
I

I

2

IBM JOURNAL JANUARY 1958

R. M. Friedberg

A Learning Machine: Part I

Abstract: Machines would be more useful if they could learn to perform tasks for which they were not given

precise methods. Difficulties that attend giving a machine this ability are discussed. It i s proposed that the

program of a stored-program computer be gradually improved by a learning procedure which tries many

programs and chooses, from the instructions that may occupy a given location, the one most often associated

with a successful result. An experimental test of this principle i s described in detail. Preliminary results, which

show limited success, are reported and interpreted. Further results and conclusions will appear in the second

part of the paper.

Introduction

We are seldom satisfied to have assigned our more
laborious tasks to machinery. We turn with impatience
to whatever still occupies our time and ask whether
ingenuity cannot bring it, too, into the domain of auto-
mation. Although modern electronic computers have
relieved us of many tedious calculations, we are still
faced with difficult tasks in which the slowness of our
thoughts and the shortness of our memory limit us
severely, but for which present machines are less ade-
quate than we because they lack judgment. If we are
ever to make a machine that will speak, understand or
translate human languages, solve mathematical prob-
lems with imagination, practice a profession or direct
an organization, either we must reduce these activities
to a science so exact that we can tell a machine precisely
how to go about doing them or we must develop a
machine that can do things without being told precisely
how. This paper explores the second possibility.

If a machine is not told how to do something, at least
some indication must be given of what it is to do; other-
wise we could not direct its efforts toward a particular
problem. It is difficult to see a way of telling it what
without telling it how, except by allowing it to try out
procedures at random or according to some unintelli-
gent system and informing it constantly whether or not
it is doing what we wish. The machine might be designed
to gravitate toward those procedures which most often
elicit from us a favorable response. We could teach this
machine to perform a task even though we could not
describe a precise method for performing it, provided
only that we understood the task well enough to be able
to ascertain whether or not it had been done success-

Such a machine, it may be objected, would only
fully.

follow precise orders just as present computers do.
Even if it acted sometimes at random, we should have
to give it a method for generating random numbers.
We should have to give it a method for correlating its
behavior with our responses and for adjusting its be-
havior accordingly. In short, although it might learn
to perform a task without being told precisely how to
perform it, it would still have to be told precisely how
to learn.

This is true, but it does not lessen the desirability of
such a learning machine. On the one hand, even the
simplest feedback devices do things without being told
exactly how. A thermostat is not told at what level to
keep the furnace running, although it is told how to
readjust the furnace if the room temperature is too high
or too low. On the other hand, even the most powerful
learning device known may well follow a precise pro-
gram at a very elementary level. It appears that each
neuron of the human brain follows laws of cause and
effect, but the organization of the brain is so complex
that a determinism is not manifest in its activities as
a whole. Between the thermostat and the brain there
may be no gulf in principle. Yet in practice there is a
gulf so wide that bridging it would be an enormous
achievement. When we look at the mechanism of a
thermostat, we can see in detail how the thermostat
does its job. When we examine the parts of the brain,
we are at a loss to understand, from their properties,
how the brain does what it does, except in a vague way.
What we want, then, is to equip a machine with a learn-
ing procedure by which it can develop methods that
cannot, at least, be deduced trivially from an examina-
tion of the learning mechanism.

Certain difficulties confront us immediately. If, as

suggested earlier. the machine is to try out methods and
select the better ones, we must present it a priori with
a well-defined universe of methods from which it must
choose those to be tried. If this universe is small, then
the “inventiveness” of the machine is severely limited
and the value of the methods that it develops depends
more on our astuteness in choosing a universe contain-
ing good methods than on the ability of the learning
procedure to pick the best methods from among those
in the universe. For example, we might design a method
that used several parameters and cause the learning
procedure to vary the parameters until it found the most
successful set of values. The universe of permissible
methods would then consist of all methods combining
the form we devised with arbitrary values of the param-
eters. While this might yield excellent results for some
problems, for others we probably could not devise any
general form which did not exclude some methods much
superior to any it included. In order really to give the
learner a “free hand,” we should present it with a uni-
verse which, although well-defined, is so large and varied
that we are not even acquainted with the forms of all
the methods it contains. Of course we must expect that
in any universe so uncensored the majority of methods
are useless.

This raises another difficulty in turn. If the universe
is very large, the learning procedure cannot practically
try out each permissible method repeatedly in order to
evaluate it. Methods that resemble one another must be
associated in classes, and a record must be kept on each
class. In this way the success or failure of a method
will be interpreted as a reflection not only on that
method hut on all its classmates. Thus a large universe
of methods may be sifted in a relatively small number
of trials, provided that the criterion by which two
methods are classed together is a good one. So again
the effectiveness of the learner may be limited by the
inadequacy of whatever principle we devise.

Our experience of stored-program computers sug-
gests a scheme which may fit the requirements. Let the
universe of methods consist of all programs that can
possibly be written for a given computer. This universe
is well-defined, yet presumably it excludes no conceiv-
able method except by reason of the computer’s size,
and even for a small computer it includes a great many
of the methods that ingenuity might discover, although
senseless programs are naturally in the majority. Let a
class consist of all programs having a certain instruction
in a certain location. Thus each program is a member
of as many different classes as there are locations, and
the learning procedure, in comparing the performance
of two non-overlapping classes of programs, really eval-
uates one instruction against another that might occupy
the same location.

At first thought it seems that not much can be ex-
pected from this plan of classification. Surely, having
individual instructions in common is only a superficial
resemblance between programs. Programmers know all
too well that two programs may have almost identical

form, differing only in one or two instructions, and yet
have entirely different intent, one carrying out the pro-
grammer’s wishes and the other producing “garbage.”
On the other hand, a very slight change in intent may
require a drastic change in form, as when an instruction
is insertsd and a whole block of instructions must be
displaced, so that no location in that block contains the
same instruction as before.

Nevertheless, the scheme can be defended. Form and
intent, to be sure, are related quite discontinuously in
the compact, economical programs that programmers
write, but a learning machine would probably develop
much more inefficient programs in which many irrele-
vant instructions were scattered among the instructions
that were essential to the intent. Among such programs,
slight changes in form might well correspond to slight
changes in intent, so that programs falling into the same
classes tended to perform similar acts.

The versatility of the scheme is in its favor. In order
to make the learner turn its attention from one problem
to another, one need only change the criterion by which
one informs it of success or failure. Moreover, we wish
our machine not merely to learn to solve one isolated
problem after another, but to develop an ability to
handle whole classes of related problems. Programmers
have found that certain sequences of instructions, or
subroutines, occur again and again in many of their
programs. It is as though any sensible program, no mat-
ter what its purpose, must rest on the same basic fabric
of program organization. From this point of view, it is
quite plausible that the learner, by including certain
subroutines in a program, could improve greatly its
chances of adjusting the rest of the program so as to
perform a task successfully, regardless of just what task
was assigned to it. The instructions composing such a
subroutine ought to acquire good records, since the class
of programs having these instructions in common would
contain a particularly high concentration of successful
programs. If the learner were to improve its general
performance by attaching good records to the instruc-
tions composing a number of valuable subroutines, we
might justifiably say that it had acquired not a mere
habit of answering a certain problem correctly, but a
general ability to do well on a large class of problems.

It is true that a subroutine usually consists of several
instructions, and we propose here to evaluate only single
instructions, since keeping a record even on all pairs of
instructions would require enormously more time and
storage. Perhaps the scheme could be improved by giving
the learner a flexible way of reassigning its bookkeeping
space. A special record might be kept for a pair of
instructions if programs containing the pair did consid-
erably better than programs containing either instruc-
tion without the other. On the other hand, the record
on a single instruction might be dropped if programs
containing it did neither better nor worse, on the aver-
age, than other programs. However, the scheme as it
stands may well suffice for learning subroutines. Sup-
pose that those programs which contain a special pair 3

IBM JOURNAL JANUARY 1958

of instructions tend very often to be successful. Each
member of this pair should enjoy from the outset a
slight statistical advantage over its competitors, because
among the (admittedly rare) programs tested that con-
tain the other member of the pair, those that also
contain the first member are more often successful than
those that do not. This statistical advantage should
cause the learning procedure more and more often to
select programs for trial that contain one or both of
the pair. The more often each member of the pair is
used, the greater advantage does the other enjoy over
its competitors. Eventually both members of the pair
should have good records and be used often. The same
process is conceivable for subroutines of arbitrary
length.

Plausible though the foregoing arguments may sound
to sympathetic ears, the critical mind notes that they
depend more on far-fetched assumptions and less on
demonstrable premises, the further they proceed. One
may doubt seriously that a machine can really accom-
plish anything by trying out many programs and keep-
ing a record in which each instruction is associated with
the successes and failures of programs containing it.
Supposing that this procedure did lead to some progress,
one may ask whether even the simplest problem would
not require the trial of an astronomical number of pro-
grams, especially if progress were to depend on the
gradual influence of very small statistical differences.
Therefore, an experiment was begun to test a learning
procedure of this type. A hypothetical computer was
designed for this purpose and called Herman, the letters
of which stand for nothing in particular. Herman has a
very simple logic such that every number of 14 bits is a
meaningful instruction and every sequence of 64 in-
structions is a performable program. An outside agent
called the Teacher causes Herman’s program to be per-
formed many times and examines Herman’s memory
each time to see whether a desired task has been per-
formed successfully in that trial. The Teacher’s an-
nouncements of success and failure enable a third
element, the Learner, to evaluate the different instruc-
tions which, on different occasions, appear in Herman’s
program. Basing its acts on this evaluation, the Learner
tries to include “good” instructions in the program
rather than “bad” ones. The experiment is run by simu-
lation of these three elements on the IBM 704 Electronic
Data Processing Machine.

The remainder of Part I contains a description of the
experiment and some early results. The experiment is
unfinished at the time of the present writing. Part I1
will appear later with additional results and conclusions
drawn from them.

Experimental methods

Computer

Herman is a sequential stored-program computer with
a program of 64 instructions in locations numbered lo

4 to IG:+ During the running of this program, the instruc-

IBM JOURNAL JANUARY 1958

tions are not modified, but they may be modified be-
tween runs by the learning procedure. The program
itself acts upon the data in 64 locations numbered DO
to DC3. Each data location D, contains one bit. Each
instruction location I , contains a 14-bit instruction.
When an instruction is executed, its first two bits are
interpreted as an operation code; its next six bits, which
form a number a, are interpreted either as a data ad-
dress D , or as an instruction address I, , depending on
the operation code; and its last six bits are also inter-
preted either as a data address D b or as an instruction
address l b . The way in which the instruction is executed
depends not only on the operation code and on the two
numbers a and b, but also on the number n of the loca-
tion I , in which the instruction is stored. If

6 bits
&

n is the number of a location I , containing

“bits 1-2 bits 3-8 bits 9-14”
“-

O P , ~ , b ,
then the instruction in I , is executed as follows:

If o p = 0, take the next instruction
from I , if D, contains 0,
from lb if D, contains 1.

If op = 1, put into D,, 0 if either D , or Db contains 0,
1 if both D, and Dt, contain 1.

Take the next instruction from I,+l.

If o p = 2 , put into Dh the bit that appears in D,. Take
the next instruction from In+l .

If op = 3, put into D , and into Da(lb) the complement of
the bit that appears in D,. (The number a (l b) is found in
positions 3 to 8 of the instruction location It,.) Take the
next instruction from

The choice of these particular operations was partly
arbitrary and partly based on thought. The operations are
powerful enough so that any procedure can in principle
be programmed. (Actually the finite size of this com-
puter makes sufficiently complex problems unprogram-
mable, but it was anticipated that the 64 instructions
allowed would be more than were needed to program any
of the problems submitted to the computer in the course
of the present limited project.) The operations are simple
enough not to impose any plan of organization on the
data handled by the computer in the way that the struc-
ture of the IBM 704, for example, naturally groups the
bits in storage into 36-bit binary numbers.

The peculiar use of addresses deserves explanation. As
suggested above, the validity of keeping a separate record
of success and failure for each instruction may be ques-
tioned on the ground that an instruction might be par-
ticularly well suited to play a part in an organized
program and might thus tend to acquire a good record
as long as a certain other instruction was in the program;
when this other instruction was removed from the pro-
gram, the former instruction might cease to have any

virtue, and its good record would be misleading. For
example, if Instruction 31 were to place the result of a
calculation in a data location x, and if instruction 32,
which followed it, were to use the datum in location x to
perform a calculation, these two instructions would be
related in a sensible way and might be expected to con-
tribute to the chances of success of a program containing
them. In a conventional machine this relationship could
not be viewed as a property of either instruction alone,
for it depends on their both using the same data location
x . if Instruction 31 were changed, Instruction 32 would
lose its virtue unless (unlikely occurrence) the new in-
struction happened also to place data in location x.

In Herman, Instruction 32 might be “3, 31, 33.” If
Instruction 3 1 has an op code of 1 or 3, it places the
result of the operation in D31, the very location from
which a datum is taken by the instruction “3, 31, 33.”
This is true no matter what the address bits in Instruction
3 1 are. Similarly, if Instruction 33 has an o p code of 1,
2, or 3, it takes a datum from location D,, where a is the
number appearing in bits 3 to 8 of instruction 33. In
this same location is placed the result of executing the
instruction “3, 31, 33.” This is also true no matter what
the number a is, or what the number in bits 9 to 14 of
Instruction 33 is. Therefore, if the instruction “3, 31, 33”
appears in location 132 and Instructions 31 and 33 are
varied at random, the probability is Yi that Instructions
31 and 32 are related in the “sensible” way described
above and 3/4 that Instructions 32 and 33 are so related.
If the instruction “3, 31, 33” in 132 acquires a good rec-
ord, it may be expected therefore to continue to justify
this record even if Instructions 31 and 33 are altered
frequently.

It was for this reason that D, was used in ops 0, 1 and
3 and that a(Zb) was used in o p 3. These features were
not believed to eliminate the dependence of the virtue of
an instruction on the presence of another instruction in
the program, but they were expected to reduce it. Objec-
tions can be made. There may be “sensible” relationships
other than that discussed above, relationships which de-
pend on more than one instruction in spite of the special
features of Herman. Or, if a learning procedure such as
the one envisioned achieves success, it may do so by
means of a program which has no characteristics that we
would consider “sensible.” Nevertheless, certain of the
results to be described indicate that the special address
features of Herman may have contributed to such success
as was achieved.

Operation

Before each trial of Herman, the Teacher places bits
chosen at random in certain of the data locations (the
input locations). The contents of the remaining data loca-
tions are left as they are from the preceding trial. Herman
is started at Instruction 0 (that is, the first instruction to
be executed is taken from lo). i f Instruction 63 is ex-
ecuted and is not a transfer instruction, then (there being
no Instruction 64) Herman’s program is considered to
have finished. If this happens, the Teacher examines the

contents of certain of the data locations (the output
locations) and decides whether the bits in these locations
satisfy a certain relation with the bits placed in the input
locations at the beginning of the trial. i f the relation is
satisfied, the Teacher notifies the Learner of a success;
otherwise, of a failure. This notification is the only in-
formation that the Learner receives about what the
Teacher is doing. Neither the Learner nor Herman’s
program is “told” which of the locations DO to 0 6 3 are
input locations, which are output locations, or what the
Teacher’s criterion of success is. This is primarily because
no way was seen of making any of this information useful
to the program or to the Learner without imposing one’s
own preconceptions on the way in which Herman might
attack a problem.

Because of the transfer instruction (op 0) , it is quite
possible for Herman’s program either to finish by reach-
ing instruction 63 after executing only a few instructions
or to run for a long time or forever without finishing.
Hence an arbitrary upper bound is set on the length of
time a program may run on one trial. If, after the length
of time required to execute 64 instructions, the program
has not finished, Herman is stopped and the Learner is
notified of a failure. It was believed that the problems to
be presented to Herman could easily be solved by pro-
grams that would finish in considerably fewer than 64
instructions.

The choice of a subset of the 64 data locations to serve
as input locations, the choice of a subset to serve as out-
put locations, and the choice of a criterion by which the
Teacher judges between success and failure together de-
termine a single problem. It was intended that a single
problem be presented to Herman for many (e.g.,
50,000) successive trials, so that the input locations, the
output locations, and the criterion of success would be
fixed, while the bits placed in the input locations would
be chosen anew at random before each trial. For exam-
ple, the first problem that was given to Herman, called
Problem 1, has Do as the only input location, as the
only output location, and identity between the output bit
and the input bit as the criterion of success. Before each
trial in which this problem is presented, the Teacher
generates a random bit (0 or 1), records it as the input
bit, and places it in Do. If the program finishes in the time
permitted, the Teacher examines the bit in Do3 and noti-
fies the Learner of success or failure according as this
bit is the same as the input bit or not. After this has been
done for many trials, the Learner should have evolved
a program for Herman which will reproduce in 0 6 3 the
bit presented to it in Do, if not infallibly, at least in a
large fraction of the trials.

Learning Procedure

There are 214 different instructions that could possibly
occupy a single location I, . i t would be impractical to
keep a record on each of these. Instead, two instructions
(chosen initially at random) are “on record” at any time
for each location I, , so that there are altogether 128 in-
structions on record. For each I,, one of the two instruc- 5

IBM JOURNAL JANUARY 1958

tions on record is “active” and the other is “inactive.” In
any trial the program executed by Herman consists of the
64 active instructions. The Learner has two ways of alter-
ing the program. It frequently interchanges the two
instructions on record for a single location, so that first
one and then the other becomes the active instruction.
This process may be called “routine change.” Occasion-
ally the Learner makes a “random change”; that is, it
erases one of the 128 instructions from the record and
replaces it with a new 14-bit number chosen at random.
The routine changes enable the Learner to accumulate
data on the relative success of the two instructions on
record for each location and gradually to favor the more
successful instruction. The random changes are made in
order that the Learner not be restricted to the 2 6 4 pro-
grams that can be made from the instructions on record

Each instruction location in turn, I O , II, , 163 , IO, 11,
. . . . , is subjected to criticism after successive failures.
The reason that all the locations are not subjected to criti-
cism after each failure is partly to save computer time
and partly to ensure, by making routine changes one at a
time, that a large number of different programs will be
tried out.

The effect of this method of criticism is that the ratio
between the success numbers of the two instructions gov-
erns the relative frequency with which each instruction
emerges as active. Thus, if the success number of one
instruction is roughly twice that of the other, a routine
change will ordinarily be made whenever a criticism finds
the latter instruction in the active position, but then it
will usually require two criticisms to dislodge the former
instruction from the active position. But, since exactly 64

at any one time. failures must occur between successive criticisms of a
Both the routine and the random changes are gov-

erned largely by a number associated with each instruc-
tion on record, called its “success number.” The success
number is supposed to indicate how well an instruction

I

I

I
I has served over many thousands of previous trials. Each
I time a success is reported, the success number of every

active instruction is increased by 1. (If the program
finished the successful trial before executing more than
32 instructions, the success numbers are increased by 2
instead of 1. This is done in order to encourage the devel-
opment of programs that do not take a long time to finish,
because it was anticipated that the success of the project
might depend on the number of trials that could be
simulated in the limited computer time available.) When
a new instruction is placed on record by a random
change, its success number is set initially to a constant Si.
When any success number becomes equal to or greater
than a constant S,,, all 128 success numbers are scaled
down, i.e., multiplied by a constant r less than 1. The
original design used Sm=215, Si=7/STn, r==GYM. There are
two reasons for scaling. One reason is to keep the success
numbers at a roughly constant average size, so that they
are comparable with Si. The other reason is to diminish
slowly the importance attached to the relative success
that various instructions enjoyed a long time ago, com-
pared with the importance of their more recent relative
performance. For example, if one instruction achieves 64
more successes than another and thereby acquires a suc-
cess number that exceeds the other’s by 64, scaling will
preserve the ratio between the two success numbers but
will lessen the difference so that it can be made up by
only 63 successes of the second instruction.

Each instruction location I, has at any time a “state
number” which plays a part in determining routine
changes. Each time a failure is reported, a certain loca-
tion I, is subjected to “criticism.” The absolute difference
between its state number and the success number of its
inactive instruction is taken as the new state number. If
the old state number was less than the success number
of the inactive instruction, the inactive instruction be-

6
comes active and the active instruction becomes inactive.
Otherwise the two instructions are left as they are found.

IBM JOURNAL - JANUARY 1958

single instruction location, an instruction may remain
active for many more trials than its rival even though its
success number is lower, simply by being less often asso-
ciated with a failure. Thus the frequency with which each
instruction on record is active depends partly on how well
it is performing currently and partly on its long-term
record, represented by its success number. When a cer-
tain set of instructions has been found to be successful in
one problem and the Teacher now commences to pose
another problem, it is intended that the frequent failures
of the established program to perform the new problem
will induce the Learner to alter the program and to use
most frequently the instructions that are most often suc-
cessful at the new problem. At the same time the instruc-
tions that were successful at the old problem ought not
to be “forgotten,” but should (ti: least for some time)
retain their high success numbers, so that if the old prob-
lem is presented again the “memory” of these instructions
will aid the Learner to arrive at a successful program.
It should be emphasized that a change of problem is not
signaled explicitly to the Learner but makes itself felt
solely through the report of success or failure after each
trial. The ability of the Learner to associate an instruction
with a highly favorable long-term record, even while that
instruction is currently inactive because it does not serve
well in the problem at hand, is felt to be essential to the
retention of things once learned.

A random change is made after every 64th failure.
The instruction to be replaced is chosen from among one
of four groups: the active and the inactive instructions in
odd-numbered locations, and the active and the inactive
instructions in even-numbered locations. These four
groups are considered in turn, one at each random
change. Of the group to be considered, an instruction
with the lowest success number is replaced by a random
instruction, which is given the success number Si. The
reason for dividing the 128 instructions on record into
four groups is that considerable computer time is required
to find the lowest of 128 numbers. The purpose of timing
random changes every so many failures is to make them
infrequent when the program is doing well.

The random instruction is obtained from a multiplica-

tive random-number generator. A 35-bit binary random
number is multiplied by 23 X 1 010 + 1 and divided by 2a5.
The remainder of this division, a 35-bit number, is taken
as the new random number. The quotient yields a random
instruction. If we call the lowest-order bit of the quotient
bit 1, the op code is taken from bits 29 and 28, the first
address is taken from bits 25 to 20, and the second
address is taken from bits 7 to 2. The way of extracting
an instruction was determined by the requirements of
simulating Herman on the IBM 704. This random-num-
ber generator was chosen because it takes little time and
storage and was known not to give zero for many more
generations than the project would require. It was not
considered necessary that the random instructions used
should pass any particular sophisticated test of random-
ness. The starting random number was 10987654321
(decimal).

The parameters had to be adjusted by guesswork.
Random changes should be made often enough so that a
variety of programs is available to the Learner, but not
so often that “good” instructions are erased from record
before they can establish their superiority. The rate at
which the importance of ancient successes is diminished
by the scaling of success numbers may be estimated as
“log r / (1 - r)Sm, and is therefore roughly independent
of r [since (1 - r> <<1] and inversely proportional to S,.
This rate should, perhaps, be made comparable to the
rate at which the program is renewed by random changes.
Si should be lower than the success numbers of some
instructions, so that an instruction may, by acquiring a
high success number, preserve itself indefinitely from
random changes, but not lower than the success numbers
of all instructions, for then a new random instruction
would almost surely be removed from record by the next
random change before it had a chance to establish its
worth. If r is too low, the mass of success numbers will
undergo large fluctuations that disturb their relationship
to Si. If r is too high, the rounding error in scaling will
distort the ratios of success numbers.

0 Simulation

Herman, the Learner, and the Teacher are simulated to-
gether in the IBM 704. The program runs from 5,000 to
10,000 trials of Herman each minute, including the inter-
vening acts of the Teacher and Learner. The actual exe-
cution of Herman’s program is the most time-consuming
part of each trial. The part of the program that simulates
the Teacher is rewritten or altered from day to day so as
to present different problems or introduce modifications
into the Learner. At the end of each day’s run the IBM
704 punches out binary cards representing the state of
Herman and the Learner. At the start of a later run, these
cards can be read in so that the run will continue as
though the 704 had not stopped, with the same active and
inactive instructions, success numbers, and state numbers
as at the end of the previous run. If desired, the day’s
run may begin with randomly chosen instructions, suc-
cess numbers, and state numbers. In the course of each
day’s run a printed record is produced which indicates

whether a previous run is being continued, identifies that
run, identifies the problem being presented and any modi-
fications in Herman or the Learner, and lists the number
of successes achieved by Herman in each block of 10,000
trials.

Results

At the time of the present writing, only a few preliminary
results have been obtained. These do not present a com-
plete or conclusive picture, but they do indicate roughly
the capabilities and limitations of Herman, and they sug-
gest avenues of further exploration. It is intended that a
more exhaustive set of experiments will be performed
and published as Part I1 of this paper.

Some of the experiments were begun with “random
initialization”-that is, random values were assigned to
the success numbers, the state numbers, and the instruc-
tions in Herman’s program. Other experiments were
begun with a “history”-that is, these numbers were all
given the values they had had at the end of some previous
experiment.

Experiment 1

After random initialization, Herman was presented with
“Problem 1.” In this problem, Do is the input location,
D63 is the output location, and the criterion of success is
that the output bit should be identical to the input bit.

The number of successes obtained by Herman in each
block of 10,000 trials is shown in Table 1. Herman’s
progress on the problem may be divided into three stages.
In Stage 1 (the first 60,000 trials), the frequency of
success climbed steadily from almost 0 to slightly less
than ?h . Since even a random program may be expected
to succeed in Problem 1 in 50% of the trials in which it
finishes within the time limit, it is fairly certain that
during Stage 1 the time limit was being exceeded in a
large fraction of the trials. The fact that the frequency
of success stopped rising rather abruptly just before it
would have reached ?h indicates strongly that the rise in
Stage 1 represents a gradual elimination of time failures,
and that at the end of Stage 1 Herman’s program was
finishing within the time limit in about 90% of the trials
and obtaining successes in roughly half of the 90%. This
conclusion is supported by the fact that the simulation of
each 10,000 trials at the end of Stage 1 required only
about half as much running time on the IBM 704 as at
the beginning of Stage 1.

In Stage 2 (the next 90,000 trials), the frequency of
success fluctuated around roughly 45 % . Apparently Her-
man was making no progress toward achieving the de-
sired relationship between the output bit in DGa and the
input bit in Do. In Stage 3 (the last 50,000 trials) Herman
suddenly “hit the jackpot.” Since the Learner changes
Herman’s program only after a failure, it is obvious that
if Herman hits on a program that is certain of success
that program will remain unchanged as long as the same
problem is presented. The program used by Herman
during Stage 3 is reproduced in Chart 1. A careful exami-
nation reveals that it is certain to succeed indefinitely at

IBM J

7

1OURNAL JANUARY 1958

12th
13th
14th
15th
16th
17th
18th
19th

Problem 1, no matter what sequence of input bits it is
given.

Table 1 Problem I

Block of 10,000 Trials Number of Successes

1st 26
2nd 51 1
3rd 1,822
4th 3,057
5 th 3,853
6th 4,648
7th 4,741
8th 4,601
9th 4,387

10th 4,623
1 l th 4,123

2,488
4,246
4,554
4,382

10,000
10,000
10,000
10,000

20th 10,000

It appears that the Learner accomplished nothing in
Stage 2 except to cast about at random until it hit upon
a perfect program. However, one may contend that dur-
ing Stage 2 the Learner was improving Herman’s pro-
gram in a way which did not increase immediately the
frequency of success but which gradually increased the
probability that further modifications would result in a
perfect program. This contention receives some support
from Experiments 2 and 3.

Experiment 2

Problem 1 was presented after random initialization. The
same Learner was used as in Experiment 1, but Herman
was replaced by a slightly different computer which we
may call Sherman. The latter is exactly like Herman
except for some modifications in the way an instruction
is executed. When op = 0, the conditional transfer de-
pends on the bit in D , instead of on that in D,. When
o p = 1, the result of the operation is placed in in-
stead of in D,. (If b = 63, b + 1 is taken as 0.) When
o p = 3, the result of the operation is placed in Db and in
DbiYS instead of in D , and in D,(lb) .

Sherman is about as powerful a computer as Herman,
but it lacks the two features-the use of the instruction
location as a third address and the indirect address a(lb)
-which were intended to increase the likelihood that a
meaningful performance record for a single instruction
could be kept independently of other instructions in the
program. Experiment 2 was designed to show whether
these two features actually contribute to Herman’s per-
formance.

Sherman passed through Stage 1 and Stage 2 much as 8

IBM JOURNAL JANUARY 1958

Herman did. Stage 1 took about 70,000 trials. During
Stage 2, Sherman seemed to achieve greater average sue-
cess than did Herman. The most striking result of Experi-
ment 2 is that Stage 3 never arrived. Although the
experiment was run for 800,000 trials, Sherman never
succeeded in more than half of any 20,000 successive
trials, whereas Herman, in Experiment 1, acquired a per-
fect program in 150,000 trials. One might suppose that
Herman succeeded because the random initialization at
the beginning of Experiment 1 was carried out with a
“fortunate” set of random numbers. This hypothesis was
tested by the next experiment.

a Experiment 3

Experiment 1 was rerun nine times, and random initiali-
zation was carried out with a different set of random
numbers before each rerun. If the advent of Stage 3 in
Experiment 1 were due merely to a lucky choice of ran-
dom numbers for initialization, Stage 3 would probably
not occur in the reruns.

The course of a rerun was not always marked by a
clear division between Stage 1 and Stage 2. Sometimes
the initial rise in frequency of success leveled off below
40%. Sometimes Stage 2 was so short that it could not
be distinguished from Stage 1. Sometimes the initial rise
was irregular instead of being smooth, as in Experiment 1.

Stage 3 arrived in every rerun except the last, during
which the time allotted to the experiment ran out after
220,000 trials. In the other 8 reruns, the number of trials
required for Herman to acquire a perfect program varied
from 30,000 to 210,000, averaging about 100,000.

The ISM 704 was instructed in this experiment to
discontinue each rerun as soon as at least 8,000 successes
were obtained in a block of 10,000 trials. Four of the
reruns ended with a block of 10,000 straight successes.
Four ended with a block of 10,000 trials of which more
than 8,000 but fewer than 10,000 were successes. It seems
a safe inference that in each of the latter four a perfect
program was obtained during the first 4,000 trials of the
block and that the next block would have consisted of
10,000 successes. The results of every one of the 8 reruns
were consistent with the supposition that Herman con-
tinued to succeed in fewer than 50% of the trials until
a perfect program was found.

These results show that Herman’s discovery of a per-
fect program in Experiment 1 was not a lucky accident.
There are two ways to explain Herman’s superiority over
Sherman in finding programs perfect for Problem 1. Her-
man may surpass Sherman either in the number of per-
fect programs possible or in the efficiency with which the
Learner can progress toward them. The features by which
Herman differs from Sherman were actually designed
with the latter possibility in mind, but the former cannot
be ruled out.

Several more complicated problems were presented to
Herman.

a Experiment 4

Starting from the end of Experiment 1 (that is, setting

Chart I Program obtained in Experiment 1. Input datum from location

N
~~

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

~~

D
~ ~-

Input

1

0

0

0

0

0

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

0

0

1

0

0

0

0

1

0

1

OP
~~ ~

0

0

0

0

1

2

2

3

2

0

2

2

1

3

3

2

3

0

0

2

3

2

1

0

3

3

1

0

0

2

2

0

A
~ ~~~

21

22

53

46

53

63

26

19

0

28

10

19

20

27

17

63

36

56

27

63

2

29

16

24

41

43

1

3

13

5

14

8

B
~

5

60

12

4

27

22

3

37

44

22

18

12

5

55

13

32

29

63

44

3

8

26

28

60

63

45

61

17

24

42

20

47

N
~

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

~

D
~-

0

1

1

1

1

0

1

1

0

0

0

1

1

0

1

0

1

0

1

1

0

0

0

0

0

1

0

0

0

0

1

output

0 transferred to location 63.

~~

OP
~~ -

3

2

1

0

3

0

0

0

0

2

3

2

2

3

3

1

3

1

0

0

2

1

3

3

1

3

3

1

1

3

3

3

~ ~~

A
~~~ 

3 

33 

39 

27 

23 

11 

19 

24 

19 

58 

7 

13 

24 

54 

45 

32 

23 

38 

41 

61 

1 

6 

30 

57 

53 

4 

18 

31 

62 

44 

25 

11 

IBM J 

~~ ~~ ~ 

B 
~~ ~ - 

19 

44 

61 

18 

56 

63 

58 

42 

62 

38 

28 

3 

62 

13 

59 

19 

59 

22 

15 

38 

21 

50 

32 

4 

3 

8 

42 

7 

2 

46 

42 

18 

OURNA 

9 

.L JANUARY 1958 



Herman’s  program, the success numbers, and the  state 
numbers as they were then),  Herman was presented with 
Problem 2 ,  which is the  same  as  Problem 1 except that 
the  output bit in DG3 must be the complement of the  input 
bit in DO. Obviously a program  that is perfect for  Prob- 
lem 1 must be phenomenally unsuccessful for Problem 2.  
Problem  2 was continued  until a perfect  program was 
attained (as inferred from  at least 7,000 successes in a 
block of 10,000 trials).  Then Problem 1 was given until 

exclusive of time failures. The frequency of success fluc- 
tuated widely during  the experiment, going below 14,000 
out of 100,000 successive trials and above 33,000 out of 
100,000 successive trials. It would be rash  to infer from 
the  data  that  there was a steady secular upward trend. 
The slight excess of the over-all average over ?h should 
not be taken very seriously in view of the large short- 
term fluctuations. If the last 250,000 trials had been 
omitted, the over-all average would have  fallen as far 

a perfect program was attained.  This was continued, short of ?A as it actually exceeded it.  However, the close- 
with  the  hope that the Learner would presently be able ness of the average to ?4 suggests that  through all the 
to  adapt quickly to whichever of the two problems was fluctuations, which probably reflected changes in the pro- 
presented. Then  it could be considered to have  “learned”  gram, Herman retained  the  habit of finishing usually 
not just a solution to a single problem  but  a generalized within the time limit. 
ability to  handle problems in which the  input location is 
DO and the  output location is D63. 

As may be seen from  Table 2, the result was more or Starting from the  end of Experiment A ,  Herman was pre- 
less as desired. It is not  understood why the first adapta- sented  with  Problem 4, in which  a success is recorded if 
tion was made so quickly or why the next few  took longer. Ds3, the only output location, finally contains  the low- 

order bit of the  sum of the input bits placed in Do and 
Table 2 Approximate number of trials required D5, regardless of the  final  content of De2. 

before perfect program was  found (start- The results followed the same pattern as  Experiment I .  
ing from the end of Experiment 1). A perfect program, reproduced in  Chart 2 ,  was obtained 

Experiment 6 

Problems  Number of Trials after 940,000 trials. 

Problem  2 400 (est.) 
Problem 1 80,000 
Problem  2 140,000 
Problem  1 230,000 
Problem  2 20,000 
Problem  1 500 (est.) 
Problem  2 500 (est.) 
Problem 1 200 (est.) 

8 Experiment 5 

Starting from  the end of Experiment 4, Herman was 
presented with Problem 3. In this problem, Do and D5 
are  the  input locations, DG2 and DG3 are the output loca- 
tions, and  the criterion of success is that  the two-bit 
binary  number  formed by the  output bits (taking the 
low-order bit from Des)  be the  sum of the two input bits. 

It was intended that  the choice of input  and  output 
locations in the various  problems follow a consistent plan, 
so that the  Learner,  faced  with  a new problem, would 
have to  adapt only to the  features of the  problem that 
were really new, and not also to an arbitrary rearrange- 
ment of input and output locations. In the expectation 
that some problems might involve numbers  as  many  as 
five bits long,  the policy was laid down of letting  the first 
input  number occupy locations DO onward,  starting with 
the low-order bit; letting the second input  number occupy 
locations D5 onward, starting with the  low-order bit; and 
letting the  output  number end with the low-order bit in 
De3. This policy was to be followed even in problems 
which, like all those discussed in this paper, involved 
numbers of fewer than five bits. 

In 2,420,000  trials, Herman obtained  612,063  suc- 
cesses, or slightly more  than  one success in  four trials, 

10 which is the expected average for a random program 

IBM JOURNAL JANUARY 1958 

Experiment 7 

Starting from the  end of Experiment 6, Herman was pre- 
sented with Problem 5 ,  in which a success is recorded if 
Ds2, the only output location, finally contains the high- 
order bit of the  sum of the input bits placed in DO and 
D5, regardless of the final content of 0 6 3 .  It was hoped 
that if Herman acquired the ability to handle both Prob- 
lems 4 and 5, it would not be too great  a  leap  thence to 
progress to Problem 3, which combines  4  and 5. 

No perfect  program was obtained for this problem, 
although  2,740,000 trials were run. As in Experiment 5 ,  
there  were large fluctuations in frequency of success. The 
total  number of successes was 1,367,321, which falls 
short of  half the number of trials by an  amount insignifi- 
cant  in view  of the  short-term fluctuations. 

It is supposed that  the  order  in which problems are 
presented affects the  learning process, although none of 
the experiments  reported in this paper  (Part I) show  the 
effect clearly. Thus,  the alternation of Problems 1 and 2 
in Experiment 4 presumably  encouraged the development 
of programs which were meaningful if Do was an  input 
location  and DG3 an output location.  This development 
presumably aided the subsequent learning of Problem 4; 
the only new location  to be identified was D5 as  an input 
location.  Once  Problem  4  had been learned, the only 
new location to be identified in Problem 5 was De2 as  an 
output location. The  fact  that  Herman achieved more 
success in Problem  4  than in Problem 5 suggests three 
explanations: 

1. that  the logical function  to be performed in Prob- 
lem 5 (logical AND) is more difficult for  Herman than 
that  in Problem  4 (addition modulo 2) ; 

2. that it is more difficult to identify  a new output loca- 
tion than a new input location; 



Chart2 Program obtained  in Experiment 6. The addition modulo 2 of input  data from locations 0 and 
5 i s  obtained  in  location 63. 

N 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

~~ ~~ ~~ 

D 
~ ~~ 

Input 

1 

0 

1 

1 

Input 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

1 

1 

1 

1 

0 

0 

0 

1 

~ 

OP 

0 

0 

3 

0 

2 

0 

0 

3 

0 

3 

0 

0 

0 

0 

2 

0 

0 

2 

2 

3 

3 

1 

1 

3 

0 

0 

2 

1 

2 

1 

1 

0 

~ 

A 
~ 

58 

14 

47 

29 

52 

45 

23 

4 

18 

18 

2 

10 

32 

40 

53 

22 

14 

41 

23 

45 

41 

32 

38 

5 

46 

26 

34 

62 

10 

58 

17 

63 

~ 

B 

57 

8 

22 

54 

5 

24 

11 

37 

24 

57 

21 

34 

58 

56 

5 

35 

25 

59 

30 

51 

26 

44 

13 

56 

53 

63 

43 

5 

19 

61 

33 

32 

N 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

~~ 

D 

1 

0 

0 

0 

1 

0 

0 

1 

1 

1 

0 

0 

0 

1 

0 

1 

1 

0 

0 

1 

1 

1 

1 

1 

0 

0 

1 

0 

1 

0 

0 

output 

OP 
~~ 

3 

2 

2 

3 

0 

2 

2 

3 

0 

3 

0 

2 

0 

1 

3 

3 

3 

1 

3 

0 

0 

0 

2 

1 

1 

0 

2 

1 

3 

2 

3 

1 

A 
~ ~~~ 

32 

32 

38 

59 

26 

37 

11 

5 

18 

49 

2 

63 

54 

33 

1 

57 

16 

14 

38 

43 

41 

2 

1 

63 

5 

46 

35 

18 

15 

27 

11 

5 

~ 

B 

34 

42 

43 

12 

63 

18 

45 

56 

29 

23 

33 

9 

14 

47 

16 

19 

34 

29 

47 

39 

9 

21 

25 

23 

8 

24 

26 

20 

29 

24 

58 

51 



3. that Herman’s  experience  with Problem 4  estab- 
lished 0 5  less firmly as an  input location than  the  pre- 
vious alternation of Problems 1 and 2 had established DO 
and  De3 as input  and  output locations, respectively. 

The first explanation  seems less promising than  the 
other two. In  any of these  problems,  learning to  make 
the contents of certain locations  depend on  the contents 
of certain other locations  seems  a  greater  task than learn- 
ing, once  the  input  and  output locations are identified, 
to  make this dependence  obey  a  certain logical function. 

Experiment 8 

If a  large group of problems  were learned, it would 
become cumbersome  to  return repeatedly to  each  one of 
the  group in order to retain  the ability to  perform it. 
This could  be done  more easily if Herman could learn  to 
perform different  problems on successive trials. For 
example, if Herman could learn  to  perform  Problem 1 
in every other trial and  Problem 2  in the intervening 
trials, the ability to  perform  both problems  might  be re- 
newed, when necessary, by presenting  this  alternation of 
them.  There is no reason why a single program could not 
perform a different act in successive trials, for  the effect 
of executing  a program depends  not  only on  the instruc- 
tions of which it is composed but also on  the  content of 
the  data locations other  than  the  input locations. These 
contents, in  turn, were  determined by the action of the 
program in the preceding  trial. 

As preparation,  Problem 6 was presented,  starting from 
the  end of Experiment 4. This problem has  no  input loca- 
tion and  one  output location, De3,  and a success is 
recorded if the  output bit is a  1  in an  odd-numbered trial 
or a 0 in an even-numbered  trial. 

Herman achieved  a  perfect program  for Problem  6  in 
fewer than  20,000 trials. This is noteworthy  since the 
learning of time-dependent  behavior is a  particularly 
interesting phenomenon in  its  own  right. 

After a  perfect program  had been obtained for  Prob- 
lem 6, Herman was presented  with the alternation of 
Problems 1 and 2. That is, the  output bit in DeB was 
required  to be the  same as the  input bit placed  in Do in 
even-numbered  trials and  to be its complement  in odd- 
numbered trials. 

The  frequency of success did  not exceed 50% in  any 
block of 10,000 trials, although  the experiment was run 
for  2,130,000 trials. No perfect  program was obtained. 
In all, 863,447  trials were successful. 

Experiment 9 

In Experiments 5 and  7,  the  frequency of success often 
stayed  considerably  above the expected fraction  for a 
random  program (!A in Experiment 5, Vi  in Experiment 
7)  for as many as 100,000 successive trials. It  may safely 
be inferred  that  during those successful periods, programs 
were in use that tended to achieve  success, although they 
did not achieve it infallibly. Since the  Learner is sup- 
posed to retain the instructions  comprising such  pro- 
grams, it is disturbing that these  periods of success were 

12 often followed by periods in which the  frequency of 

IBM JOURNAL JANUARY 1958 

success was distinctly below the expected fraction. This 
indicates that “good”  instructions  were  replaced by “bad” 
ones. In  an effort to find out whether the  Learner is 
capable at all of holding on  to a “good” program which 
does not always achieve success, Problem 1 was pre- 
sented to  Herman  after  random initialization, and every 
tenth trial was ruled  a failure  no  matter what Herman 
did. Thus even a  perfect program would achieve success 
only  in 9 trials out of 10. 

Under these conditions Herman failed to  retain a fre- 
quency of success higher than 45% for  more  than  about 
50,000 trials at  any  one time, although  the experiment 
was run  for  1,380,000 trials and  often a single block of 
10,000 trials yielded more  than  7,000 successes. In all, 
560,618 successes were  obtained. 

These results suggest that  the  Learner is seriously defi- 
cient in  the ability to retain  instructions that  are statis- 
tically advantageous but  not infallibly successful. This 
deficiency might  be due  to  the  random uhanges in  the 
program.  The  Learner  has  features  that were designed to 
protect “good”  instructions from  random changes, but 
perhaps  the  features did not work. To test  this possibility, 
the  Learner was modified so as to  make  no  random 
changes. The preceding  experiment was then repeated 
starting from the end of Experirnent I, so that  there was 
at least one perfect program  among  the P 4  programs 
attainable by routine changes  alone. 

This experiment was run  for 2,670,000 trials. During 
the first million trials, the  frequency of success stayed 
fairly close to  the expected random 45%. Although  occa- 
sionally 7,000 or even 8,000 successes appeared in  a 
single block of 10,000 trials, no  three consecutive blocks 
each contained more  than  6,000 successes. The last 
million trials  included  several successful periods, from 
30,000  to 100,000 trials  long, during which more  than 
8,000  and  frequently  just 9,000 successes were  obtained 
in  each block of 10,000. These successful periods  were 
separated by normal periods, from 50,000 to 150,000 
trials  long, during which the  frequency of success ap- 
proximated 45 % , as during  the first million trials. The 
data  do not suffice to show  whether or not  the successful 
periods would have  grown  longer and  more  frequent,  had 
the experiment  been  prolonged.  But the  fact  that  the 
successful periods  were  absent at first and  appeared  after 
1,700,000 trials  indicates that  the  Learner, restricted to 
routine changes, is able gradually to  favor particularly 
successful instructions even though they do not succeed 
more  than 90% of the time. 

The  random changes cannot easily be dispensed with, 
however, for an  unfavorable choice of a  few key instruc- 
tions can  make it impossible to  obtain a successful pro- 
gram  from a given set of 128 instructions. The influential 
role of certain key instructions is perhaps  an undesirable 
feature of the present  scheme. For example,  whenever 
Herman’s program has been examined after a long string 
of successes, op 0 has been found in Io and op 1 or 3 in 
1 6 3 ,  and reflection shows that these  characteristics are 
almost necessary for a successful program if Do is used 
for  input  and D B ~  is used for  output.  An example of the 



Learner’s failure  to protect  “good”  instructions from  ran- cess to be suitable for informative  experimentation. By 
dom changes is the  fact  that  the key instructions in lo continuing  this  kind of investigation, we may grow to 
and IB3 were  changed  in the course of Experiment 7. understand  the  factors  that influence the behavior of 

show that in a practical number of trials  a  learning 
machine of the type  described can achieve enough  SUC- Received November 14, 1957 

The results  obtained thus  far, although fragmentary,  such a  machine. 

13 

IBM JOURNAL JANUARY 1958 


