
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 7 No 2, April 1982 Page 35

STOP THE LIFE-CYCLE, I WANT TO GET OFF

G. R. Gladden

The Life Cycle

I am of the opinion that the concept of a 'software life-cycle' is
no longer helpful, indeed may be harmful to our software development
profession. In its various forms the life-cycle has sought to
describe the software development process as {terative events
within the major tasks of design, implementation, test, etc. One
begins to visualize the development process as a sequence of tasks
'waterfalling' into one another while within each task modifications
occur iteratively as a better understanding of the system acquired is
(Fig. i). These iterations work together to extend project
schedules, invalidate designs, alter test requirements, and to
generally infuriate customers.

REQUIREMENTS

DESIGN

IMPLEMENTATION

L
TEST

(REPEAT)

(Fig. i) Typical Life-Cycle Representation

Most insiders continue to decry the failings of software. Its late-
ness, incompleteness, and error-proneness are topics for seminars
and workshops as well as popular literature.

New areas of expertise are emerging to address the problems. Quality
control and Configuration Management are two such areas. A great
deal of attention has been focused on 'structured programming'.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 2, April 1982 Page 36

Presently 'structured' has become the rubric under which all life-
cycle tasks are grouped: structured testing and the like. The
results of all of these efforts to correct the software 'crisis'
(although inarguably producing better code) have not been satis-
factory. On the contrary, if we are to believe some reports [i],
they are abysmal failures.

What I would like to purpose in this message is not the abandon-
ment of a professional and methodical approach to software, but
rather to offer my perspective of the root cause of the problem
and an alternate approach to undertaking software projects.

Frist, I contend the following:

(i) The chief villian in any software fiasco in a non-
existant, vague, incomplete, or a poorly thoughtout
set of requirements.

(2) The 'life-cycle' approach exacerbates the problem
by encouraging eleventh hour alterations to what-
ever requirements do exist. Each modification to
the requirements adversely effects the system by
impacting each subsequent task. Conversely, each
modification to tasks downstream adversely effects
the preceeding tasks including the requirements.
The result is a vicious (life) cycle.

(3) The elapsed time between requirements and a
delivered product erodes a customer's confidence.
Such eroding confidence manifests itself in new,
altered or expanded requirements, or other modified
task elements.

The above contentions generally chain together in the following
sequence of events: system requirements are incomplete, however
the project must proceed and so it does. During the course of
development as new requirements emerge, the schedule is lengthened
and customer confidence falters. New requirements are ladled on
as the user seeks to assuage his growing fears that the developer
does not have a firm understanding of his needs. Finally, when the
product is completed (late) the requirements have changed to the
point that the product no longer satisfies or even resembles them.

A New Approach to Development

I purpose a new view of the development process, especially the way
requirements, or lack of them, affect it. I first state 3 proposi-
tions.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 2, April 1982 Page 37

Proposition 1

System objectives are more important than system requirements.

Objectives can be set in a relatively short period of time and once
they are set they are less likely to be subject to change. Objec-
tives are set at the highest management levels from all the concerned
system users. If objectives are changed the proposed project is
clearly not the same and the need for a new system must necessarily
be reexamined. Concentrating on objectives can go a long way to
prevent a system from 'evolving' into one that the user does not
want or need.

I believe that a design objective approach [2} is of paramount
importance here. Our own experience bears this out.

Proposition 2

A physical object conveys more information than a written specifi-
cation , (or a picture zs worth a thousand words).

Nothing conveys more meaning or serves to congeal a system concept
better than the system itself. We propose the liberal use of mock-
ups of physical hardware early in the project. Similarly, 'mock-up'
software should be encouraged. In a system that must interact with
a variety of people, nothing can be more positively influencing to
the success of the project than to see the proposed system in
operation. Entire operating environments or scenarios may be staged
in a room with mocked-up hardware and software interacting with live
people. I believe that commercial artists, script-writers, film,
and model makers will play a vital role in system developments of
the future. Actors and hardware portraying system features under
the direction of the project manager and his customer is not too
improbable to imagine. (I am not advocating a great deal of
disposable software which wastes programming efforts, but rather
an amount necessary to demonstrate the attributes or goals of a
system. See the letter on PNAMBICS ~3] for instance.)

Proposition 3

System objectives plus physical demonstrations will result in a
successful product.

By a successful product I mean one that~ (i) performs the function
intended, and (2) satisfies the customer's percieved need. All
parties are convinced of this early on because they have seen the
'system' at work.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 7 No 2, April 1982 Page 38

I believe that most users do not have a concrete idea about their
automation needs. If they could experience a live, albeit mocked-
up system, the problem of wholesale requirement changes and deliver-
ed but unused software would soon disappear. Once a user has a
'warm' feeling for what he will recieve at the end of the system
development, his confidence is increased. When the user feels this
confidence only a philistine would care how the system was imple-
mented. Once Proposition 1 is satisfied and Proposition 2 is
executed, Proposition 3 is a natural result.

The Non-Cyclical (Hollywood) Model

If I were to construct a model of this software development process
(which I have dubbed the Hollywood model in d~Cerence to 'Tinsei
Town') I would render it as follows:

Proposition 1

f
Objectives

Hardware I
Mock-ups I

Proposition 2

System Develop-
ment

Proposition 3

Objective setting at
a high level.
Very Stable.

i 1
Techniques for Hardware and Software
Achieving Ob- I approaches
j ectives]

Software I
' rapid-proto-
typing '~ J

/
Scenario Script I
and Playing]

J i

Hardware and ' I
Software D e v e l o p - J
ment

Aj C o m p l e t e d Sy e

L

Actors, sets, Directors, ect.

Replay the Scenarios with
Live System i

(Fig. 2) Hollywood Model

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 7 No 2, April 1982 Page 39

Model Benefits

i.

•

3.

.

.

Objectives are more stable and change resistant than require-
ments.

All objectives can be stated succinctly before a project begins•

Customer anxiety and therefore a tendency to expand requirements
is ameliorated by providing a working model of the system early
in the game. A model is also easier to change if need be.

Flexibility in implementing a system is enhanced because the
customer is convinced of what the system will do when
delivered• Implementation is a 'don't care'.

Schedule is reduced along with errors because all participants
understand the system objectives and changes to that understand-
ing are reduced.

Notes and References

[i] Some statistics from the DPMA Software Management Conference
earlier this year:

75% of the software development undertaken was
never completed or not used if completed.

Of the 75%, 25% was never delivered and 47% was
delivered but not used.

[2] System Attribute Specification, Tom Gilb, Software Engineering
Notes, July 1981, p. 78.

E3] Sam Harbaugh in Open Channel, Computer, February 1982, p. 97.

Building Services Division
Honeywell Inc. Technical Center
lrvine CA 92714

G. R. Gladden
Supervisor Quality Assurance

