
DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 57

CoMPUTer sCieNCe is both a science and an art. Its
scientific aspects range from the theory of computa-
tion and algorithmic studies to code design and pro-
gram architecture. Yet, when it comes time for imple-
mentation, there is a combination of artistic flare,
nuanced style, and technical prowess that separates
good code from great code.

Like art, code is simultaneously
subjective and non-subjective. The
non-subjective aspects of coding in-
clude “hard” ideas that must be fol-
lowed to create good code: design
patterns, project structures, the use
of common libraries, and so on. Al-
though these concepts lay the foun-
dation for developing high-quality,
maintainable code, it is the nuances
of a programmer’s technique and
tools—alignment, naming, use of
white space, use of context, syntax
highlighting, and IDE choice—that
truly make code clear, maintainable,
and understandable, while also giving

code the ability to clearly communi-
cate intent, function, and usage.

This separation between good and
great code occurs because every per-
son has an affinity for his or her own
particular coding style based on his or
her own good (or bad) habits and pref-
erences. Anyone can write code with-
in a design pattern or using certain
“hard” techniques, but it takes a great
programmer to fill in the details of the
code in way that is clear, concise, and
understandable. This is important be-
cause just as every person may draw a
unique meaning or experience from
a single piece of artwork, every devel-

Coding
Guidelines:
finding the
art in the
Science

doI:10.1145/2043174.2043191

 Article development led by
 queue.acm.org

What separates good code from great code?

BY RoBeRt GReen and HenRY LedGaRd

58 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

practice

oper or reader of code may infer differ-
ent meanings from the code depend-
ing on naming and other conventions,
despite the architecture and design of
the code.

From another angle, programming
may also be seen as a form of “encryp-
tion.” In various ways the program-
mer devises a solution to a problem
and then encrypts the solution in
terms of a program and its support
files. Months or years later, when a
change is called for, a new program-
mer must decrypt the solution. This
is usually not an enviable task, which
can mainly be blamed on a failure of
clear communication during the ini-
tial “encryption” of the project. De-
crypting information is simple when
the necessary key is present. So, too, is
understanding old code when special
attention has been paid to what the
code itself communicates.

To address this issue, some works

have defined a single coding standard
for an entire programming language,7
while others have acquiesced to ac-
cepting naming conventions as long
as they are consistent.6 Beautiful code
has been defined in general terms as
readable, focused, testable, and el-
egant.1 The more extreme case is the
invention of an entire programming
language built around a concrete set
of ideals, such as Ruby or Python.
Ruby emphasizes brevity, simplic-
ity, flexibility, and balance.4 The prin-
ciples behind Python are clear in the
Zen of Python,5 where the focus lies on
beauty, simplicity, readability, and re-
liability.

Our approach to this issue has
been to develop a system of coding
guidelines (available online3). While
these guidelines come from an edu-
cational environment, they are de-
signed to be useful to practitioners
as well. The guidelines are based on

a few broad principles that capture
some fundamental principles of com-
munication and elevate the notion of
coding conventions to a higher level.
The use of these conventions will also
improve the sustainability of a code
base. This article looks at these un-
derlying principles.

One area not considered here is
the use of syntax highlighting or IDEs.
While either one may make code
more readable (because of syntax
highlighting or code folding, among
others) and easier to manage (for ex-
ample, quickly looking up or refactor-
ing functions and/or variables), our
guidelines have been developed to be
IDE and color neutral. They are meant
to reflect foundational principles that
are important when writing code in
any setting. Also, while IDEs can help
improve readability and understand-
ing in some ways, the features found
in these tools are not standard (con-
sider the different features found in
Visual Studio, Eclipse, and VIM, for
example). Likewise, syntax highlight-
ing varies greatly among environ-
ments and may easily be changed to
match personal preference. The goal
of the following principles is to build
a foundation for good programming
that is independent of the program-
ming IDE.

Consider a Program as a “table”
In a recent ACM Queue article, Poul-
Henning Kamp2 makes the fascinat-
ing point that much of the style of
programming languages stems from
the ASCII character set and typewriter-
based terminals. Programming lan-
guages make no use of the graphical
properties and options of modern de-
vices. While code must be written with
the clarity of good English grammar, it
is not English text. Instead it is more
like math and tables.

This is a far-reaching principle.
First, it speaks directly to the use of
fonts. Do not use a variable-width
(proportional) font for program
code, as code is not text. Fixed-width
fonts (for example, Courier and Data
Gothic) look appealing and allow
easy alignment of code. Proportional
(variable-width) fonts prevent proper
alignment, and even more important-
ly, do not “look like” code.

While one should continue to think

figure 1. use of vertical alignment to show symmetry.

char c1;
c1 = getChoice();
switch(c1){
 case 'q': case 'Q': quit(); break;
 case 'e': case 'e': enterPerson(content); break;
 case 'd': case 'd': delPerson(content); break;
 case 's': case 's': sortByName(); break;
 case 'l': case 'l': showAll(); break;
 case 'f': case 'f': searchByName(content); break;
 case default: System.out.printIn("--Invalid Command!!\n");
}

figure 2. example of cluttered presentation.

private JFrame mainFrame = new JFrame("Wind Power Calculator");
private JTextArea windVel = new JTextArea(VEL, 2, TEXT_WIDTH);
private JLabel velTag = new JLabel("Wind Velocity");
private JTextArea sweptArea = new JTextArea(SWEPT_AREA, 2, TEXT_WIDTH);
private JLable sweptAreaTag = new JLabel("Swept Area");
private JTextArea genSize = new JTextArea(GEN_SIZE, 2, TEXT_WIDTH);
private JButton calculatePower = new JButton("Calculate Power");

figure 3. Revision of code in figure 2 showing tabular structure.

private JFrame mainFrame = new JFrame ("Wind Power Calculator");
private JTextArea windVel = new JTextArea (VEL, 2, TEXT_WIDTH);
private JLabel velTag = new JLabel ("Wind Velocity");
private JTextArea sweptArea = new JTextArea (SWEPT_AREA, 2, TEXT_WIDTH);
private JLable sweptAreaTag = new JLabel ("Swept Area");
private JTextArea genSize = new JTextArea (GEN_SIZE, 2, TEXT_WIDTH);
private JButton calculatePower = new JButton ("Calculate Power");

practice

DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 59

of a program as a sequence of actions
or as an algorithm at a high level, each
section of code should also be thought
of as a presentation of a chart, table,
or menu. In figures 1, 2, and 3 notice
the use of vertical alignment to show
symmetry. This is a powerful method
of communication.

In the case when a long line of
code spills into multiple lines, we
suggest breaking and realigning the
code.a For example, instead of

participant newEntry = new participant

(id, name, address1, address2, city,

state, zip, phone, email);

use

participant newEntry = new participant

(id, name, address1, address2, |

 city, state, zip, phone, email);

or

participant newEntry = new participant

(id, name, address1, address2, city,|

 state, zip, phone, email);

Let Simple english be Your Guide
A programmer creates a name for
something with full knowledge of
its use, and often many names make
sense when one knows what the name
represents. Thus, the programmer has
this problem: creating a name based on
a concept. The true challenge, howev-
er, is precisely the opposite: inferring
the concept based on the name! This is
the problem that the program reader
has.

Consider the simple name
 sputn
taken from the common C++ header
file <iostream.h>. An inexperienced
or unfamiliar programmer may sud-
denly be mentally barraged with a bout
of questions such as: Is it an integer?
A pointer? An array or a structure? A
method or a variable? Does sp stand for
saved pointer? Is sput an operation to
be done n times? Do you pronounce it
sputn or s-putn or sput-n or s-put-n?

We advocate basing names on
conventional English usage—in par-
ticular, simple, informal, abbreviated
English usage. Consider the following

a Given the limited spacing here, the | denotes a
line break.

more specific guidelines:
˲˲ Variables and classes should be

nouns or noun phrases;
˲˲ Class names are like collective

nouns;
˲˲ Variable names are like proper

nouns;
˲˲ Procedure names should be verbs

or verb phrases;
˲˲ Methods used to return a value

should be nouns or noun phrases;
˲˲ Booleans should be adjectives;
˲˲ For compound names, retain con-

ventional English syntax; and
˲˲ Try to make names pronounce-

able.

figure 4. examples of basing names on conventional english usage.

Variables Class names

not the Right noun Better not the Right noun Better

Round Wheel Accounting BankAccount

LoopTimes NumLoops SetPoint Point

Valid InputStatus NodeNetworking SocketInfo

Starting Source

Ending Destination

Rows NumRows

Problematic Preferable

Person personInfo; PersonInfo P1, P2;

Socket socketDesc; SocketDescription socket;

Frame TopFrameSection; Frame TopFrame;

Message = EmergencyAlertLabels[i] AlertText = EmergencyLabel[i]

not the Right Verb more Readable

NameSet SetName

Modified Modify

Withdrawal Withdraw

Right MoveRight

Incorrect function names more Readable

numFiles = countFiles(directory); numFiles = fileCount(directory);

A = computeArea(parcel); A = Area(parcel);

x = getImagePos(i).x; x = Image(i).xCoord;

Incorrect Boolean Vars Grammatically Better

Fill Full

Terminate Terminated

Real isReal

Edit IsEditable

Waits Waiting

License hasLicense

Grammatically Incorrect Better

IdVehicle VehicleID

NoSectors NumSectors

FormEnable(); EnableForm();

unpronouncable Pronouncable

Tbl Table

GenYmDhMs GenerateTime

Cntr Counter

Nbr Num

60 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

practice

Some examples of this broad prin-
ciple are shown in Figure 4.

There is an interesting but small is-
sue when considering examples such
as:

numFiles = countFiles(directory);

While countFiles is a good name,
it is not an optimal name since it is
a verb. Verbs should be reserved for
procedure calls that have an effect on
variables. For functions that have no
side effects on variables, use a noun or
noun phrase. One does not usually say

y = computeSine(x);

or

milesDriven =

computeDistance(location1, location2);

but rather

y = sine(x);

or

milesDriven = Distance(location1, location2);

We suggest that

numFiles = fileCount(directory);

is a slight improvement. More impor-
tantly, this enforces the general rule
that verbs denote procedures, and
nouns or adjectives denote functions.

Rely on Context to Simplify Code
All other things being equal, shorter
programs are always better. As an ex-
ample, local variables that are used as
index variables may be named i, j, k,
and so on. An array index used on every
line of a loop need not be named any
more elaborately than i. Using index
or elementNumber obscures the de-
tails of the computation through exces-
sive description. A variable that is rare-
ly used may deserve a long name: for
example, MaxPhysicalAddr. When
variable names are long, especially if
there are many of them, it quickly be-
comes difficult to see what’s going on.
A variable name can often be shortened
by relying on the context in which it is
used. For example, the variable Store
in a stack implementation rather than
StackStore.

Major variables (objects) that are
used frequently should be especially
short, as seen in the examples in Fig-

ure 5. For major variables that are
used throughout the program, a single
letter may encourage program clarity.

use White Space to Show Structure
While written and spoken communi-
cation may reach a high level of clar-
ity, it is often left wanting of meaning
if not accompanied by the personal
touch of nonverbal cues and tenden-
cies. An individual’s body language
helps clarify the spoken word. In a
similar sense, the programmer relies

on white space—what is not said di-
rectly—in the code to communicate
logic, intent, and understanding.

An example is the use of blank
lines between conceptually different
sections of code. Blank lines should
improve readability as they separate
logically different segments of the
code and thus provide the literary
equivalent of a section break. Ap-
propriate places to use blank lines
include:

˲˲ When changing from preproces-

figure 5. Keeping names short and simple.

too Lengthy Better

LoopIndex i, j

NumberOfTimes N (or n)

CheckIfEntryIsCorrect Validate

IsARealNumber IsReal

Temporary Temp

too Verbose Preferable

Stack CurrentStack Stack S

Window Window1, Window2 Window W1, W2

Frame TopFrame Frame Top

Counter Cntr Counter C

SearchTree Tree SearchTree T

acceptable Preferable

TreeNode Node

CustomerID ID

StackStore Store

CarDriver Driver

NameStringInfo NameInfo

figure 6. example of code that uses white space well.

public class SimpleAccount {
 private double balance;

 public double getBalance() { return balance;}
 public void setBalance(double b) { balance = b;}
 public void deposit(double num) { balance = balance + num;}
 public void withdraw(double num) { balance = balance - num;}

 public static void main(String args[]){
 SimpleAccount my_account;

 my_account = new SimpleAccount();
 my_account.deposit(250);
 System.out.printIn("Current balance " + my_account.getBalance());
 my_account.withdraw(80.00);
 my_account.withdraw(60.00);
 System.out.printIn("Remaining balance " + my_account.getBalance());
 }
}

practice

DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 61

sor directives to code;
˲˲ Around class and structure decla-

rations;
˲˲ Around a function definition of

some length;
˲˲ Around a group of logically con-

nected statements of some length;
and

˲˲ Between declarations and the ex-
ecutable statements that follow.

Consider the code listing in Fig-
ure 6. Individual blank spaces should
also be used to show the logical struc-
ture within a single statement. Stra-
tegic blank spaces within a line sim-
plify the parsing done by the human
reader. At a minimum, blank spaces
should be included after the commas
in argument lists and around the as-
signment operator “=” and the redi-
rection operators “<<” and “>>”.

On the other hand, blank spaces
should not be used for unary opera-
tors such as unary minus (-), address
of (&), indirection (*), member access
(.), increment (++), and decrement
(--).

Also, if it makes sense, put two to
three statements on one line. This
practice has the effect of simplifying
the code, but it must be used with
discretion and only where it is sen-
sible to do so.

Let decision Structures
Speak for themselves
The case statement used in Figure 1
brings up a general point: very simple
decision statement structures can be
tersely presented, showing the alter-
native code simply, and, if possible,
without braces, as in the example in
Figure 7.

It is not uncommon for simple
conditions to be mutually exclusive,
creating a kind of generalized case
statement. This, as is common prac-
tice, can be printed as a chain, as in
Figure 8.

Of course, it may be that the struc-
tures are truly nested, and then one
must use either nested spacing or
functions to indicate the alterna-
tives. Again, the general point is to let
the structure drive the layout, not the
syntax of the programming language.

In the brace wars, we do not take
a strong stand on the various prefer-
ences shown in Figure 9, but we do
feel strongly that the indent is vital,

as it is the indent that shows the
structure.

focus on the Code,
not the Comments
The ability to communicate clearly is
an issue that is faced in all facets of
the human experience. Programmers
must achieve a level of clarity, conti-
nuity, and beauty when writing code.
This means focusing on the code and
its clarity, balance, and symmetry,
not on its length or comments. While
this concept does not advocate the
removal of comments or negate their
use and importance in appropriate

situations, it does suggest that pro-
grammers must use comments wisely
and judiciously. The focus should be
on developing code that, for the most
part, clearly communicates intent
and functionality. This practice will
automatically reduce the need for
many comments.

discussion
Although the guidelines presented
here are used in an educational set-
ting, they also have merit in industrial
environments. Students who are edu-
cated using these guidelines will most
likely use them (or some variant) as

figure 7. decision statement structure, tersely presented.

if(Card != null) display.setText(Card.getText());
else display.setText("No More Cards.");

figure 8. Case statement presented as a chain.

if (result >= 90)
 cout << "Grade of A!";
else if (result >= 80)
 cout << "Grade of B”;
else if (result(>= 70)
 cout << "Sorry, grade of C";
else
 cout << "Not very good";

figure 9. examples of K&R, anSI, and Whitesmiths coding styles.

if (expression) { if (expression) if (expression)
 statements { {
} statements statements
 } }

figure 10. example of a systems-programming coding style.

//Unix Style
void tokenizeStr(string str, vector<string>& result, const string& delim = " "){
 int pos = 0;
 string strtok;
 for(;;){
 pos = str.find(delim);
 if(pos == (int)string::npos){
 result.push_back(str);
 break;}
 strtok = str.substr(0, pos);
 result.push_back(strtok);
 str = str.substr(pos+1);
 }
}

62 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

practice

they enter industry. To demonstrate
this, we have developed an example
that applies these guidelines to two
very different styles. The first is the
Unix style. It is terse, often making use
of vowel deletion, and is often found
in realistic applications such as oper-
ating-system code. This is not to imply
that all or most system programmers
use this style, only that it is not unusu-
al. Figure 10 shows a small example of
this style.

We call the second style the text-
book style, as illustrated in Figure 11.
Again, this in no way means to imply
that all or most textbooks use this
style, only that the style in the example
is not unusual. In this style the focus
is on learning. This means that there
is frequent commenting, and the code
is well spread out. For the purposes of
learning and understanding the de-
tails of a language, this style can be
excellent. From a practical perspec-
tive or for any program of some scale,
this style does not work well as it can
be overwhelming to use or to read.
Moreover, this style makes it difficult
to see the overall design, as if one is
stuck under the trees and cannot see
the forest around.

Figure 12 is a rework of the func-
tion in figures 10 and 11, using the
guidelines discussed here to make a
smooth transition between academic
and practical code. This figure shows
a balance of both styles, relying more
directly on the code itself to commu-
nicate intent and functionality clearly.
Compared with the textbook style, the
resultant code is shorter and more
compact while still clearly communi-
cating meaning, intent, and function-
ality. When compared with the Unix
style, the code is slightly longer, but
the meaning, intent, and functionality
are clearer than the original code.

Figure 13 illustrates the guide-
lines presented here in another set-
ting. This is a function taken from a
complex program (10,000 lines) re-
lated to power-system reliability and
energy use regarding PHEVs (plug-
in hybrid electric vehicles). The pro-
gram makes numerous calculations
related to the effect that such vehi-
cles will have on the current power
grid and the effect on generation and
transmission systems. This program
attempts to evaluate the reliability of

power systems by developing a model
for reliability evaluation using a Mon-
te Carlo simulation.

While the previous examples show
the merit of the guidelines present-

ed here, one argument against such
guidelines is that making changes to
keep a certain coding style intact is
time consuming, particularly when a
version-control system is used. In the

figure 11. example of a textbook coding style.

// TEXTBOOK STYLE
void tokenizeString(string myString, vector<string>& listOfTokens,
 const string& tokenDelimiter = " ")
{
 // Precondition: myString is not null
 //
 // Parses myString into a list of tokens using the given delimiter.
 // If no specific delimiter is given, uses the space as a delimiter
 //
 // Postcondition: listOfTokens contains the individual tokens as values

 int index = 0;
 string nextToken;
 boolean loop = true;

 // Obtain tokens and store in vector
 while(loop)
 {
 index = myString.find(delimiter);
 if(index == (int)string::npos)
 {
 // end of string found
 tokenList.push_back(myString);
 loop = false;
 }
 else
 {
 // Append nextToken to vector
 nextToken = myString.substr(0, index);
 tokenList.push_back(nextToken);
 myString = myString.substr(index + 1);
 }
 }
}

figure 12. example of a coding style using the guidelines presented here.

// OUR STYLE
void tokenizeString(string S, vector<string>& tokenList,
 const string& delimiter = " ") {
 // Given a string S, compute the list of its tokens.

 int position;
 string token;
 boolean moreTokens;

 moreTokens = true;
 while(moreTokens){
 position = S.find(delimiter);
 if(position == (int)string::npos){
 tokenList.push_back(S);
 moreTokens = false;
 }else{
 token = S.substr(0, position);
 tokenList.push_back(token);
 S = S.substr(position + 1);
 }
 }
}

practice

DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 63

face of a time-sensitive project or a
project that most likely will not be up-
dated or maintained in the future, the
effort may not be worthwhile. Typical
cases include class projects, a Ph.D.

thesis, or a temporary application.
If, however, the codebase in ques-

tion has a long lifespan or will be up-
dated and maintained by others (for
example, an operating system, server,

interactive Web site, or other useful
application), then almost any changes
to improve readability are important,
and the time should be taken to en-
sure the readability and maintainabil-
ity of the code. This should be a matter
of pride, as well as an essential func-
tion of one’s job.

 Related articles
 on queue.acm.org

Beautiful Code Exists, if You Know
Where to Look
George Neville-Neil
http://queue.acm.org/detail.cfm?id=1454458

Software Development with Code Maps
Robert DeLine, Gina Venolia, and Kael Rowan
http://queue.acm.org/detail.cfm?id=1831329

Reading, Writing, and Code
Diomidis Spinellis
http://queue.acm.org/detail.cfm?id=957782

References
1. heusser, m. beautiful code. Dr. Dobb’s (aug. 2005);

http://www.ddj.com/184407802.
2. Kamp, p-h. sir, please step away from the asr-33!

ACM Queue 8, 10 (2010); http://queue.acm.org/detail.
cfm?id=1871406.

3. Ledgard, h. professional coding guidelines. 2011
unpublished report, university of toledo; http://www.
eng.utoledo.edu/eecs/faculty_web/hledgard/softe/
upload/.

4. molina, m. what makes code beautiful. Ruby
Hoedown, 2007.

5. peters, t. The Zen of Python. pep (python
enhancement proposals). aug. 20, 2004; http://www.
python.org/dev/peps/pep-0020/.

6. reed, D. sometimes style really does matter. J.
Computing Sciences in Colleges 25, 5 (2010), 180-
187.

7. sun Developer Network. Code conventions for the
Java programming language, 1999; http://java.sun.
com/docs/codeconv/.

Acknowledgments
the authors would like to thank David marcus and
poul-henning Kemp for their insightful comments
while completing this work, as well as the software
engineering students who have contributed to these
guidelines over the years.

Robert Green is pursuing his ph.D. at the university of
toledo. he has multiple years of experience developing
software across a variety of industries. his research
interests include biologically inspired computing, high-
performance computing, and alternative energy.

henry Ledgard was a member of the design team that
created the programming language aDa, a language he
believes was a creative, sound design. he is the author
of several books on programming, and is a professor at
the university of toledo. his research interests include
principles of language design, human engineering and
effective ways to teach computer science.

© 2011 aCm 0001-0782/11/12 $10.00

figure 13. Realistic and complex example of code following the guidelines presented here.

void loadDataFile(double& pLoad, double& qLoad,
 int& numBuses, int& numTransLines, string systemName,
 vector<Generator>& gens, vector<Line>& transLines, vector<Bus>& buses){
 // This function loads the various system parameters from the power system data file.
 // The power system data is encoded as a csv file,

 ifstream systemData;
 string dataLine;
 vector<string> dataItem;
 int numGens;

 systemData.open(("../Data/" + systemName).c_str());
 if (systemData.is_open()) {
 systemData >> numGens;
 systemData >> pLoad;
 systemData >> qLoad;
 systemData >> numBuses;
 systemData >> numTransLines;

 numGens = 0;

 //Clear Vectors
 gens.clear(); transLines.clear(); buses.clear();

 // Set Generators
 for(int i = 0; i<numGens; i++){
 systemData >> dataLine;
 Utils::tokenizeString(dataLine, dataItem,",");

 gens.push_back(Generator(
 atof(dataItem[3].c_str()), atof(dataItem[4].c_str()),
 atof(dataItem[5].c_str()), atof(dataItem[6].c_str()),
 atof(dataItem[7].c_str()), atoi(dataItem[0].c_str()))
);

 gens[i].setIndex(i);
 dataItem.clear();
 }

 // Set transmission lines
 for(int i = 0; i<numTransLines; i++){
 systemData >> dataLine;
 Utils::tokenizeString(dataLine, dataItem,",");

 transLines.push_back(Line(
 atoi(dataItem[0].c_str()), atoi(dataItem[1].c_str()),
 atoi(dataItem[2].c_str()), atof(dataItem[3].c_str()),
 atof(dataItem[4].c_str()), atof(dataItem[5].c_str()),
 atof(dataItem[6].c_str()), atof(dataItem[7].c_str()),
 atof(dataItem[8].c_str()), atof(dataItem[9].c_str()),
 atof(dataItem[10].c_str()), atof(dataItem[11].c_str()),
 atof(dataItem[12].c_str()), atof(dataItem[13].c_str()))
);
 dataItem.clear();
 }

 // Set bus loadings
 for(int i=0; i<numBuses; i++){
 systemData >> dataLine;
 Utils::tokenizeString(dataLine, dataItem,",");
 buses.push_back(Bus(
 atoi(dataItem[0].c_str()), atoi(dataItem[1].c_str()),
 atoi(dataItem[6].c_str()), atoi(dataItem[10].c_str()),
 atof(dataItem[2].c_str()), atof(dataItem[3].c_str()),
 atof(dataItem[4].c_str()), atof(dataItem[5].c_str()),
 atof(dataItem[6].c_str()), atof(dataItem[7].c_str()),
 atof(dataItem[12].c_str()), atof(dataItem[11].c_str()),
 atof(dataItem[9].c_str()))
);
 dataItem.clear();
 }
 systemData.close();
 }
}

