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A Learning  Machine: Part I 

Abstract: Machines would  be more useful if they could learn to perform tasks  for which they were not given 

precise methods. Difficulties that attend giving a machine this ability  are discussed. It i s  proposed that the 

program of a stored-program computer be  gradually improved by a  learning procedure which tries many 

programs and chooses, from the instructions that may occupy a  given location, the one most often associated 

with a successful result. An experimental test of this principle i s  described in detail. Preliminary results, which 

show limited success, are reported and interpreted. Further  results and conclusions will  appear  in the second 

part of the paper. 

Introduction 

We  are seldom satisfied to  have assigned our  more 
laborious  tasks to machinery.  We turn with  impatience 
to whatever still occupies our time and ask whether 
ingenuity cannot bring it,  too,  into  the  domain of auto- 
mation.  Although  modern electronic  computers have 
relieved us of many tedious  calculations, we are still 
faced with difficult tasks  in  which the slowness of our 
thoughts and  the shortness of our  memory limit us 
severely, but  for which  present  machines are less ade- 
quate  than we because they lack judgment. If we are 
ever to  make a machine  that will speak, understand  or 
translate  human languages, solve mathematical  prob- 
lems with imagination,  practice  a  profession or direct 
an organization,  either we must reduce these activities 
to a science so exact that we can tell a  machine precisely 
how to go about doing them  or we must  develop  a 
machine  that  can  do things  without being told precisely 
how. This paper explores the second possibility. 

If a machine is not  told how to  do something, at least 
some  indication must be given of what it is to  do;  other- 
wise  we could  not  direct  its efforts toward a  particular 
problem. It is difficult to see a way of telling it what 
without telling it how, except by allowing it  to  try  out 
procedures at  random  or according to some  unintelli- 
gent system and  informing  it constantly  whether or not 
it is doing  what we wish. The  machine might  be designed 
to gravitate toward those  procedures  which  most often 
elicit from us a favorable response. We could teach this 
machine  to  perform a  task even though we could not 
describe  a precise method  for performing  it,  provided 
only that we understood the task well enough to be able 
to ascertain  whether or not it had  been done success- 

Such  a  machine, it may be objected, would only 
fully. 

follow precise orders just  as  present computers do. 
Even if it acted  sometimes at  random, we should have 
to give it a method  for generating random numbers. 
We  should  have to give it a method  for correlating  its 
behavior  with our responses and  for adjusting  its be- 
havior accordingly. In  short,  although  it might learn 
to  perform a  task  without being told precisely how  to 
perform  it, it would still have  to be told precisely how 
to  learn. 

This is true,  but  it does not lessen the desirability of 
such a learning machine. On  the  one  hand, even the 
simplest feedback devices do things without being  told 
exactly how. A thermostat is not  told at what level to 
keep the  furnace  running,  although  it is told how to 
readjust the  furnace if the  room  temperature is too high 
or too low. On  the  other  hand, even the most  powerful 
learning device known may well follow a  precise pro- 
gram  at a  very  elementary level. It appears  that  each 
neuron of the  human  brain follows laws of cause  and 
effect, but  the organization of the brain is so complex 
that a  determinism is not manifest in its activities as 
a whole. Between the  thermostat  and  the brain there 
may  be no gulf in  principle.  Yet  in  practice there is a 
gulf so wide that bridging it would  be an  enormous 
achievement. When we look at  the mechanism of a 
thermostat, we can see in  detail  how the  thermostat 
does  its job. When we examine  the  parts of the  brain, 
we are  at a loss to  understand,  from their  properties, 
how the  brain does  what it does,  except  in  a  vague way. 
What we want,  then, is to  equip a machine with  a learn- 
ing procedure by which it  can develop methods  that 
cannot,  at least, be  deduced trivially from  an examina- 
tion of the  learning mechanism. 

Certain difficulties confront us immediately. If, as 



suggested earlier. the machine is to try out methods and 
select the better ones, we must  present it a priori with 
a well-defined universe of methods  from which it must 
choose  those to be tried. If this universe is small, then 
the “inventiveness” of the  machine is severely limited 
and  the  value of the methods that  it develops depends 
more  on our astuteness in choosing a universe  contain- 
ing good methods than  on  the ability of the  learning 
procedure to pick the best methods from  among those 
in the universe. For example, we might design a  method 
that used several parameters  and cause the learning 
procedure to vary the  parameters until it found  the most 
successful set of values. The universe of permissible 
methods would then consist of all methods combining 
the form we devised with arbitrary values of the  param- 
eters. While this might yield excellent results for some 
problems, for  others we probably  could  not devise any 
general form which did not exclude  some  methods much 
superior to any it included. In  order really to give the 
learner  a  “free hand,” we should  present it with  a  uni- 
verse which, although well-defined, is so large and varied 
that we are not even acquainted  with the  forms  of all 
the  methods it contains.  Of course we must  expect that 
in  any universe so uncensored the majority of methods 
are useless. 

This raises another difficulty in turn. If the universe 
is very large,  the learning procedure  cannot practically 
try out  each permissible method  repeatedly in  order  to 
evaluate it. Methods that resemble one  another must be 
associated in classes, and a record must  be  kept on each 
class. In this way the success or  failure of a  method 
will  be interpreted as a reflection not only on  that 
method hut on all its classmates. Thus a  large  universe 
of methods  may be sifted  in  a relatively small number 
of trials, provided that  the criterion by which  two 
methods are classed together is a good one. So again 
the effectiveness of the  learner may  be limited by the 
inadequacy of whatever  principle we devise. 

Our experience of stored-program computers  sug- 
gests a scheme which  may fit the requirements. Let  the 
universe of methods consist of all programs that can 
possibly be  written for a given computer. This universe 
is well-defined, yet  presumably it excludes no conceiv- 
able method except by reason of  the computer’s size, 
and even for a  small computer it includes a great many 
of the methods that ingenuity  might discover, although 
senseless programs are naturally  in the majority.  Let  a 
class consist of all programs  having  a  certain  instruction 
in a  certain  location. Thus  each  program is a  member 
of as many different classes as there  are locations,  and 
the  learning procedure, in comparing  the  performance 
of two non-overlapping classes of programs,  really eval- 
uates one instruction  against another  that might  occupy 
the same location. 

At first thought it seems that not much can be ex- 
pected from this  plan of classification. Surely,  having 
individual  instructions  in common is only  a superficial 
resemblance  between programs.  Programmers know all 
too well that two  programs  may have almost  identical 

form,  differing only in one or two instructions, and  yet 
have entirely different intent, one  carrying  out  the pro- 
grammer’s wishes and  the  other producing “garbage.” 
On  the  other  hand, a  very slight change in  intent  may 
require a  drastic change  in  form, as when  an instruction 
is insertsd and a whole  block of instructions  must  be 
displaced, so that  no location in  that block  contains the 
same instruction  as  before. 

Nevertheless, the scheme can be  defended. Form  and 
intent, to be sure,  are related quite discontinuously in 
the  compact, economical  programs that  programmers 
write, but a learning  machine would probably develop 
much  more inefficient programs  in  which many irrele- 
vant instructions  were  scattered among  the instructions 
that were  essential to  the intent. Among  such  programs, 
slight  changes in  form might well correspond  to slight 
changes  in  intent, so that  programs falling into  the  same 
classes tended to  perform similar  acts. 

The versatility of the  scheme is in its favor.  In  order 
to  make  the  learner  turn its attention from one problem 
to  another,  one need  only change  the  criterion by which 
one  informs  it of success or failure. Moreover, we wish 
our machine  not merely to  learn to solve one isolated 
problem after  another,  but to develop an ability to 
handle whole classes of related  problems. Programmers 
have  found  that  certain sequences of instructions, or 
subroutines, occur again and again in  many of their 
programs. It is as though  any sensible program,  no  mat- 
ter  what  its  purpose,  must  rest on the  same basic fabric 
of program  organization. From this point of view, it is 
quite plausible that  the  learner, by including certain 
subroutines in  a program, could improve greatly its 
chances of adjusting the rest of the  program so as to 
perform a task successfully, regardless of just what  task 
was assigned to it. The instructions  composing such a 
subroutine  ought  to acquire  good  records,  since the class 
of programs  having  these  instructions in  common would 
contain a particularly  high concentration of successful 
programs. If the  learner were to improve  its general 
performance by attaching good records to the instruc- 
tions  composing  a number  of valuable  subroutines, we 
might justifiably say that  it  had  acquired not a mere 
habit of answering a certain problem  correctly, but a 
general ability to  do well on a  large class of problems. 

It is true  that a subroutine usually consists of several 
instructions, and we propose here  to evaluate  only single 
instructions,  since  keeping  a record even on all pairs of 
instructions would require enormously more  time  and 
storage. Perhaps the  scheme  could be improved by giving 
the  learner a flexible way of reassigning its bookkeeping 
space. A special record  might be kept  for a pair of 
instructions if programs containing the pair did consid- 
erably  better than  programs containing  either  instruc- 
tion without the  other.  On  the  other  hand,  the record 
on a single instruction  might be dropped if programs 
containing it did neither  better nor worse, on  the aver- 
age, than  other programs.  However, the scheme as it 
stands  may well  suffice for learning  subroutines. Sup- 
pose that those programs which contain a special pair 3 
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of instructions  tend  very often  to be successful. Each 
member of this pair should  enjoy from  the  outset a 
slight statistical  advantage  over its competitors,  because 
among  the  (admittedly  rare) programs tested that con- 
tain  the  other  member of the pair,  those that also 
contain  the first member  are  more  often successful than 
those that  do not. This statistical advantage should 
cause  the  learning  procedure  more  and  more  often to 
select programs  for trial that contain one or both of 
the pair. The  more  often  each  member of the  pair is 
used, the greater  advantage  does the  other enjoy  over 
its competitors.  Eventually both  members of the pair 
should  have good records  and be used often. The  same 
process is conceivable for subroutines of arbitrary 
length. 

Plausible though  the foregoing arguments may sound 
to sympathetic  ears, the critical  mind  notes that they 
depend more  on  far-fetched assumptions and less on 
demonstrable premises, the  further they  proceed. One 
may  doubt seriously that a machine  can really accom- 
plish anything by trying  out  many  programs  and keep- 
ing a  record  in  which each  instruction is associated with 
the successes and failures of programs containing it. 
Supposing that this procedure did lead to some  progress, 
one may ask whether even the simplest problem would 
not  require  the trial of an astronomical number of pro- 
grams, especially if progress were to depend on  the 
gradual influence of very  small statistical differences. 
Therefore,  an experiment was begun to test a learning 
procedure of this type. A hypothetical computer was 
designed for this  purpose and called Herman,  the letters 
of which stand for nothing in particular.  Herman  has a 
very simple logic such  that every number of 14 bits is a 
meaningful  instruction and every  sequence of 64 in- 
structions is a performable  program.  An outside  agent 
called the  Teacher causes Herman’s  program  to  be per- 
formed  many times and examines Herman’s memory 
each time to see whether  a  desired  task has been per- 
formed successfully in  that  trial.  The Teacher’s an- 
nouncements of success and  failure enable  a third 
element, the  Learner, to evaluate  the different instruc- 
tions which, on different  occasions, appear  in Herman’s 
program. Basing its  acts on this  evaluation, the  Learner 
tries to include “good” instructions  in the  program 
rather  than “bad”  ones. The experiment is run by simu- 
lation of these three elements on the  IBM  704 Electronic 
Data Processing Machine. 

The  remainder of Part I contains  a  description of the 
experiment and some early results. The experiment is 
unfinished at  the time of the present writing. Part I1 
will appear  later with additional  results and conclusions 
drawn  from them. 

Experimental methods 

Computer 

Herman is a  sequential  stored-program computer with 
a program of 64 instructions  in  locations numbered lo 

4 to IG:+ During  the  running of this program,  the instruc- 
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tions are  not modified, but they  may be modified be- 
tween runs by the  learning procedure. The program 
itself acts upon  the  data  in  64 locations numbered DO 
to DC3. Each  data location D, contains one bit. Each 
instruction location I ,  contains  a 14-bit instruction. 
When  an instruction is executed,  its first two bits are 
interpreted as an  operation code; its next six bits, which 
form a number a, are  interpreted either as a data  ad- 
dress D ,  or as  an instruction  address I, ,  depending on 
the  operation code; and its  last six bits are also inter- 
preted either  as  a data address D b  or as an instruction 
address l b .  The way in which the instruction is executed 
depends not only on  the  operation  code  and  on the  two 
numbers a and b, but also on the  number n of the loca- 
tion I ,  in which the instruction is stored. If 

6 bits 
& 

n is the  number of a  location I ,  containing 

“bits 1-2 bits 3-8 bits 9-14” 
“- 

O P , ~ ,  b ,  
then  the instruction  in I ,  is executed  as follows: 

If o p  = 0, take the next  instruction 
from I ,  if D, contains 0, 
from lb if D,  contains 1. 

If op = 1,  put  into  D,, 0 if either D ,  or Db contains 0, 
1 if both D, and Dt, contain 1. 

Take  the next instruction  from I,+l. 

If o p  = 2 ,  put  into Dh the bit that  appears in D,. Take 
the next  instruction from In+l .  

If op = 3, put into D ,  and  into Da(lb) the complement of 
the bit that  appears  in D,. (The  number a ( l b )  is found in 
positions 3 to 8 of the instruction  location It,.) Take the 
next instruction from 

The choice of these particular operations was partly 
arbitrary  and partly  based on  thought.  The operations are 
powerful  enough so that any procedure can  in  principle 
be  programmed. (Actually  the finite size of this  com- 
puter makes sufficiently complex  problems unprogram- 
mable, but it was anticipated that  the  64 instructions 
allowed would be more  than were  needed to  program any 
of the problems  submitted to  the  computer in the course 
of the present  limited project.)  The operations are simple 
enough not  to impose any plan of organization on  the 
data handled by the  computer in the way that  the struc- 
ture of the  IBM  704, for example,  naturally groups  the 
bits in  storage into 36-bit  binary  numbers. 

The peculiar use of addresses deserves explanation. As 
suggested above, the validity of keeping  a separate  record 
of success and  failure  for  each  instruction may be ques- 
tioned on  the  ground  that  an  instruction might be par- 
ticularly well suited to play  a part  in  an organized 
program  and might thus tend to acquire a good record 
as long as a certain  other  instruction was in the program; 
when  this other  instruction was  removed from  the  pro- 
gram,  the  former instruction  might cease to  have  any 



virtue, and its good record would be misleading. For 
example, if Instruction  31 were to place the result of a 
calculation in a data location x, and if instruction 32, 
which followed it,  were to use the  datum in location x to 
perform a  calculation,  these  two  instructions  would  be 
related  in  a sensible way and might be expected to con- 
tribute to the  chances of success of a program  containing 
them. In a  conventional machine this  relationship  could 
not be viewed as  a property of either  instruction  alone, 
for  it depends on their both using the  same  data location 
x .  if Instruction 31 were  changed,  Instruction  32 would 
lose its virtue unless (unlikely occurrence)  the new in- 
struction happened also to place data in  location x. 

In Herman,  Instruction  32 might be “3, 31, 33.” If 
Instruction  3  1 has  an op code of 1 or 3, it places the 
result of the  operation in D31, the very  location from 
which  a datum is taken by the instruction  “3,  31, 33.” 
This is true no matter  what  the address bits in Instruction 
3 1 are. Similarly, if Instruction  33  has  an o p  code of 1, 
2, or 3, it takes  a datum  from location D,, where a is the 
number  appearing  in bits 3 to 8 of instruction 33. In 
this same location is placed the result of executing the 
instruction “3, 31, 33.” This  is also true  no  matter what 
the  number a is, or what the  number in bits 9 to  14 of 
Instruction  33 is. Therefore, if the instruction  “3, 31, 33” 
appears  in location 132 and  Instructions 31 and 33 are 
varied at  random,  the probability is Yi that Instructions 
31  and  32  are related in  the “sensible” way described 
above and 3/4 that Instructions 32  and  33  are so related. 
If the instruction “3, 31, 33” in 132 acquires  a good rec- 
ord,  it may be expected  therefore to  continue  to justify 
this record even if Instructions 31  and  33  are altered 
frequently. 

It was for this reason that D, was used in ops 0, 1 and 
3 and  that a(Zb) was used in o p  3. These features were 
not believed to eliminate the dependence of the virtue of 
an instruction on  the presence of another instruction  in 
the  program, but  they were expected to  reduce  it. Objec- 
tions can be made. There may be “sensible” relationships 
other  than  that discussed above,  relationships which de- 
pend on more  than  one instruction in spite of the special 
features of Herman.  Or, if a learning  procedure  such as 
the  one envisioned achieves success, it may  do so by 
means of a program which has  no characteristics that we 
would consider “sensible.” Nevertheless, certain of the 
results to be described  indicate that  the special  address 
features of Herman may  have  contributed to such success 
as was achieved. 

Operation 

Before each trial of Herman,  the  Teacher places bits 
chosen at  random  in  certain of the  data locations (the 
input  locations).  The contents of the remaining data loca- 
tions are left as they are  from  the preceding trial. Herman 
is started  at  Instruction 0 (that is, the first instruction to 
be executed is taken  from lo).  i f  Instruction 63 is ex- 
ecuted and is not  a transfer instruction, then  (there being 
no  Instruction  64)  Herman’s program is considered to 
have finished. If this  happens, the  Teacher examines  the 

contents of certain of the  data locations (the  output 
locations) and decides whether the bits in  these  locations 
satisfy a  certain  relation with the bits placed in the  input 
locations at the beginning of the trial. i f  the relation is 
satisfied, the  Teacher notifies the Learner of a success; 
otherwise, of a failure.  This notification is the only  in- 
formation  that  the  Learner receives about  what  the 
Teacher is doing. Neither  the  Learner  nor Herman’s 
program is “told” which of the locations DO to 0 6 3  are 
input locations,  which are  output locations, or what  the 
Teacher’s  criterion of success is. This is primarily because 
no way was seen of making  any of this information  useful 
to  the  program or to  the  Learner without  imposing one’s 
own  preconceptions on  the way in which Herman might 
attack a problem. 

Because of the  transfer instruction (op  0) , it is quite 
possible for Herman’s program either to finish by reach- 
ing instruction  63  after executing  only  a few instructions 
or to  run  for a  long  time or forever  without finishing. 
Hence  an  arbitrary  upper bound is set on  the length of 
time a program  may  run  on  one trial. If,  after  the  length 
of time required  to execute 64 instructions, the  program 
has  not finished, Herman is stopped and  the  Learner is 
notified of a  failure. It was believed that  the problems to 
be  presented to  Herman could easily be solved by pro- 
grams  that would finish in  considerably  fewer than  64 
instructions. 

The choice of a  subset of the  64  data locations to serve 
as input locations, the choice of a  subset to serve as out- 
put locations, and  the choice of a  criterion  by  which the 
Teacher judges between success and  failure together de- 
termine a single problem. It was  intended that a single 
problem  be  presented to  Herman  for many (e.g., 
50,000) successive trials, so that  the  input locations, the 
output locations, and  the criterion of success would be 
fixed, while the bits placed in the  input locations would 
be chosen  anew at random before each trial. For exam- 
ple, the first problem that was given to  Herman, called 
Problem 1, has Do as the only input location,  as the 
only output location, and identity  between the  output bit 
and  the  input bit as the criterion of success. Before  each 
trial in  which  this  problem is presented, the  Teacher 
generates  a random bit (0 or 1),  records it as the  input 
bit, and places it in Do. If the  program finishes in  the time 
permitted,  the  Teacher examines the bit in Do3 and noti- 
fies the  Learner of success or  failure  according  as this 
bit is the  same as the  input bit or not. After this has been 
done  for  many trials, the  Learner should  have evolved 
a program  for  Herman which will reproduce in 0 6 3  the 
bit  presented to  it in Do, if not infallibly, at least  in  a 
large  fraction of the trials. 

Learning  Procedure 

There  are 214 different instructions that could possibly 
occupy  a single location I, .  i t  would be  impractical to 
keep  a record  on  each of these. Instead,  two  instructions 
(chosen initially at random)  are “on record”  at  any time 
for  each location I, ,  so that  there  are altogether 128 in- 
structions on record. For each I,, one of the two  instruc- 5 
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tions on  record is “active” and  the  other is “inactive.” In 
any trial  the  program executed by Herman consists of the 
64 active  instructions. The  Learner  has two ways of alter- 
ing  the  program.  It  frequently interchanges the two 
instructions on  record for a single location, so that first 
one  and  then  the  other becomes the active  instruction. 
This process may  be called “routine change.” Occasion- 
ally the  Learner makes  a “random change”; that is, it 
erases one of the  128 instructions from  the  record  and 
replaces it with a new 14-bit number chosen at  random. 
The  routine changes  enable the  Learner to accumulate 
data  on  the relative success of the  two instructions on 
record  for  each location and gradually to  favor  the  more 
successful instruction. The  random changes are  made in 
order  that  the  Learner  not be  restricted to  the 2 6 4  pro- 
grams  that  can be made  from  the instructions on record 

Each instruction  location in  turn, I O ,  II, . . . . , 163 ,  IO, 11, 
. . . . , is subjected to criticism after successive failures. 
The  reason  that all the locations are  not subjected to criti- 
cism after  each  failure is partly  to save computer time 
and  partly  to ensure, by making  routine changes one  at a 
time, that a  large number of different programs will be 
tried out. 

The effect of this  method of criticism is that  the  ratio 
between the success numbers of the two  instructions gov- 
erns  the relative frequency with which each instruction 
emerges as active. Thus, if the success number of one 
instruction is roughly twice that of the  other, a routine 
change will ordinarily be made whenever  a  criticism finds 
the  latter  instruction  in  the active  position, but  then  it 
will usually require two criticisms to dislodge the  former 
instruction from  the active  position.  But,  since  exactly 64 

at  any  one time. failures  must occur between successive criticisms of a 
Both the  routine  and  the  random changes are gov- 

erned largely by a number associated with each instruc- 
tion  on  record, called its “success number.”  The success 
number is supposed to indicate  how well an instruction 

I 

I 

I 
I has served over  many  thousands of previous trials. Each 
I time  a success is reported,  the success number of every 

active  instruction is increased by 1. (If the  program 
finished the successful trial  before executing more  than 
32 instructions, the success numbers  are increased  by 2 
instead of 1. This is done  in  order  to  encourage the devel- 
opment of programs  that  do  not take  a  long  time to finish, 
because it was anticipated that  the success of the project 
might  depend on  the  number of trials that could  be 
simulated in  the limited computer time  available.) When 
a new instruction is placed on  record by  a random 
change, its success number is set initially to a constant Si. 
When any success number becomes equal  to  or greater 
than a constant S,,, all 128 success numbers  are scaled 
down, i.e., multiplied by a constant r less than 1. The 
original design used Sm=215, Si=7/STn, r==GYM. There  are 
two reasons for scaling. One  reason is to  keep  the success 
numbers  at a  roughly constant average size, so that they 
are  comparable with Si. The  other reason is to diminish 
slowly the  importance  attached  to  the relative success 
that various  instructions  enjoyed  a  long time ago, com- 
pared with the  importance of their  more  recent relative 
performance. For example, if one instruction achieves 64 
more successes than  another  and thereby  acquires  a suc- 
cess number  that exceeds the other’s by 64, scaling will 
preserve the  ratio between the two success numbers but 
will lessen the difference so that  it  can be made  up by 
only  63 successes of the  second  instruction. 

Each  instruction location I, has  at any  time  a  “state 
number” which plays a part in  determining routine 
changes. Each time  a failure is reported,  a  certain loca- 
tion I, is subjected to “criticism.” The absolute difference 
between its state number  and  the success number  of its 
inactive  instruction is taken as the new state  number. If 
the old state  number was less than  the success number 
of the inactive instruction,  the inactive  instruction  be- 

6 
comes active and  the active  instruction becomes inactive. 
Otherwise the two instructions are  left as  they are  found. 
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single instruction  location, an instruction may  remain 
active for  many  more trials than  its rival  even though its 
success number is lower, simply by being less often asso- 
ciated with  a  failure. Thus  the  frequency with  which each 
instruction on  record is active  depends  partly on how well 
it is performing  currently  and partly on its long-term 
record, represented by its success number. When  a cer- 
tain set of instructions has been found  to be  successful in 
one problem and  the  Teacher now  commences to pose 
another problem, it is intended that  the  frequent failures 
of the established program  to  perform the new problem 
will induce  the  Learner  to alter the  program and to use 
most frequently  the instructions that  are most often suc- 
cessful at the new problem. At the  same time the instruc- 
tions that were successful at  the old  problem ought  not 
to be “forgotten,” but should (ti: least for  some  time) 
retain  their high success numbers, so that if the old prob- 
lem is presented  again the “memory” of these  instructions 
will aid the  Learner  to arrive at a successful program. 
It should be emphasized that a change of problem is not 
signaled explicitly to  the  Learner  but makes itself felt 
solely through  the  report of success or  failure  after  each 
trial. The ability of the  Learner  to associate an instruction 
with  a highly favorable long-term record, even while that 
instruction is currently inactive  because it does not serve 
well in the problem at  hand, is felt to be essential to  the 
retention of things once learned. 

A random  change is made  after every 64th failure. 
The instruction to be replaced is chosen from  among  one 
of four  groups:  the active  and the inactive  instructions  in 
odd-numbered  locations, and  the active and  the inactive 
instructions  in  even-numbered  locations.  These four 
groups are considered in  turn,  one  at  each  random 
change. Of the  group  to be considered, an instruction 
with the lowest success number is replaced by a random 
instruction, which is given the success number Si. The 
reason for dividing the  128 instructions on record  into 
four groups is that considerable computer time is required 
to find the lowest of 128 numbers. The purpose of timing 
random changes  every so many failures is to  make  them 
infrequent when the  program is doing well. 

The  random instruction is obtained  from a  multiplica- 



tive random-number generator. A 35-bit  binary random 
number is multiplied  by 23 X 1 010 + 1 and divided by 2a5. 
The  remainder of this division, a  35-bit number, is taken 
as the new random  number.  The  quotient yields a random 
instruction. If we call the lowest-order  bit of the  quotient 
bit 1, the op code is taken  from bits 29  and 28, the first 
address is taken  from bits 25  to 20, and  the second 
address is taken from bits  7 to 2. The way of extracting 
an instruction was determined by the requirements of 
simulating Herman  on  the IBM 704. This  random-num- 
ber generator was chosen because it takes  little time  and 
storage and was known  not  to give zero  for  many  more 
generations than  the project would require. It was not 
considered necessary that  the  random instructions used 
should  pass  any particular sophisticated  test of random- 
ness. The starting random  number was 10987654321 
(decimal). 

The  parameters  had to be adjusted by guesswork. 
Random changes  should  be made  often enough so that a 
variety of programs is available to  the  Learner, but not 
so often  that “good”  instructions are erased from  record 
before  they can establish  their  superiority. The  rate at 
which the  importance of ancient successes is diminished 
by the scaling of success numbers may  be  estimated  as 
“log r /  (1 - r )Sm,  and is therefore  roughly  independent 
of r [since (1 - r>  <<1] and inversely proportional  to S,. 
This  rate should,  perhaps,  be made  comparable to the 
rate  at which the  program is renewed by random changes. 
Si should  be  lower than  the success numbers of some 
instructions, so that  an instruction  may, by acquiring  a 
high success number, preserve itself indefinitely from 
random changes,  but not lower than the success numbers 
of all instructions, for then  a new random instruction 
would  almost  surely  be  removed from  record by the next 
random  change  before  it  had a chance  to establish its 
worth. If r is too low, the mass of success numbers will 
undergo large fluctuations that  disturb their  relationship 
to Si. If r is too high, the  rounding  error in scaling will 
distort the ratios of success numbers. 

0 Simulation 

Herman,  the  Learner,  and  the  Teacher  are simulated  to- 
gether in  the  IBM 704. The  program  runs  from 5,000 to 
10,000 trials of Herman each minute, including the  inter- 
vening  acts of the  Teacher  and  Learner.  The  actual exe- 
cution of Herman’s program is the most  time-consuming 
part of each trial. The  part of the  program  that simulates 
the  Teacher is rewritten or altered from day to  day so as 
to present different problems or  introduce modifications 
into  the  Learner.  At  the  end of each day’s run  the  IBM 
704 punches  out binary cards representing the  state of 
Herman  and  the  Learner.  At  the  start of a later  run, these 
cards  can be read in so that  the  run will continue as 
though  the 704 had not  stopped,  with the  same active and 
inactive  instructions, success numbers,  and  state  numbers 
as at  the end of the previous run. If desired, the day’s 
run may begin with  randomly  chosen  instructions,  suc- 
cess numbers,  and  state numbers. In  the course of each 
day’s run a  printed  record is produced  which  indicates 

whether  a  previous run is being continued, identifies that 
run, identifies the problem  being  presented and  any modi- 
fications in  Herman  or  the  Learner,  and lists the  number 
of successes achieved by Herman in each block of 10,000 
trials. 

Results 

At  the time of the present  writing,  only  a few preliminary 
results  have been obtained. These  do  not present a com- 
plete or conclusive  picture, but they do indicate  roughly 
the capabilities and limitations of Herman,  and they  sug- 
gest avenues of further exploration. It is intended that a 
more exhaustive  set of experiments will be performed 
and published  as Part I1 of this  paper. 

Some of  the experiments  were  begun  with “random 
initialization”-that is, random values were assigned to 
the success numbers,  the  state  numbers,  and  the instruc- 
tions  in  Herman’s program.  Other experiments  were 
begun  with  a “history”-that is,  these numbers were all 
given the values they had  had  at  the end of some previous 
experiment. 

Experiment 1 

After  random initialization, Herman was presented  with 
“Problem 1.” In this  problem, Do is the  input location, 
D63 is the  output location, and  the criterion of success is 
that  the  output bit should  be  identical to  the  input bit. 

The  number of successes obtained by Herman in each 
block of 10,000 trials is shown  in Table 1. Herman’s 
progress on  the problem  may  be divided into  three stages. 
In Stage 1 (the first 60,000  trials),  the  frequency of 
success climbed steadily from almost 0 to slightly less 
than ?h . Since even a random  program  may be  expected 
to succeed  in Problem 1  in 50% of the trials in which it 
finishes within the time  limit, it is fairly  certain  that 
during Stage 1 the time  limit was being exceeded in a 
large fraction of the trials. The  fact  that  the frequency 
of success stopped rising rather  abruptly  just  before  it 
would have reached ?h indicates  strongly that  the rise in 
Stage 1 represents a gradual elimination of time  failures, 
and  that  at  the  end of Stage 1 Herman’s program was 
finishing  within the time  limit in  about  90%  of  the trials 
and obtaining successes in roughly half of the  90%.  This 
conclusion is supported by the  fact  that  the simulation of 
each 10,000 trials at  the  end of Stage 1 required only 
about half as  much  running time on  the  IBM 704 as at 
the beginning of Stage 1. 

In Stage 2 (the next 90,000  trials),  the  frequency of 
success fluctuated around roughly 45 % . Apparently  Her- 
man was making no progress toward achieving the de- 
sired relationship  between the  output bit in DGa and  the 
input bit in  Do.  In Stage 3 (the last 50,000  trials)  Herman 
suddenly “hit the jackpot.”  Since the  Learner changes 
Herman’s program only after a  failure, it is obvious that 
if Herman hits on a program  that is certain of success 
that program will remain unchanged as long as the same 
problem is presented. The  program used by Herman 
during Stage 3 is reproduced in Chart 1. A careful exami- 
nation reveals that it is certain to succeed indefinitely at 
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12th 
13th 
14th 
15th 
16th 
17th 
18th 
19th 

Problem 1, no matter  what  sequence of input bits it is 
given. 

Table 1 Problem I 

Block of 10,000 Trials  Number of Successes 

1st 26 
2nd 51 1 
3rd  1,822 
4th 3,057 
5 th 3,853 
6th 4,648 
7th 4,741 
8th 4,601 
9th 4,387 

10th 4,623 
1 l th  4,123 

2,488 
4,246 
4,554 
4,382 

10,000 
10,000 
10,000 
10,000 

20th  10,000 

It appears  that  the  Learner accomplished nothing in 
Stage 2  except  to  cast  about at  random until  it  hit upon 
a  perfect  program.  However,  one may contend that  dur- 
ing Stage 2 the Learner was improving Herman’s pro- 
gram in a way which did not increase immediately the 
frequency of success but which gradually increased the 
probability that  further modifications would  result in a 
perfect  program.  This  contention receives some support 
from Experiments 2 and 3. 

Experiment 2 

Problem  1 was presented after  random initialization. The 
same  Learner was used as in Experiment  1,  but Herman 
was replaced by a slightly different computer which we 
may call Sherman. The latter is exactly like Herman 
except for  some modifications in the way an instruction 
is executed. When op = 0, the conditional  transfer  de- 
pends on  the bit in D ,  instead of on  that  in D,. When 
o p  = 1, the result of the  operation is placed in in- 
stead of in D,. (If b = 63, b + 1 is taken  as 0.) When 
o p  = 3, the result of the  operation is placed in Db and  in 
DbiYS instead of in D ,  and  in D,( lb) .  

Sherman is about as  powerful  a  computer as Herman, 
but it lacks  the two features-the use of the  instruction 
location  as  a  third address and  the  indirect  address a( lb)  
-which were intended to increase  the likelihood that a 
meaningful  performance  record for a single instruction 
could be kept independently of other instructions in the 
program.  Experiment  2 was designed to show whether 
these two features  actually  contribute to Herman’s per- 
formance. 

Sherman passed through Stage 1 and Stage 2  much  as 8 
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Herman did.  Stage 1 took  about  70,000 trials. During 
Stage 2, Sherman seemed to achieve greater average sue- 
cess than did Herman.  The most striking result of Experi- 
ment 2 is that Stage  3 never arrived.  Although  the 
experiment was run  for 800,000 trials, Sherman never 
succeeded in more  than half of any 20,000 successive 
trials,  whereas Herman, in Experiment 1, acquired  a  per- 
fect  program in 150,000 trials. One might suppose  that 
Herman succeeded because the random initialization at 
the beginning of Experiment 1 was carried out with  a 
“fortunate” set of random numbers. This hypothesis was 
tested by the next  experiment. 

a Experiment 3 

Experiment  1 was rerun nine times, and  random initiali- 
zation was carried out with a different set of random 
numbers  before  each rerun. If the  advent of Stage  3 in 
Experiment 1 were due merely to a lucky choice of ran- 
dom  numbers for initialization, Stage 3 would probably 
not  occur in the reruns. 

The course of a rerun was not always marked by a 
clear division between Stage 1 and Stage 2. Sometimes 
the  initial rise in frequency of success leveled off below 
40%. Sometimes Stage 2 was so short  that it could not 
be distinguished from Stage 1. Sometimes the initial rise 
was irregular instead of being smooth,  as in Experiment 1. 

Stage  3  arrived in every rerun except the last,  during 
which the time allotted to the  experiment ran  out after 
220,000  trials. In the other 8 reruns, the  number of trials 
required for  Herman to  acquire  a  perfect program varied 
from 30,000 to 210,000, averaging about  100,000. 

The ISM 704 was  instructed in this experiment to 
discontinue  each rerun as soon as at least 8,000 successes 
were obtained in a block of 10,000 trials. Four of the 
reruns ended with a block of 10,000  straight successes. 
Four ended with a block of 10,000 trials of which more 
than 8,000 but fewer than 10,000 were successes. It seems 
a  safe  inference that in each of the  latter four a  perfect 
program was obtained  during  the first 4,000 trials of the 
block and that  the next block would have consisted of 
10,000 successes. The results of every one of the  8 reruns 
were consistent with the supposition that Herman con- 
tinued  to succeed in fewer than 50% of the trials until 
a  perfect  program was found. 

These results show that Herman’s discovery of a  per- 
fect program in Experiment 1 was not a lucky accident. 
There  are two ways to explain Herman’s  superiority over 
Sherman in finding programs  perfect for Problem 1. Her- 
man may surpass  Sherman  either in the number of per- 
fect programs possible or  in the efficiency with  which the 
Learner can progress toward  them. The features by which 
Herman differs from Sherman  were  actually designed 
with the latter possibility in mind,  but  the former  cannot 
be ruled out. 

Several more complicated problems were presented to 
Herman. 

a Experiment 4 

Starting from the  end of Experiment 1 (that is, setting 



Chart I Program  obtained  in  Experiment 1.  Input  datum  from  location 
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Herman’s  program, the success numbers, and the  state 
numbers as they were then),  Herman was presented with 
Problem 2 ,  which is the  same  as  Problem 1 except that 
the  output bit in DG3 must be the complement of the  input 
bit in DO. Obviously a program  that is perfect for  Prob- 
lem 1 must be phenomenally unsuccessful for Problem 2.  
Problem  2 was continued  until a perfect  program was 
attained (as inferred from  at least 7,000 successes in a 
block of 10,000 trials).  Then Problem 1 was given until 

exclusive of time failures. The frequency of success fluc- 
tuated widely during  the experiment, going below 14,000 
out of 100,000 successive trials and above 33,000 out of 
100,000 successive trials. It would be rash  to infer from 
the  data  that  there was a steady secular upward trend. 
The slight excess of the over-all average over ?h should 
not be taken very seriously in view of the large short- 
term fluctuations. If the last 250,000 trials had been 
omitted, the over-all average would have  fallen as far 

a perfect program was attained.  This was continued, short of ?A as it actually exceeded it.  However, the close- 
with  the  hope that the Learner would presently be able ness of the average to ?4 suggests that  through all the 
to  adapt quickly to whichever of the two problems was fluctuations, which probably reflected changes in the pro- 
presented. Then  it could be considered to have  “learned”  gram, Herman retained  the  habit of finishing usually 
not just a solution to a single problem  but  a generalized within the time limit. 
ability to  handle problems in which the  input location is 
DO and the  output location is D63. 

As may be seen from  Table 2, the result was more or Starting from the  end of Experiment A ,  Herman was pre- 
less as desired. It is not  understood why the first adapta- sented  with  Problem 4, in which  a success is recorded if 
tion was made so quickly or why the next few  took longer. Ds3, the only output location, finally contains  the low- 

order bit of the  sum of the input bits placed in Do and 
Table 2 Approximate number of trials required D5, regardless of the  final  content of De2. 

before perfect program was  found (start- The results followed the same pattern as  Experiment I .  
ing from the end of Experiment 1). A perfect program, reproduced in  Chart 2 ,  was obtained 

Experiment 6 

Problems  Number of Trials after 940,000 trials. 

Problem  2 400 (est.) 
Problem 1 80,000 
Problem  2 140,000 
Problem  1 230,000 
Problem  2 20,000 
Problem  1 500 (est.) 
Problem  2 500 (est.) 
Problem 1 200 (est.) 

8 Experiment 5 

Starting from  the end of Experiment 4, Herman was 
presented with Problem 3. In this problem, Do and D5 
are  the  input locations, DG2 and DG3 are the output loca- 
tions, and  the criterion of success is that  the two-bit 
binary  number  formed by the  output bits (taking the 
low-order bit from Des)  be the  sum of the two input bits. 

It was intended that  the choice of input  and  output 
locations in the various  problems follow a consistent plan, 
so that the  Learner,  faced  with  a new problem, would 
have to  adapt only to the  features of the  problem that 
were really new, and not also to an arbitrary rearrange- 
ment of input and output locations. In the expectation 
that some problems might involve numbers  as  many  as 
five bits long,  the policy was laid down of letting  the first 
input  number occupy locations DO onward,  starting with 
the low-order bit; letting the second input  number occupy 
locations D5 onward, starting with the  low-order bit; and 
letting the  output  number end with the low-order bit in 
De3. This policy was to be followed even in problems 
which, like all those discussed in this paper, involved 
numbers of fewer than five bits. 

In 2,420,000  trials, Herman obtained  612,063  suc- 
cesses, or slightly more  than  one success in  four trials, 

10 which is the expected average for a random program 
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Experiment 7 

Starting from the  end of Experiment 6, Herman was pre- 
sented with Problem 5 ,  in which a success is recorded if 
Ds2, the only output location, finally contains the high- 
order bit of the  sum of the input bits placed in DO and 
D5, regardless of the final content of 0 6 3 .  It was hoped 
that if Herman acquired the ability to handle both Prob- 
lems 4 and 5, it would not be too great  a  leap  thence to 
progress to Problem 3, which combines  4  and 5. 

No perfect  program was obtained for this problem, 
although  2,740,000 trials were run. As in Experiment 5 ,  
there  were large fluctuations in frequency of success. The 
total  number of successes was 1,367,321, which falls 
short of  half the number of trials by an  amount insignifi- 
cant  in view  of the  short-term fluctuations. 

It is supposed that  the  order  in which problems are 
presented affects the  learning process, although none of 
the experiments  reported in this paper  (Part I) show  the 
effect clearly. Thus,  the alternation of Problems 1 and 2 
in Experiment 4 presumably  encouraged the development 
of programs which were meaningful if Do was an  input 
location  and DG3 an output location.  This development 
presumably aided the subsequent learning of Problem 4; 
the only new location  to be identified was D5 as  an input 
location.  Once  Problem  4  had been learned, the only 
new location to be identified in Problem 5 was De2 as  an 
output location. The  fact  that  Herman achieved more 
success in Problem  4  than in Problem 5 suggests three 
explanations: 

1. that  the logical function  to be performed in Prob- 
lem 5 (logical AND) is more difficult for  Herman than 
that  in Problem  4 (addition modulo 2) ; 

2. that it is more difficult to identify  a new output loca- 
tion than a new input location; 



Chart2 Program obtained  in Experiment 6. The addition modulo 2 of input  data from locations 0 and 
5 i s  obtained  in  location 63. 
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3. that Herman’s  experience  with Problem 4  estab- 
lished 0 5  less firmly as an  input location than  the  pre- 
vious alternation of Problems 1 and 2 had established DO 
and  De3 as input  and  output locations, respectively. 

The first explanation  seems less promising than  the 
other two. In  any of these  problems,  learning to  make 
the contents of certain locations  depend on  the contents 
of certain other locations  seems  a  greater  task than learn- 
ing, once  the  input  and  output locations are identified, 
to  make this dependence  obey  a  certain logical function. 

Experiment 8 

If a  large group of problems  were learned, it would 
become cumbersome  to  return repeatedly to  each  one of 
the  group in order to retain  the ability to  perform it. 
This could  be done  more easily if Herman could learn  to 
perform different  problems on successive trials. For 
example, if Herman could learn  to  perform  Problem 1 
in every other trial and  Problem 2  in the intervening 
trials, the ability to  perform  both problems  might  be re- 
newed, when necessary, by presenting  this  alternation of 
them.  There is no reason why a single program could not 
perform a different act in successive trials, for  the effect 
of executing  a program depends  not  only on  the instruc- 
tions of which it is composed but also on  the  content of 
the  data locations other  than  the  input locations. These 
contents, in  turn, were  determined by the action of the 
program in the preceding  trial. 

As preparation,  Problem 6 was presented,  starting from 
the  end of Experiment 4. This problem has  no  input loca- 
tion and  one  output location, De3,  and a success is 
recorded if the  output bit is a  1  in an  odd-numbered trial 
or a 0 in an even-numbered  trial. 

Herman achieved  a  perfect program  for Problem  6  in 
fewer than  20,000 trials. This is noteworthy  since the 
learning of time-dependent  behavior is a  particularly 
interesting phenomenon in  its  own  right. 

After a  perfect program  had been obtained for  Prob- 
lem 6, Herman was presented  with the alternation of 
Problems 1 and 2. That is, the  output bit in DeB was 
required  to be the  same as the  input bit placed  in Do in 
even-numbered  trials and  to be its complement  in odd- 
numbered trials. 

The  frequency of success did  not exceed 50% in  any 
block of 10,000 trials, although  the experiment was run 
for  2,130,000 trials. No perfect  program was obtained. 
In all, 863,447  trials were successful. 

Experiment 9 

In Experiments 5 and  7,  the  frequency of success often 
stayed  considerably  above the expected fraction  for a 
random  program (!A in Experiment 5, Vi  in Experiment 
7)  for as many as 100,000 successive trials. It  may safely 
be inferred  that  during those successful periods, programs 
were in use that tended to achieve  success, although they 
did not achieve it infallibly. Since the  Learner is sup- 
posed to retain the instructions  comprising such  pro- 
grams, it is disturbing that these  periods of success were 
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success was distinctly below the expected fraction. This 
indicates that “good”  instructions  were  replaced by “bad” 
ones. In  an effort to find out whether the  Learner is 
capable at all of holding on  to a “good” program which 
does not always achieve success, Problem 1 was pre- 
sented to  Herman  after  random initialization, and every 
tenth trial was ruled  a failure  no  matter what Herman 
did. Thus even a  perfect program would achieve success 
only  in 9 trials out of 10. 

Under these conditions Herman failed to  retain a fre- 
quency of success higher than 45% for  more  than  about 
50,000 trials at  any  one time, although  the experiment 
was run  for  1,380,000 trials and  often a single block of 
10,000 trials yielded more  than  7,000 successes. In all, 
560,618 successes were  obtained. 

These results suggest that  the  Learner is seriously defi- 
cient in  the ability to retain  instructions that  are statis- 
tically advantageous but  not infallibly successful. This 
deficiency might  be due  to  the  random uhanges in  the 
program.  The  Learner  has  features  that were designed to 
protect “good”  instructions from  random changes, but 
perhaps  the  features did not work. To test  this possibility, 
the  Learner was modified so as to  make  no  random 
changes. The preceding  experiment was then repeated 
starting from the end of Experirnent I, so that  there was 
at least one perfect program  among  the P 4  programs 
attainable by routine changes  alone. 

This experiment was run  for 2,670,000 trials. During 
the first million trials, the  frequency of success stayed 
fairly close to  the expected random 45%. Although  occa- 
sionally 7,000 or even 8,000 successes appeared in  a 
single block of 10,000 trials, no  three consecutive blocks 
each contained more  than  6,000 successes. The last 
million trials  included  several successful periods, from 
30,000  to 100,000 trials  long, during which more  than 
8,000  and  frequently  just 9,000 successes were  obtained 
in  each block of 10,000. These successful periods  were 
separated by normal periods, from 50,000 to 150,000 
trials  long, during which the  frequency of success ap- 
proximated 45 % , as during  the first million trials. The 
data  do not suffice to show  whether or not  the successful 
periods would have  grown  longer and  more  frequent,  had 
the experiment  been  prolonged.  But the  fact  that  the 
successful periods  were  absent at first and  appeared  after 
1,700,000 trials  indicates that  the  Learner, restricted to 
routine changes, is able gradually to  favor particularly 
successful instructions even though they do not succeed 
more  than 90% of the time. 

The  random changes cannot easily be dispensed with, 
however, for an  unfavorable choice of a  few key instruc- 
tions can  make it impossible to  obtain a successful pro- 
gram  from a given set of 128 instructions. The influential 
role of certain key instructions is perhaps  an undesirable 
feature of the present  scheme. For example,  whenever 
Herman’s program has been examined after a long string 
of successes, op 0 has been found in Io and op 1 or 3 in 
1 6 3 ,  and reflection shows that these  characteristics are 
almost necessary for a successful program if Do is used 
for  input  and D B ~  is used for  output.  An example of the 



Learner’s failure  to protect  “good”  instructions from  ran- cess to be suitable for informative  experimentation. By 
dom changes is the  fact  that  the key instructions in lo continuing  this  kind of investigation, we may grow to 
and IB3 were  changed  in the course of Experiment 7. understand  the  factors  that influence the behavior of 

show that in a practical number of trials  a  learning 
machine of the type  described can achieve enough  SUC- Received November 14, 1957 

The results  obtained thus  far, although fragmentary,  such a  machine. 
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