I very tight but in-
comprehensible code [8]. I And people who
continue to use GOTOs, out of preference or
necessity, are at least thinking more carefully
about how they use them [9].

Computing Surveys, Volt 6, No. 4, December 1074

304 • Brian W. Kernighan and P. J. Plauger

CONTENTS

Introduction
Expression
Control Flow

Null THEN
ELSE BREAK
THEN IF
Bushy Trees
Summary of IF-THEN-ELSE
WHILE

Data Structure
Conclusion
References

Copyright © 1974, Association for Computing Machinery,
Inc. General permission to republish, but not for profit, all
or part of this material is granted, provided that ACM's
copyright notice is given and that reference is made to this
publication, to its date of issue, and to the fact that reprint-
ing privileges were granted by permission of the Associa-
tion for Computing Machinery.

This paper was typeset, by the authors using a Graphic Sys-
tems phototypesetter running under the UNIX operating
system.

We feel, however, that programming
style goes beyond even these considerations.
While writing The Elements of Programming
Style [7], we rev iewed hundreds of published
programs, in textbooks and in the recent
literature. It is no secret that imperfect pro-
gramming practice is common - - we found
plenty Of evidence of that. There are even
bug-infested and unreadable "s t ruc tured" pro-
grams. Writ ing in teams, using proper struc-
tures, avoiding GOTOs - - all are useful in-
gredients in the manufacture of good code.
But they are not enough.

Today, if you asked someone what good
programming style is, you would (or should!)
get quite a different lecture, for we now know
that neat flowcharts and lots of comments
can ' t salvage bad code, and that all those mi-
croseconds and bytes saved don ' t help when
the program doesn ' t work. Today 's lecture on
"Wha t is good programming s tyle?" would
probably be more like this...

Expression:

At the lowest level of coding, individual
s tatements and small groups of s tatements
have to be expressed so they read clearly.
Consider the analogy with English - - if you
can ' t wri te a coherent sentence, how will you
put together paragraphs, let alone write a
book? So if your individual program state-
ments are incoherent and unintelligible, what
will your subrout ines and operating systems
be like?

Structure:

The larger structure of the code should
also read clearly - - it should hang together
the same way a paper or a book in English
should. It should be written with only a
handful of control-flow primitives, such as /f-
then-else, loops, statement groups (begin-end
blocks, subrout ines) , and it probably

t shouldn ' t contain any GOTOs. This is one as-
r pect of what we mean by structured program-
'ming . Coding in this set of well-behaved
structures makes code readable, and thus
more understandable, and thus more likely to
be right (and incidentally easier to change and

i debug).

The data structure of a program should
be chosen with the same care as the control
flow. Choose a data representat ion that makes
the job easy to program: the program
shouldn ' t have to be convoluted jus t to get
around its data.

Robustness:

A program should work. Not just on the
easy cases, or on the weU-exercisod ones, but
all the time. It should be written to defend it-
self against bad data from the outside world.
"Garbage in, garbage out" is not a law of na-
ture; it just means that a programmer shirked
his responsibili ty for checking his input. Spe-
cial cases should: work -- the program should
behave at its boundaries. For instance, does
the sorting program correctly sort a list with
just one e lement? Does the table lookup
routine work when the table is empty'?

Computing Surveys, Vol. 6, No. 4. December 1974
I

l~rogramming Style: Examples and Coun~exam~s I t 305

Efficiency and Instrumentation: i

Only now should the lecture on style get around to "elficiency." ~ o t that we don't care
how fast a program runs or how much memory it takes, but until we have a working piece of
code, we don't always know where it spends its time. And until we knoW that, talk of changing
it "for efficiency" is foolish. Write the whole program clearly. I f it is then too slow or too big,
change to a better algorithm. (Since you wrote it clearly, change will be easY~) If the algorithm is
already the "best," then measure the program, and improve the critical parts; leave the rest
alone.

Documentation:
If you write code with care in the detailed expression, using the fundamental structures

and choosing a good data representation, most of the code will be self-doCumenting -- it can be
read. Much of the need for detailed flowcharts and comments on every line will go away. Anti
you will have less worry about the inevitable discrepancies between flowchart, comments, and
code.

The approach in the "lecture" we just gave seems to lead to better (more reliable, more
readable, and usually faster and shorter) code. In this paper we will talk mostly about expres-
sion and structure, with occasional digressions to robustness, efficiency, and documentation.
Our presentation here is necessarily brief; all of these questions are more i fully discussed in [7].
As we did there, to illustrate our points and to show what can go wrong whengood style is for-
gotten, we have chosen a set of "real" programs. Each one is taken vertratlm from some pro-
gramming textbook. (We will not cite any texts by name, for we intend no criticism of textbook
authors. We are all human, and it is all too easy to introduce shortcomings into programs.)

The examples are all in Fortran and PL/I; none contain particularly tlitf~eult constructions.
If you have even a reading knowledge of some high level language you sl~ould be able to follow
the examples without difficulty. The principles illustrated are applicable in ~all languages.

II. EXPRESSION

Being too Clever
Our favorite example, the one we feel best underlines the need for something, that can

only be called good style, is this three line Fortran program:

DO 1 I=1 ,N
DO 1 J=l ,N

1 X (I , J) = (I / J) * (J / I) i

It is an interesting experiment to ask a group of student Fortran prograrnrners what this excerpt
does. After thirty seconds or so, perhaps a third to a half of them will tentatively agree that
they know what it does. Even after a minute of study, there are still pu~ l ed looks. When the
group is quizzed, one finds that only a few actually got the correct answer.

What does it do? It relies on Fortran's truncating integer division: if I is less than J, l/J is
zero; conversely, if J is less than I, J/I is zero. Only when I equals J do wel have a non-zero pro-
duct, which happens to be one. Thus the code puts ones on the diagonal of X and zeros every-
where else.

Clever? Certainly, but it hardly qualifies as a good piece of code in any sense. It is neither
short nor fast, despite its terse representation in Fortran. Worst of all, it is virtually unreadable,
just because it is too clever for its importance. Even if the trick did happen to prove faster than
more conventional methods, it should still be avoided, for initializing a matrix must surely be
but a small part of the program that uses the matrix. It is far more important to make the code

r
1 . 4 Computing

306 • Brian W. Kemighan and P. J. P/auger

clear, so people can debug, maintain and modify it.

There is a principle of style in English that says, "Say what :you mean, as simply and
directly as you can." The same principle applies to programming. We mean that if I equals J,
X(I,J) should be 1; if I is not equal to J, X(I,J) should be zero. So say it:

DO 20 I = 1, N
DO 10 J = 1, N

I f (I .EQ. J) X (I , J) = 1 .0
IF (I .NE. I) X (I , J) 0 .0

10 CONTINUE
20 CONTINUE

If this proves to be too "ineliqcient", then it may be refined into a faster but somewhat less clear
version:

DO 20 I = I , N
DO 10 J = 1, N

10 X (I , J) = 0 .0
20 X (I r l) = 1.0

It is arguable which of these is better, but both are better than the original. Don't make debug-
ging harder than it already is -- don't be too clever.

Being too Complicated

Here is another Fortran example, which is an interesting contrast with the previous one:

IF(X .LT. Y) GO TO 30
IF (Y .LT. Z) GO TO 50
SMALL = Z
GO TO 70

30 IF (X .LT. Z) GO TO 60
SMALL = Z
GO TO 70

50 SMALL = Y
GO TO 70

60 SMALL = X
70

Ten and a half lines of code are used, with four statement numbers and six GOTOs -- surely
something must be happening. Before reading further, test yourself. What does this program
do?

The mnemonic SMALL is a giveaway -- the sequence sets SMALL to the smallest of X,
Y, and Z. Where the first example was too clever, this one is too wordy and simple-minded.
Since this code was intended to show how to compute the minimum of three numbers, we
should ask why it wasn't written like this:

SMALL = X
IF(Y .LT. SMALL) SMALL = Y
IF(Z .LT. SMALL) SMALL = Z

No labels, no GOTO's, three statements, and clearly correct. And the generalization to comput-
ing the minimum of many elements is obvious.

Computing Surveys, Vol. 6, No. 4, December 1974

Programming Style: Examples and Coun~,xamples :e 307

i

Of course, if our goal is to get the job done, rather than teaehin& how to compute a
minimum, we can write, much more readably than the original, the single statement:

SMALL = AMINO(X) Y) Z)

One line replaces ten. How can a piece of code that is an order of magnitude too large be
considered reliable? There is that much greater chance for confusion, and hence for the intro-
duction of bugs. There is that much more that must be understood in order to make evolution-
ary changes.

Clarity versus "E~ciency'"
It seems obvious that a program should be clear, yet clarity is often sacrificed needlessly in

the name of efficiency or expediency.

DO 10 I = I , M
I F (B P (I) + I . 0) 1 9 , 1 1 , 1 0

11 I B N I (I) = BLNK
I B N 2 (I) = BLNK
GO TO 10

19 B P (I) = - 1 . 0
I B N I (I) = BLNK
I B N 2 (I) = BLNK

lO CONTINUE

If BP(I) is less than or equal to -1 , this excerpt will set BP(I) to - 1 and :put blanks in IBNI(I)
and IBN2(I). The code uses a hard-to-read Fortran arithmetic IF that branches three ways, two
almost-duplicated pieces of code, two labels and an extra GOTO, all to avoid setting BP(I) to -1
if it is already -1 .

There is no need to make a special case. Write the code so it can be~read:

10

DO I 0 I = I , M
I F (B P (I) ,GT. - 1 , 0)

B P (I) = - 1 , 0
I B N I (I) = BLNK
I B N 2 (I) = BLNK

CONTINUE

GOTO 10

Interestingly enough, our version will be more "efficient" on most machine, s, both in space and
in time: although we may reset BP(I) unnecessarily, we do less bookkeeping. What did concern
with "efficiency" in the original version produce, besides a bigger, slower, and more obscure
program?

Rewriting
These may seem like small things, taken one at a time. But look what happens when the

need for clear expression is consistently overlooked, as in this PL/I program which computes a
set of approximations to the integral of X**2 between zero and one, by adding up the areas of
rectangles of various widths.

308 • Brian W. Kernighan and P. J. P/auger

TRAPZ: PROCEDURE OPTIONS (M A I N) ;
DECLARE MSSG! CHARACTER (20) ;

MSSGI = 'AREA UNDER THE CURVE';
DECLARE MSSG2 CHARACTER (23) ;

MSSG2 = 'BY THE TRAPAZOIDAL RULE';
DECLARE MSSG3 CHARACTER (16) ;

MSSG3 = 'FOR DELTA X = 1 / ' ;
DECLARE I FIXED DECIMAL (2) ;
DECLARE J FIXED DECIMAL (2) ;
DECLARE L FIXED DECIMAL (7p6) ;
DECLARE M FIXED DECIMAL (716) ;
DECLARE N FIXED DECIMAL (2) ;
DECLARE AREA] FIXED DECIMAL (8 t 6) ;
DECLARE AREA FIXED DECIMAL (816) ;
DECLARE LMTS FIXED DECIMAL (514) ;

PUT SKIP EDIT (MSSG|) (X (9) , A (20)) ;
PUT SKIP EDIT (MSSG2) (X (7) , A (23)) ;
PUT SKIP EDIT (' ') (A (I)) ;

AREA = O;
DO K = 4 TO 10;

M =] / K;
N : K - l ;

LMTS = .5 * M;
I = l;

DO J = 1 TO N;
L = (I / K) ** 2;

AREA1 = .5 * M * (2 * L) ;
AREA = AREA + AREA1;

IF I = N THEN CALL OUT;
ELSE I = I + 1;

END;
END;

OUT: PROCEDURE;
AREA = AREA + LMTS;

PUT SKIP EDIT (MSSG3,K,AREA) (X (2) , A (1 6) , F (2) , X (6) ,
F (9 , 6)) ;

AREA = O;
RETURN;

END;
END;

Everything about this program is wordy. The output messages are declared and assigned
unnecessarily. There are far too many temporary variables and their associated declarations.
The structure sprawls.

Try going through the code, fixing just one thing at a time -- put the error messages in the
PUT statements where they belong. Eliminate the unnecessary intermediate variables. Com-
bine the remaining declarations. Simplify the initializations. Delete the unnecessary procedure
call. You will find that the code shrinks before your very eyes, revealing the simple underlying
algorithm.

Here is our revised version:

Computing Surveys, Vol. 6, blo. 4, December 1974

TRAPZ: PROCEDURE
DECLARE (J,K)

AREA

PUT SKIP EDIT

PUT SKIP;

4

Programming Style: Examples and Cotant~cXaml!tk~ I I ~

OPTIONS(MAIN);
FIXED DECIMAL (2) ,
FIXED DECIMAL (8 , 6) ;

('AREA UNDER THE CURVE',
'BY THE TRAPEZOIDAL RULE r)
(X (9) , A, SKIP, X (7) , A);

DO K = 4 TO 10;
AREA = 0 .5 /K;

DO J = 1 TO K- l ;
AREA = AREA + ((J / K) * * 2) / K ;

END;

PUT SKIP EDIT ('FOR DELTA X = I / ' , K, AREA)
(X(2) , A, F(2) , X(6) , F (9 , 6)) ;

END; ,
END TRAPZ;

Both versions give the same results, so this was not an exercise in debugging in the tradi-
tional sense. But if there were a bug localized to this part of a larger system, which version
would you rather try to fix? Which would you give a higher mark to? Which would you rather
be in charge of, when changes are necessary?

The original version reads like a hasty first draft which was later patched. Arriving at our
"final draft" required no great ingenuity; just a series of almost mechanical steps much as we
described. Applying the principles of good style, one at a time, gradually eliminates the features
that make the original version so hard to read. The problem is, most programs never get past
the "first draft" stage, possibly because the code appears too frightening when viewed all at
once.

Programmers sometimes say that they haven't time to worry about niceties like style --
they have to get the thing written fast so they can get on to the next onei (What actually hap-
pens is they get it written fast so they can get on to the tedious job of d~bugging, it.) But you
will soon find that, with practice, you spend less and less time revising, because you do a better
and better job the first time.

Much more can be said about how to make code locall: more readable (see [7]), but for
now we will turn to a topic that has recently become popular -- how to specify control flow with
good style.

III, CONTROL FLOW STRUCTURE

One way to improve the apparently random control flow that several of our examples have
demonstrated is to program consciously with just a small set of well-behaved control flow struc-
tures. One interpretation of "structured programming," in fact, is this way of coding. Although
this is a narrow view, we will keep to just that aspect for the time being.

It has been shown [2] that programs can be written using just:

1) Alternation, such as IF-THEN-ELSE, where the ELSE part may be optional.

2) Looping, such as WHILE or the Fortran DO loop. Different flavors have the teimination
test at the beginning or end of the loop.

Computing Survoys, V~!, 6. Not ~ De~bex 1974

310 • Brian W. Kernighan and P, Z Plauger

3) Grouping, such as subroutines and compound statements.

While these tools are sutficient, in the same sense that a Turing machine can perform any of a
wide class of calculations, it is convenient to add:

4) CASE switches, which are essentially multi-way IF statements, and

5) BREAK and ITERATE statements, which exit from a loop or skip to the test portion of a
loop, respectively.

Most languages have at best a subset of these forms, so the pragmatic programmer cannot
hope to avoid the more primitive control statements carried over from earlier days. For exam-
ple, the simplest way to implement a BREAK in PL/I is to use a GOTO. And in Fortran, of
course, GOTOs and statement numbers must be sprinkled liberally throughout the best designed
code. But the basic design of a program should be done in terms of the fundamental structures.
GOTO's and other primitive language features should be used only to implement the bash; struc-
tures outlined above.

While these are well tried and useful forms, there is a tendency to believe that just by us-
ing them (and only them) one can avoid all trouble. This is false -- they are not panaceas.
Good style, care and intelligence are still needed. We can see this just by studying the use and
abuse of the IF-THEN-ELSE, certainly a simple and fundamental structure in any programming
language.

Null THEN

The following routine is supposed to sort an array of eight numbers into increasing order
of absolute value:

DCL A(8);
GET LIST (A);
DO I=! TO 8;

IF ABS(A(I))<ABS(A(I+I)) THEN;
ELSE BEGIN;

STORE=A(I);
A (I)=A(I+ [) ;
A(I+I)=STORE;
END;

END;
PUT LIST(A);

The heart of this sequence is a "DON'T" statement -- if the specified condition is true, do
nothing, otherwise do something. Anything so misleading should put us on guard; and indeed
we see immediately that the sequence cannot possibly sort correctly because

1) only one pass is made over the array, and we know simple sorting takes about N passes.

2) a reference is made outside array bounds when A(I+I) is accessed on the last iteration
with I equal to 8.

There are several ways of doing a simple sort correctly. We could make N-1 passes over
the array, or we could set a flag every time it is necessary to exchange two elements, so we
know that an additional pass over the array is needed. Applying this latter fix to the program
above (and eliminating the subscript range error) should give us a working sort.

But there is still a lurking bug. Turning the test around so the IF-THEN is stated more
naturally:

Computing Surveys, Vol. 6, No. 4, December 1974

Programming Style: Examples and Counterexamplcs ,~ ~ 311

IF A B S (A (I)) >~ A B S (A (I + I)) THEN DO;
STORE = A (I) ;
A (I) = A (I + I) ;
A (I + I) = STORE;
EXCH = ' I ' B ;

END;

reveals that two elements will be exchanged even if they are equal. I f A contains two equal ele-
ments, the program goes into an infinite loop exchanging them, because the flag EXCH will be
set repeatedly. Using a null THEN may seem a small thing, until it adds a day of debugging
time.

Even when code is correct, it can be very hard to read. Here's another sorting program,
which sorts into descending order this time, with an almost-null THEN:

DO M = 1 TO N;
K = N- l ;
DO J = 1 TO K;
IF ARAY(J) - ARAY(J+I) >= 0

THEN GO TO RETRN;
ELSE;

SAVE = ARAY(J);
ARAY(J) = ARAY(J+I) ;

ARAY(J+I) = SAVE;
RETRN: END;

END;

The construction THEN GOTO might be a BREAK statement in disguise, but often it is a
tipoff that something is amiss. Here it branches around only three statements and not out of the
loop. Why not turn the test around so no GOTO or label is needed? (The null ELSE has no
function whatsoever; it only confuses the issue.) And why does the test subtract the two ele-
ments and then compare against zero, when a direct comparison would be far easier to under-
stand and free of overflow problems? The program reads like a hasty tran~slation from Fortran
into PL/I. Revision is easy:

DO M = 1 TO N - l ;
DO ! = 1 TO N - l ;

IF ARAY(J) < ARAY(J+I) THEN DO;
SAVE = ARAY(J);
ARAY(J) = ARAY(J+I) ;
ARAY(J+I) = SAVE;

END;
END;

END;

The original program worked, but again we were able to improve it with little effort.

In Fortran, thbre are fewer options when using IFs, for there is no ELSE clause and no
way to form compound groups of statements. But in the few cases where the language lets you
write clearly, do so. Don't write like this:

IF (A(I) .GT.GRVAL) GO TO 30
GO TO 25

30 GRVAL = A (I)
25 . . .

Computing Survoyso VoL 6. No, 4, December 1974

312 • Brian W. Kernighan and P. J. Plauger

A branch around the branch that branches around what we wanted
what you mean, as simply and directly as you can:

IF(A (I) .GT. GRVAL) GRVAL = A (I)

to do in the first place! Say

There are now no labels, no GOTOs, and the code can be understood even when read aloud
over a telephone. (This is always a good test to apply to your code -- if you can't understand it
when spoken aloud, how easy will it be to grasp when you read it quietly to yourself?)

ELSE BREAK

The BREAK statement has
quence for finding the largest of a

its uses, but it has to be used judiciously. Consider this se-
set of positive numbers:

DCL NEWIN DEC FLOAT (4) ;
LARGE DEC FLOAT (4) INIT (.OE1);

/ * .0 x 10"*1 = .0 x 10 = 0.0
NEXT_C: GET LIST (NEWIN);

IF NEWIN >=0
THEN IF NEWIN > LARGE

THEN LARGE = NEWIN;
ELSE GO TO NEXT_C;

ELSE GO TO FINISH;
GO TO NEXT_C;

FINISH: PUT LIST (LARGE);

*/

Ignoring the curious zero in the INIT attribute, and the equally curious explanatory comment,
we can see that this program does indeed use just the structures we mentioned above (the
GOTOs implement BREAKs and ITERATEs). Therefore it should be readable. But tracing the
tortuous flow of control is not a trivial e x e r c i s e - how does one get to that last GOTO
N E X T C ? Why, from the innermost THEN clause, of course.

The ELSE BREAK is just as confusing as the DON'T statement. It tells you where you
went if you didn't do the THEN, leaving you momentarily at a loss in finding the successor to
the THEN clause. And when ELSE BREAKs are used one after the other, as here, the mind
boggles.

Such convolutions are almost never necessary, since an organized statement of the prob-
lem leads to a simple series of decisions:

NEXT_C:

DECLARE (NEWIN, LARGE) DECIMAL FLOAT (4) ;
LARGE = O;

GET LIST (NEWIN);
IF NEWIN > LARGE THEN LARGE = NEWIN;
IF NEWIN ~ 0 THEN GOTO NEXT C;

PUT LIST (LARGE);

What we have here is a simple DO-WHILE, done while the number read is not negative,
controlling a simple IF-THEN. Of course we have rearranged the order of testing, but the end-
of-data marker chosen was a convenient one and does not interfere with the principal work of
the routine. True, our version makes one extra test, comparing the marker against LARGE, but
that will hardly affect the overall etticiency of the sequence. Readability is certainly improved
by avoiding the ELSE GOTOs.

Computing Surveys, Vol. 6, No. 4, December 1974

THEN-IF
Now consider:

Prograraming Style: Examples and Cmcnterexampla 3!3

IF QTY > 10 THEN ~ / * k * /
IF QTY > 200 THEN " / * B * /

IF QTY >~ 500 THEN BILL_A = BILL_A + I.OO; / *C* /
ELSE BILL_A ffi BILL_A + ,50; / * C * /

ELSE; / * B * /
ELSE BILL_A ffi ,00; / * A * /

Those letters down the right hand side are designed to help you figuretout what is going on, but
as usual, no amount of commenting can rescue bad code. The code requires you to maintain a
mental pushdown stack of what tests were made, so that at the appropriat e point you can pop
them until you determine the corresponding action (if you can still remember). You might time
yourself as you determine what this code does when QTY equals 350. How about 1509.

Since only one of a set of actions is ever called for here, a frequent Occurrence, what we
really want is some form of CASE statement. In PL/I, the most general CASE is implemented
by a series of ELSE-IFs:

IF condl THEN f irst case;
ELSE IF cond2 THEN second case;

ELSE IF condn THEN nth case;
ELSE defau l t ;

If there is no default action, the last ELSE clause is omitted. We can rewrite the example as:

IF QTY >~ 500 THEN BILL_A = BILL_A + 1 .00 ; ,
ELSE IF QTY > 200 THEN BILL_A ffi BILL_A + 0.50;
ELSE IF QTY <= 10 THEN BILL_A ffi 0,O;

Now all we need do is read down the list of tests until we find one that is met, read across to
the corresponding action, and continue after the last ELSE. In Fortran, this can be rendered
similarly as

IF(QTY .GE. 500.0) BILLA ffi BILLA + 1.0
IF(QTY .LT. 500.0 .AND. QTY .GT. 200.0)
IF(QTY .LE.]0.0) BILLA ffi 0.0

BILLA = BILLA + 0.5

which is best if the relations and actions are simple enough to write one per line and the tests
are mutually exclusive. Don't let anyone tell you this is not efficient -- it doesn't take all that
much time to make the whole set of tests, and you're more likely to get the code right the first
time. If it does take too much time, and you have measurements that prove it, then and only
then should you re-write it with GOTOs.

The THEN-IF was the culprit in this example, but we could have given the disease anoth-
er name. Note the null ELSE clause, required to make the unstacking come out right when one
of the conditions has no corresponding action. These seemingly useless statements cauterize the
stumps of any ill-thought-out THEN-IFs buried in the code. A program containing null ELSE
clauses is suspect, if for no other reason than that it was written by someone bitten by THEN-
IFs often enough to sprinkle null ELSEs around for insurance.

Computing Surveysr Vo~. 6t N~ 4, ~be ,~ r |974

314 • Brian W. Kernighan and P. J. Plauger

The THEN- IF does have its uses. It is often the only way to ensure that tests with side
effects are performed in the proper order, as in

IF I > 0 THEN
IF A (I) = B (I) THEN , . .

which ensures that I is in range before its use as an index. Some languages provide special
Boolean connectives [11] which guarantee left-to-right evaluation and early exit as soon as the
truth value of the expression is determined; but if you are not fortunate enough to be able to
program with these useful tools, use THEN-IFs and don ' t forget to cauterize.

Bushy Trees

Most of the IF-THEN-ELSE examples we have shown so far have a characteristic in com-
mon, besides the unreadable practices we pointed out. Each approximates, as closely as the pro-
grammer could manage, a minimum depth decision tree for the problem at hand. If all out-
comes have equal probability, such a tree arrives at the appropriate action with the minimum
number of tests on the average, so we are all encouraged to lay out programs accordingly. But a
program is a one-dimensional construct, which obscures any two-dimensional connectedness it
may have. Perhaps the minimum depth tree is not the best structure for a reliable program.

Let us rewrite the minimum function in PL/I, adhering to the spirit of the original Fortran,
but using only IF-THEN-ELSEs:

IF X >~ Y THEN
IF Y >~ Z THEN SMALL = Z;
ELSE SMALL = Y ;

ELSE
IF X >~ Z THEN SMALL = Z;
ELSE SMALL = X ;

Even though neatly laid out and properly indented, it is still not easy to grasp. Not all the con-
fusion of the original can be attributed to the welter of GOTOs and statement numbers. What
we have here is a "bushy" tree, needlessly complex ~ any event, but still hard to read simply
because it is conceptually short and fat.

The ELSE-IF sequence, on the other hand, is long and skinny as trees go; it seems to
more closely reflect how we think. (Note that our revised minimum function was also linear.)
It is easier to read down a list of items, considering them one at a time, than to remember the
complete path to some interior part of a tree, even if the path has only two or three links. Sel-
dom is it actually necessary to repeat tests in the process of stringing out a tree into a list; often
it is just a matter of performing the tests in a judicious order. Yet too often programmers tend
to build a thicket of logic where a series of signposts are called for.

Summary of IF- THEN-ELSE

Let us summarize our discussion of IF-THEN-ELSE. The most important principle is to
avoid bushy decision trees like:

J F m m l

THEN IF . . .
ELSE . . .

ELSE IF . . .
THEN . . .
ELSE . . .

Computing Surveys, Vol. 6, No. 4, December 1974

Programming Style: Examples and Counterexamples • ~ 315

The bushy tree should almost always be reorganized into a CASE statment,:whieh is im-
plemented as a string of ELSE-IF's in PL/I. The resulting long thin tree is much easier to
understand:

IF . . . THEN . . .
ELSE IF THEN . . .

ELSE . . .

A THEN-IF is an early warning that a decision tree is growing the wrong way. A null ELSE in-
dicates that the programmer knows that trouble lies ahead and is trying to defend against it.
And an ELSE BREAK from such a structure may leave the reader at a loss to understand how
the following statement is reached.

J

A null THEN or (more commonly) THEN GOTO usually indicates that a relational test [
needs to be turned around, and some set of statements made into a block. I

The general rule is: after you make a decision, do something. Don't just go somewhere or
make another decision. If you follow each decision by the action that goes with it, you can see
at a glance what each decision implies.

WHILE
Looping is fundamental in programming. Yet explicit loop control in Fortran or PL/I can

only be specified by a DO statement, which encourages the belief that all loOps involve repeated
incrementing of an integer variable until it exceeds some predetermined value. Fortran further
insists that the loop body be obeyed once before testing to see whether the loop should have
been entered at all.

Thinking in terms of DO statements, instead of loops, leads to programs like this sine
routine:

20
30

DOUBLE PRECISION FUNCTION SIN(X,E)
THIS DECLARATION COMPUTES SIN(X) TO ACCURACY E
DOUBLE PRECISION E,TERMySUM
REAL X
TERM=X
DO 20 1=3,10012
TERM=TERM*X**2/(I* (I - I))
IF(TERM.LT.E)GO TO 30
SUM=SUM+(-I**(I/2))*TERM
CONTINUE
SIN=SUM
RETURN
END

The program consists entirely of a loop, which computes and sums the terms of a Maelaurin
series until the terms get too small or a predetermined number have been included in the sum.

In its most general form, a loop should be laid out as:

i n i t i a l i z e
whi le (reason for looping)

body of loop

This way, the parts are clearly specified and kept separate. But this approach was evidently not
taken here:

j

Computing Surveys, Voi.i6, No. 4, December 1974

316 • Brian W. Kemighan and P. J. Plauger

1) The program fails to initialize SUM along with TERM and I.

2) The program mis-states the convergence test, returning immediately on negative values of
X. i

3) The convergence test is misplaced, so the last TERM computed is not included in SUM.
And TERM is computed unnecessarily when the convergence test is met right from the
start.

These three bugs can be traced directly to poor structural design. There is also a fourth
bug:

4) TERM is computed incorrectly because the "**" operator binds tighter than unary minus
(another case of being tOO clever?).

We first write the code in an anonymous language that includes the WHILE.

SiA : X
t e r m : x
i : 3

w h i l e (i < 100 & a b s (t e r m) > e)
t e r m = - t e r m * x * * 2 / (i * (i
s i n = s i n + t e r m
i = i + 2

r e t u r n

- I))

and then translate into Fortran:

SIN = X
TERM = X
DO 20 I = 31 100 , 2
IF (DABS(TERM) .LT . E)

TERM = -TERM * X * * 2
SIN = SIN + TERM

20 CONTINUE
30 RETURN

GOTO 30
/ FLOAT(I * (I - 1))

In this case, the WHILE becomes a DO followed by an IF. The DO neatly summarizes
the initialization, incrementing, and testing of I, and keeps the loop control separate from the
computation. It is a useful statement. The important thing is to recognize its shortcomings and
plan loops in terms of the more general WHILE.

In PL/I, the DO-WHILE and DO I=J TO K constructions make the test at the top of the
loop, which is most often what is wanted. Fortran programs, on the other hand, frequently fail
to "do nothing gracefully" because DO loops insist on being performed at least once, regardless
of their limits, even when action is undesirable. For example, this function finds the smallest
element in an array.

FUNCTION SMALL(A,N)
DIMENSION A l l)
SMALL = A l l)
DO 1 K = 2 ,N
I F (A (K) - S M A L L) 2 , 1 , 1
SMALL = A (K)
CONTINUE
RETURN
END

Computing Surveys, VoL 6, No. 4, December 1974

Programming Style: Examples and Countefexamplcs :o 317

Clearly it's more efficient to use the DO limits of "2,N" -- it saves a use~e4is eomparison. But
what if N is one? Don't kid yourself: N will be equal to one some day, .:and the program will
surely fail when it looks at the undefined A(2). Had we first written this routine with a WHILE
statement, we would have seen the need for an IF to protect the DO in the translated version.
Or, we could have written directly:

SMALL = A(1)
DO 1 K = 1,N

IF(A(K) .LT. SMALL
1 CONTINUE

) SMALL = A(K)

This may be less "efficient" in the small, but the cost of finding the bug in the original, and
repairing the damage it cost, will certainly outweigh the few microseconds more that our version
takes. (You have to weigh for yourself the question of whether to test if N i is less than one.)

IV. DATA STRUCTURE

Putting the hard parts of a program into an appropriate data structure is an art, but well
worthwhile. (Imagine doing long division in Roman numerals.) This program converts the year
and day of the year into the month and day of the month:

DATES: PROC OPTIONS (MAIN);
READ: GET DATA (IYEAR, IDATE);

IF IDATE < 1 I IDATE > 366 I IYEAR < O/THEN RETURN;
IF IDATE <= 31 THEN GO TO JAN;
L = 1;
I = IYEAR/400; IF I = IYEAR/400 THEN GO TO LEAP;
I = IYEAR/IO0; IF I IYEAR/IO0 THEN GO TO NOLEAP;
I = IYEAR/4; IF I = IYEAR/4 THEN GO TOzLEAP;

NOLEAP: L = O;
IF IDATE > 365 THEN RETURN;

LEAP: IF IDATE > 181 + L THEN GO TO G181;
IF IDATE > 90 + L THEN GO TO G90;
IF IDATE > 59 + L THEN GO TO G59;
MONTH = 2; IDAY = IDATE - 31; GO TO OUT;
MONTH = 3; IDAY = IDATE - (59 + L) ; GO,TO OUT; G59:

G90:

G120:

G151:
G181:

G212:
G243:
G273:

G304:
G334:

OUT:

JAN:

IF IDATE > 120 + L THEN
MONTH = 4; IDAY = IDATE
IF IDATE > 151 + L THEN
MONTH = 5; IDAY = IDATE
MONTH = 6; IDAY = IDATE
IF IDATE > 273 + L THEN
IF IDATE > 243 + L THEN
IF IDATE > 212 + L THEN
MONTH = 7; IDAY = IDATE
MONTH = 8; IDAY = IDATE
MONTH = 9; IDAY = IDATE
IF IDATE > 334 + L THEN

GO TO G120;
- (90 + L) ; GO TO OUT;
GO TO G151;
- (120 + L) ; GO .TO OUT;
- (151 + L) ; GO TO OUT;
GO TO G273;
GO TO G243;
GO TO G212;
- (181 + L) ; GO TO OUT;
- (2 1 2 + L) ; GO TO OUT;
- (2 4 3 + L) ; GO TO OUT;
GO TO G334;

IF IDATE > 304 + L THEN GO TO G304;
MONTH = 10; IDAY = IDATE - (273 + L) ; GO TO OUT;
MONTH = 11; IOAY = IDATE - (304 + L) ; GO TO OUT;
MONTH = 12; IDAY = IDATE - (334 + L) ;
PUT DATA (MONTH,IDAY,IYEAE) SKIP;
GO TO READ;
MONTH=l; IDAY=IDATE; GO TO OUT;
END DATES;

Computing Surveys, Vol i 6, N o. 4, December 1974
i

318 • Brian W. Kernighan and P. J. Plauger

What we have here is a bushy tree to end all bushy trees. The rococo structure of the calendar
is intimately intertwined with the control flow in an attempt to arrive at the proper answer with
a minimum number of tests.

Clarity is certainly not worth sacrificing just to save three tests per access (on the aver-
age) -- the irregularities must be brought under control. Most good programmers are accus-
tomed to using subprocedures to achieve regularity. The procedure body shows what is com-
mon to each invocation, and the differences are neatly summarized in the parameter list for each
call. Fewer programmers learn to use judiciously designed data layouts to capture the irregulari-
ties in a computation. But we can see that structured programming can also apply to the data
declarations:

DATES: PROCEDURE OPTIONS (MAIN);
DECLARE MONSIZE(O:I, 1 :12) INITIAL(

31p28~31p30,31p30,31 ,31 ,30 ,31 ,30 ,31p
31,29~31~30~31,30~31,31130~31~30p31);

READ:
GET LIST (IYEAR, IDATE) COPY;

IF MOD(IYEAR,400)=O I
(MOD(IYEAR~IO0)~=O & MOD(IYEAR~4)=O)

THEN LEAP = 1;
ELSE LEAP = O;

/ * NON-LEAP * /
/ * LEAP * /

IF IYEAR<1753 I IYEAR>3999 I IDATE<=O I IDATE>365+LEAP THEN
PUT SKIP LIST('BAD YEAR ! DATE - ' , IYEARt IDATE);

ELSE DO;
NDAYS = O;
DO MONTH = ! TO 12

WHILE (IDATE > NDAYS + MONSIZE'(LEAP, MONTH)
NDAYS = NDAYS + MONSIZE(LEAP, MONTH);

END;
PUT SKIP LIST(MONTHt IDATE - NDAYSI IYEAR);

END;

GOTO READ;
END DATES;

) ;

Most people can recognize a table giving the lengths of the different months ("Thirty days hath
September..."), so this version can be quickly checked for accuracy. The program may take a bit
more time counting the number of days every time it is called, but it is more likely to get the
right answer than you are, and even if the program is used a lot, I/O conversions are sure to use
more time than the actual computation of the date. The double computation of
MONSIZE(LEAP,MONTH) falls into the same category -- write it clearly so it works; then
measure to see if it's worth your while to rewrite parts of it.

Our revised date computation shows an aspect of modularity which is often overlooked.
Most people equate modules with procedures, but our program has several distinct modules and
only one procedure. A date is input, LEAP is computed, the date is validated, the conversion is
made and the result is printed. Each of these pieces could be picked up as a unit and planted as
needed in some other environment with a good chance of working unaltered, because there are
no unnecessary labels or other cross references between pieces. (The label and GOTO imple-
ment a WHILE, done while there is still input.) The control flow structures we have described
tend to split programs into computational units like these and thus lead to internal modularity.

Computing Surveys, VoL 6, No. 4, December 1974

Programming Style: Examples and Counte~examp!es • 819

V. CONCLUSION

Three topics we have hardly touched, which are usually associated with any discussion of
style, are efficiency, documentation, and language design. We think these are straw men, almost
always raised improperly in a consideration of only parochial issues.

Opponents of programming reform argue that anything that is readable must automatically
be inel~cient. This is the same attitude that says that assembly languages are preferable to high
level languages. But as we have seen, good programming is not synonymous with GOTO-less
programming, and it certainly does not have to be wasteful of time or space. Quite the contrary,
we find that nearly all our revised programs take no more time and are about the same size as
the originals. And in some cases the revised version is shorter and faster because unnecessary
special cases have been eliminated.

We use few comments in our revisions -- most of the programs are short enough to speak
for themselves. And when a program cannot speak for itself, it is seldom ~th¢ ease that greater
reliability or understanding will result by interposing yet another insulating layer of documenta-
tion between the code and the reader. Bad programming practice cannot be explained away; it
must be rewritten.

Finally, many people try to excuse badly written programs by blaming inadequacies of the
language that must be used. We have seen repeatedly that even Fortran can be tamed with
proper discipline. The presence of bad features is not an invitation to use !them, nor is the ab-
sence of good features an excuse to avoid simulating them as cleanly as possible. Good
languages are nice, but not vital.

Our survey of programming style has been sketchy, for there are far too many details that
must be covered to give a proper treatment here. But there is ample evidence for the existence
of some discipline beyond a simple set of restrictions on what types of statements to use. It is
called style.

REFERENCES

1. F.T. Baker, H.D. Mills, "Chief programmer
teams", Datamation 19, 12 (December, 1973),
58-61.

2. C. Boehm, G. Jacopini, "Flow diagrams, Turing
machines, and languages with only two forma-
tion rules", CACM9 (May, 1966), 366-371.

3. O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Struc-
tured Programming. Academic Press, 1972

4. E.W. Dijkstra, "The humble programmer",
CACM 15 (October 1972), 859-866.

5. E.W. Dijkstra, "Go to statement considered
harmful", CACM 11 (March, 1968), 147-148.

6. C. A. R. Hoare, "Hints for programming
language design", Stanford Computer Science
Technical Report CS-74-403 (January 1974).

7. B.W. Kernighan, P. J. Plauger, The Elements of
Programming Style, McGraw-Hill, Inc. (1974).

8. D.E. Knuth, "An empirical study of Fortran
programs", Software - Practice and Experience 1,
(1971), 105-133.

9. D.E. Knuth, "Structured programming with gore
statements", Computing Surveys 6, 4 (December,
1974).

10. B. M. Leavenworth, "Programming with(ou0 the
GOTO", Prec. ACM National Conference
(1972), 782-786.

11. J. McCarthy, "Recursive functions of symbolic
expressions and their computation by machine,
Part I," CACM 3 (April, 1960), 184-195.

12. H. D. Mills, "Top down programming in large
systems", in Debugging Techniques in Large Sys-
tems, ed. by R. Rustin. Prentice-Hall, Inc.
(1971), 41-55.

13. G. M. Weinberg, The Psychology of Computer Pro-
gramming, Van Nostrand Reinhold (1971).

14. W. A. Wulf, "A case against the GOTO", Prec.
ACM National Meeting (1972), 791-797.

Computing Surveys, VoL i 6,-No. 4, December 1974

