
Strategies for managing requirements creep
Capers Jones
SofhYare Productivity Research

ne of the most chronic problems in software
development is the fact that application require-
ments are almost never stable and fixed. Fre-

quent changes in requirements are not always caused by
capricious clients (although sometimes they are). The root
cause of requirements volatility is that many applications
are attempting to automate domains that are only partly
understood. As software design and development pro-
ceeds, the process of automation begins to expose these ill-
defined situations. Therefore, although
creeping requirements are troublesome,
they are often a technical necessity.

Several threads of research and some
emerging technologies are aimed at either
clarifying requirements earlier in devel-
opment or minimizing the disruptive
effect of changing requirements later.

Why requirements change

is expanding the ways companies operate.

today’s word processors and spreadsheets. Most exhibit
“functional overkill” because every time one vendor devel-
ops a new feature all the others quickly imitate it. The
result is that commercial word processors and spread-
sheets have ballooned from fewer than 300 function points
10 years ago to more than 5,000 function points today.

Changes in military software can be caused by chang-
ing mission requirements or hardware platforms. In addi-
tion, a significant number of military applications must

interface with such a complex web of
other applications that many changes in
system A are due to changes in systems B

everal emerging or CorN, whichsharedatawithsystema.
technologies are

Measuring the rate of change
The function point metric has proven

to be useful for exploring the impact and
cost of creeping requirements. The func-
tion point is a synthetic metric derived
from five external attributes of software
systems: inputs, outputs, inquiries, logi-

S
aimed at either
clarifying
requirements earlier
or minimizing the
disruptive effect of

requirements later.
Requirements change because software changing

In a sense, creating software requirements
is like hiking in a gradually lifting fog. At
first only the surroundings within a few
feet of the path are visible, but as the fog lifts, more and
more of the terrain can be seen.

Not all software applications have unstable require-
ments, but the majority do. Certain kinds of engineering
and scientific software, and software that is embedded in
physical devices (such as automotive fuel injection sys-
tems), may reach a point of stability early. In fact, once
these requirements stabilize, they may stay constant for
several years.

However, when software deals with business factors,
change is almost inevitable. Suppose your company is
building an inventory-management system. While your
system is being built, you acquire another companywith a
different product line. Obviously this will affect inventory
management. Other significant changes can be caused by
external factors over which the software team and even
the clients have no control, such as changes in the tax law
or changes derived from business process reengineering
studies.

Changes in the requirements for commercial software
are sometimes driven by competitive pressures. Look at

cal files, and interfaces.
To use function points to measure

creeping requirements, first size the
application when the requirements are first considered to
be firm. Then size the application at the end of develop-
ment. For example, a project might have 100 initial func-
tion points and 125 at delivery. This provides a direct
measurement of the volume of creep.

Because the function point count is based on features
requested and agreed to by the users or clients, it is unlikely
that the development team would be able to add function
points.

Of course, requirements changes will change the vol-
ume of source code as well, but while function points can
be calculated from the requirements themselves, code size
is a secondary or derivative factor that is harder to deter-
mine early in development.

By analyzing the evolution of requirements during
development, you can show the approximate monthly rate
of change. The changes are shown from the point at which
the requirements are initially defined through the design
and development phases of the software projects. The
changes are expressed as a percentage change to the func-
tion point total of the original requirements specification.

Computer

There is a high margin of error in this data,
but even so it is useful to measure the rate
of change: Table 1 shows the monthly rate
of change for the five domains.

Another way to express the change is to
look at the average volume of change
between the original requirements and the
delivered application in terms of typical
growth patterns derived from function
point totals. Military software has a much
more sluggish development cycle than
civilian projects, which allows time for
more changes to accumulate. Unfortun-
ately, average values can be misleading.
The maximum growth rate observed in
many cases has exceeded 100 percent. One
IBM systems software project I observed
grew by more than 270 percent. Table 2
shows the cumulative growth rates for the
five domains.

There are some seeming contradictions
between the data expressed in terms of
monthly change rates and the overall vol-
ume of change. The differences are due to
the fact that schedules vary among the five
domains. Although not the topic of this col-
umn, the speed with which software pro-
jects can be developed varies by domain.
From fastest to slowest, the order is

1. contract or outsource software.
2. information systems.
3. commercial software.
4. systems software.
5. military software.

Stabilizing requirements
Several technologies can either reduce the rate at which

requirements change or make the changes less disruptive.

JOINT APPLICATION DESIGN. JAD is a method for
developing requirements in which user representatives
and development representatives work together with a
facilitator to produce a joint requirements specification.
JAD, which originated in Canada in the 1970s, is nowvery
common in information systems development. Books,
training, and consulting groups that offer JAD facilitation
are also very common. Compared to the old adversarial
style of requirements development, JAD can cut creeping
requirements by almost half.

PROTOTYPES. Many changes occur after clients and
users see an application’s interface and output. So it is
obvious that building early prototypes can help move some
changes to the front of the development cycle. Prototypes
can reduce requirements creep and can be combined with
other approaches such as JAD. By themselves, prototypes
can reduce requirements creep by somewhere between 10
and 25 percent.

RAPID APPLICATION DEVELOPMENT. For applications
with fewer than about 1,000 function points, RAD sched-

ules are somewhat shorter than conventional develop-
ment. Finishing projects sooner obviously reduces the win-
dow of opportunity for changing requirements, so any way
to shorten the schedule will also reduce requirements
creep. There is insufficient data at pre:sent to know the
exact impact of RAD on creeping requirements, but on the
basis of preliminary observations, I estimate that RAD will
reduce requirements changes by about -10 percent.

REQUIREMENTS INSPECTIONS. The classic formal
inspection process can be applied to requirements as well
as specifications and code. Requirements inspections are
used more often for systems software than for informa-
tion systems or commercial software. Inspections signifi-
cantly reduce the rate of requirements creep because they
find errors and inconsistencies. Inspections can reduce
requirements creep by about 30 percent.

COST-PER-FUNCTION-POINT CONTRACTS. Several out-
source vendors are exploring the use of cost-per-function-
point contracts. This approach allows vendors to use a
sliding scale, so the cost per function point rises for late
requirements changes. This approach is too new and too
experimental to judge the overall effectiveness against
requirements creep, but the preliminary results are favor-
able. Because the US Internal Revenue Service is consid-
ering using the cost per function point to evaluate the

June 1996

t h and final column in the Software

e t o write or call me. Thanks also to

do an excellent job and meet their
. This i s an example those of us in the
stry might hope t o emulate.

elerating. The recent advances in software
asurement and metrics capabilities derived
m functional metrics are now making things

taxable value of software, cost per function point is start-
ing to become a significant business metric.

QUALITY FUNCTION DEPLOYMENT. QFD is a way to
analyze requirements in terms of user quality needs. QFD
resembles JAD, but focuses on quality requirements rather
than general features. There is insufficient data to judge
the overall reduction in requirements creep, because QFD
is just moving into the software world from the hardware
world.

CHANGE-CONTROL BOARDS. A change-control board
is a group of managers, client representatives, and tech-
nical personnel who decide which change to accept and
which to reject. Change-control boards are often encoun-
tered in the military and systems-software domains, espe-
ciallyfor systems in excess of 10,000 function points. These
boards are comparatively rare for information systems,
contract and outsource projects, and commercial software.
In these domains project managers serve as de facto

ages of lines of code
changes, quality, def
oriented programmi
and many others are
cal research.

as fast as possible.
Software Measure
have two more books
early 1997 on software
estimating. Juggling
much as I can handle
reguiar work.

change-control boards. There is insufficient data to eval-
uate the effectiveness of formal change-control boards,
but on the basis of my experience I estimate that change-
control boards can reduce the volume of changes made
during the initial development of large systems by about
25 percent.

CHANGE- AND CONFIGURATION-IMANAGEMENT SYS-
TEMS. There are many commercial change-management
systems on the market. These tools do not reduce the rate
of change, but they greatly facilitate the speed with which
changes can be processed. Hence they reduce the overall
costs of change management. Modern change-manage-
ment tools cover more than source code, facilitating
changes to specifications, test libraries, code, and even
user manuals.

These tools can also facilitate requirements traceability
and help show the effect of change across multiple deliv-
erables. Automating change control can reduce the effort
of manually tracking changes by more than 70 percent

-
N a m e (Please Prini)

.-
PLEASE NOTIFY
US 4 WEEKS IN ~ e w ~ ~ ~ ~ ~ ~ ~
ADVANCE

-

city State/Country ZIP

* This notice of address change will apply io all

* List new address above

- If you have a question obout your subscription

IEEE publications to which you subscribe
AllACH
LABEL
HERE

MAIL TO
IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

place lobe1 here and clip this form to your lettkr

and greatly reduce the probabilities of
two serious software problems: badfixes
and overlapping updates. A bad fix is a
repair that inadvertently injects a new
error. An overlapping update is a mutu-
ally incompatible modification made by
two or more developers to the same
code.

Conclusion
Creeping user requirements have been

troublesome since the software industry
began, and they are a significant factor
in at least half of the projects I and my
colleagues have analyzed. There is no
quick, perfectly effective cure. But now
that you can measure the rate of creep,
you can explore technologies to either
reduce the rate or increase the pace of
change.

Computer

