
Refactoring - Improving Coupling and Cohesion of Existing Code

Bart Du Bois and Serge Demeyer
Lab On ReEngineering
Universiteit Antwerpen

{bart.dubois, serge.demeyer}@ua.ac.be

Jan Verelst
Lab on Evolvable Information Systems Architectures

Universiteit Antwerpen
jan.verelst@ua.ac.be

Abstract

Refactorings are widely recognised as ways to improve
the internal structure of object-oriented software while
maintaining its external behaviour. Unfortunately, refac-
torings concentrate on the treatment of symptoms (the so
called code-smells), thus improvements depend a lot on the
skills of the maintainer. Coupling and cohesion on the other
hand are quality attributes which are generally recognized
as being among the most likely quantifiable indicators for
software maintainability. Therefore, this paper analyzes
how refactorings manipulate coupling/cohesion character-
istics, and how to identify refactoring opportunities that im-
prove these characteristics. As such we provide practical
guidelines for the optimal usage of refactoring in a software
maintenance process.

Refactorings — behavior-preserving source-code trans-
formations — allow the automated redistribution of pieces
of source code over the class hierarchy. The underlying
objective is to improve the quality of the software system,
with regard to future maintenance and development activi-
ties. Unfortunately, while it is clear that wecanuse refac-
torings to restructure software systems, it is unclearhow to
use them in order to improve specific quality attributes that
are indicators for a good design.

We start from the assumption that coupling and cohesion
characteristics may serve as indicators for the optimal dis-
tribution of responsiblities over the class hierarchies. Thus,
rather than saying that refactoring will improve the design,
we aim for a less ambitious goal of improving the coupling
and cohesion.Cohesionthen corresponds to the degree to
which elements of a class belong together, andcoupling is
the strength of association established by a connection from
one class to another [11].

Therefore, in this paper we analyze under which con-
ditions applications of refactorings improve specific cou-
pling and cohesion dimensions. Guidelines for applying the
refactorings under these conditions are composed, and val-
idated on an open source software system regarding both

improvement and applicability.
The paper is organized as follows. Section 1 discusses

which guidelines optimize the improvement of coupling and
cohesion for specific refactorings. Section 2 elaborates on a
validation of these guidelines regarding their improvement
and applicability. Section 3 discusses lessons learned dur-
ing the detection of the refactoring opportunities and their
resolution. Section 4 outlines future research and related
work. Finally, Section 5 summarizes the contributions of
this work.

1. Mapping refactorings to coupling/cohesion

Refactoring opportunities are locations in the source
where a) there is a need for improvement regarding a quality
attribute; b) a refactoring can be applied that will reorganize
the code while preserving the behavior of the software sys-
tem; and c) the application of the refactoring will indeed
improve the quality attribute.

To be able to recognize opportunities for improving cou-
pling and cohesion, we analyze how refactorings affect
these quality attributes. First, we will describe the concrete
dimensions in which these two abstract quality attributes
can be divided. Second, we introduce the refactorings we
set out to investigate. Finally, we explain how we can map
these refactoring postconditions on coupling and cohesion
metrics.

1.1. Coupling and cohesion dimensions

Coupling and cohesion are very wide concepts, which
consist of many different dimensions. We use the catego-
rization of [3], which identified 2 cohesion and 5 coupling
dimensions using principal component analysis. For each
of these categories, a set of metrics can be associated as key
indicators [2, 1].

Cohesion when methods share common attribute usages,
they are similar regarding internal data usages, and there-
fore belong together. They can also be dependent upon each



other by method invocation. We differentiate betweennon-
normalized andnormalized cohesion, in which the latter
is independent of the number of methods of the class.

Import coupling method invocations and attribute usage
bind classes together. By calling a method, you import its
implementation in your scenario. Such dependencies are
the main transport routes for ripple effects during local al-
terations. The value of this import coupling depends upon
the number of distinct methods called, and the calling fre-
quency.

General coupling in references to other classes, implicit
assumptions can turn invalid over time. The dependency
caused by these references can be as weak as simple class-
name dropping, or as strong as manipulating internal re-
sources of the class.

Export coupling when a class publishes services or is
simply instantiated, other classes can refer to these re-
sources. This causes a form of dependency where local
changes can ripple to clients. Moreover, not only does a
class publish its own implementation, it also indirectly pub-
lishes the implementation upon which it depends itself, be-
ing the methods called.

Aggregated import coupling when a class manipulates
data, it depends upon the class of which the data is an in-
stance. Among others, this import coupling can be caused
by attributes or parameters.

We omitted one dimension: export coupling to descen-
dant classes. This is a special case dimension which is spe-
cific to the context of inheritance. We feel that this would
require deeper investigation into other aspects of inheri-
tance, which is not the focus of our work.

1.2. Refactorings under study

The objective of our selection was to investigate those
refactorings which redistribute responsibilities either within
the class or in between classes. This redistribution is the
main principle to address coupling and cohesion problems.

Fowler’s catalogue describes 72 refactorings over 6 cat-
egories [6]. As an initial set of refactorings under study,
we selected one refactoring which breaks up a method (Ex-
tract Method), one refactoring that redistributes a method
over the class hierarchy (Move Method), two refactorings
that compose new responsibilities (Replace Method with
Method Object, Replace Data Value with Object), and
one refactoring that divides responsibilities (Extract Class).

These refactorings are among the most fundamental and
most widely used.

Once we have identified how these refactorings can
change coupling and cohesion characteristics, we set out
guidelines to optimize their usage for improvement. We
will specify profiles that describe how opportunities for the
application of each guideline can be found. This heuristic
for reverse engineering refactoring opportunities filters out
those opportunities of which the resolution will not lead to
an improvement in coupling/cohesion.

1.3. Composing refactoring guidelines

In this section, we illustrate how refactoring guidelines
can be composed by exploiting coupling and cohesion im-
pacts. Our hypothesis is that adherence to these guidelines
will provide better results regarding coupling and cohesion.

The analysis of this impact is based on a uniform meta-
model in which both refactoring postconditions and met-
rics were expressed. This makes it possible to rewrite the
refactoring postconditions as conditions on model instance
cardinalities, and subsequently on the metrics using these
calculations. For further technical details, we direct the in-
terested reader to [5].

It is clear that the impact of a refactoring on a cou-
pling or cohesion dimension is dependent upon the specific
source context. Therefore, it actually makes more sense to
talk about an impact spectrum, in which the specific source
context - the refactoring opportunity - dictates the posi-
tion within the spectrum. The boundaries of this impact-
spectrum can be an improvement (+), deterioration (-) or no
change at all (0) of a specific coupling or cohesion dimen-
sion for specific applications of the refactoring.

Table 1 illustrates this spectrum by specifying the best
and worst case impact for each of the refactorings under
study. Respectively, this is the impact of the most optimal
and the least optimal application of a specific refactoring.

Extract Method extracts a set of statements appearing in
one or more methods into a new method.

Extracting statements which reference attributes can
transform attribute-dependency into method-interaction.
When those statements are extracted which a) reference a
reasonable proportion of attributes; and b) appear in du-
plicates over a reasonable amount of methods, the implicit
similarity among the methods (attribute-cohesion) is made
explicit through invocation of the extracted method (method
cohesion).

Multiple extraction - extracting a group of statements
from more than one method - can decrease import coupling
as it removes dependencies which are duplicated across
methods. Aggregated import coupling and export coupling



Table 1. Best and worst case impact of a refactoring on a cohesion or coupling dimension. The
table indicates to which extent guidelines on the application of a refactoring can imply a shift in the
spectrum of impact on coupling or cohesion. Rather than describing the increase/decrease of the
associated metrics, the cells indicate an improvement (+), deterioration (-) or neutral impact (0).

Extract Move Replace Method Replace Data Value Extract
Method Method w Method Object w Object Class

Normalized cohesion + — - + — - 0 + — 0 + — -
Non-normalized cohesion + — - + — 0 0 + — 0 + — -

Import Coupling + — 0 + — - + — - - + — -
General Coupling 0 + — - + — - - + — -
Export Coupling - + — - + — - - +

Aggregated import coupling 0 — - + — 0 0 + — - + — -

are made explicit in the signature of the new method, and
can therefore increase.

To exploit these impacts, we compose the following
guideline:

G1 Localize dependenciesExtract those groups of state-
ments which have a lot of dependencies in common
with many other methods of the class.

Move Method moves a method from one class to another,
possibly adding a parameter when resources of the original
class are used, and removing that parameter which is an in-
stance of the target class.

Moving a method that does not refer to local attributes or
methods, or is called upon by only few local methods will
increase cohesion.

Moving a method that calls external methods more fre-
quently than it is called itself will decrease import cou-
pling. Moving a method that encapsulated coupling to other
classes to a known class decreases both import and general
coupling. Export coupling can be decreased by moving a
methods that do not refer to neither attributes nor methods
nor the name of the class.

G2 Localize dependenciesMove those methods that do not
use local resources, are called upon seldom and them-
selves refer mostly to a single external class.

G3 Separate concernsBreak up a method that depends
on many different external classes into pieces which
mostly refer to only a single external class. Apply
G2 on each of these extracted methods. Thereafter,
the original method will then act as a coordinator
which directs the collaborations between the respon-
sible classes, and can be moved itself to a class which
fits this coordination responsibility.

Replace Method with Method Object creates a new
class which has only one method and a constructor. The
local variables and parameters of the method are promoted
to attributes of the newly created class.

Replacing a method that does not references local at-
tributes or methods will increase cohesion.

Replacing a method that encapsulates coupling to other
classes decreases import and general coupling. Export cou-
pling can be decreased when the method manipulates in-
stances of other classes, yet has no local variables or pa-
rameters that are instances of the original class.

G4 Localize dependenciesReplace those methods which
refer mostly tomany differentexternal resources, and
are called upon frequently by local methods of the
class. The original method will be transformed in a
client of the coordination role which the newly created
class will play.

Replace Data Value with Object encapsulates a set of
attributes in a new class. This set of attributes in the original
class is replaced by an instance of that new class.

When a group of attributes is frequently used together
by many local methods, cohesion will increase by replacing
them with an object.

Replacing attributes with a single object will introduce
both import and general coupling to the newly created class.
Export coupling will remain constant when the attributes
are not instances of the local class. When there were no
other attributes of the same external type as the selected
ones, aggregated import coupling will decrease.

G5 Localize dependenciesGroup those attributes which
are used as a unity throughout the local methods of
the class and which are mostly instances of external
classes.



Extract Class creates a new class which contains a se-
lected group of methods and attributes from the original
class.

Cohesion will increase when a connected set of attributes
and methods are extracted. Such connection is bidirec-
tional: a method is connected to another method when it
either calls it, or is called by it.

Import coupling (including aggregated) will decrease
when the extracted set of attributes and methods encap-
sulated coupling to external classes. Export and general
coupling will decrease when the extracted methods and at-
tributes do not refer to the original class (minus the ex-
tracted part).

G6 Separate concernsExtract those groups of methods
and attributes that are neither referenced by, nor refer
themselves to other methods or attributes by respec-
tively method invocation or attribute usage.

2. Validation

In order to support the claim that these guidelines help in
improving coupling and cohesion of existing code, we must
demonstrate that a) their usage improves key coupling and
cohesion metrics; and b) potential targets for their applica-
tion are not hard to find. These form the two major subgoals
for a realistic validation of these guidelines.

To challenge the usefulness of these guidelines, we ap-
plied each of the guidelines several times and evaluated
their impact. We set out to detect the associated refac-
toring targets in those classes of the open source software
system Apache Tomcat which exhibit deteriorated cohesion
and coupling characteristics. These were located in the
org.apache.tomcat.{core,startup} packages. The resulting
improvement regarding coupling and cohesion characteris-
tics are presented in SubSection 2.2.

First, we provide our resulting impression of the appli-
cability of these guidelines. We feel this aspect is crucial,
as it allows to focus future investments in tool support for
those guidelines which improve coupling and cohesion and
can be applied most frequently.

2.1. Applicability of the guidelines

Each of the guidelines specifies a profile for refactoring
opportunities based on their (common) attribute and method
usage. During the validation, we searched for method pro-
files which matched the specified guideline profiles interac-
tively. This is our heuristic for finding refactoring oppor-
tunties.

To do this, we implemented a tool that analyzed the at-
tribute and method usage of each method of a class, and

performed primitive calculations as required for each of the
metrics associated with the coupling/cohesion dimensions.

However, as our tool is still immature, some computa-
tions such as finding duplicate groups of statements con-
taining attribute references were done by reading the code.
Therefore, our application of the heuristic for finding refac-
toring opportunities is imperfect. Moreover, these frequen-
cies are specific to (the selected parts of) the chosen soft-
ware system. Yet, we feel that these numbers can help for a
first impression.

We found 5 opportunities for Extract MethodG1, 4 op-
portunities for Move MethodG2 and 4 for Move MethodG3,
1 for Replace Method with Method ObjectG4, 3 for Replace
Data Value with ObjectG5 and 3 for Extract ClassG6. These
opportunities were detected in 3 packages, consisting of a
total of 12 classes, 167 methods and 3797 lines of code.
This limited number of opportunities is caused by their strict
profiles:

• Extract MethodG1 can only be applied when multiple
methods access the same set of attributes in the same
way. Together with Move MethodG3, opportunities for
this guideline can be found in classes consisting of few
large methods.

• Move MethodG2 and Replace Method with Method
ObjectG4 can only be applied on methods which do
not use local resources. These are methods which are
either explicitly or implicitly (can be made) static. To
differentiate between these profiles, opportunities for
Move MethodG2 are mostly small methods as they
manipulate only a single class. Opportunities for
Move MethodG3 and Replace Method with Method
ObjectG4 are larger methods which refer to numerous
external classes. Specifically, Replace Method with
Method ObjectG4 opportunities are large, data oriented
methods, which have a lot of parameters and local vari-
ables.

• Replace Data Value with ObjectG5 can only be applied
on mainly data-oriented classes, in which many meth-
ods share a common set of referenced attributes. Op-
portunities for Extract ClassG6 are different in that the
attribute usage is different over the various methods,
and is therefore different from simple reading and writ-
ing of the attribute value.

These informally described profiles allow to identify
refactoring targets by analyzing attribute and method us-
ages. This identification filters out potential targets for the
application of a refactoring which would not result in the
improvement of coupling or cohesion. By using this fil-
tering principle, we can build up a heuristic for identifying
valuable refactoring opportunities.



Table 2. Results of the validation, in which each of the guidelines were applied numerously. The
cell values indicate wether the average result could be classified as a (B)est case, (W)orst case,
(E)xpected or (S)uboptimal impact.

Extract Move MMG3 Replace Method Replace Data Extract
MethodG1 MethodG2 w Method ObjectG4 Value w ObjectG5 ClassG6

Normalized Cohesion W B W E B B
Non-normalized Cohesion W B B E B B

General coupling E B B S N S
Export Coupling E B B B E E

Aggregated import coupling B W E S W W

2.2. Results from applying the guidelines

Table 2 summarizes the results of finding and resolv-
ing refactoring opportunities for the proposed guidelines in
those classes of the Open Source software system Apache
Tomcat which exhibit deteriorated coupling and cohesion
characteristics.

These opportunities were located in the
org.apache.tomcat.{core,startup} packages. After re-
solving the opportunity, changes in the values of the set of
metrics associated with each coupling/cohesion dimension
were calculated. Finally, we calculated the ”average
impact” of these resolutions on the various dimensions.
No cases were found where the impact of the application
of a particular refactoring on a particular metric was an
improvement for the resolution of one opportunity and
a deterioration for the resolution of another. Therefore,
this average impact indicates how a coupling/cohesion
dimension was affected in the average resolution of a
refactoring opportunity.

Each cell value categorizes the average impact of the
guideline as conforming either to the best case, worst case,
expected case or suboptimal impact on the specific cou-
pling/cohesion dimension. For the import coupling dimen-
sions, we were unable to compute associated metrics due to
lack of tool support.

We chose for this representation as it compares what
has been experienced in practice with the spectrum result-
ing from the impact analysis which was illustrated in Table
1. This way, we can evaluate whether the adherence to the
guideline truly had the best possible impact for that particu-
lar refactoring (as bounded by the impact spectrum). As the
table is self-describing, we will not run through it’s content
in the text.

2.3. Interpretation

Excellent results were provided by the guidelines regard-
ing Move Method (G2 and G3). Both guidelines are an ex-

cellent help in improving coupling and cohesion of existing
code.

Good results were provided by the guidelines on Replace
Method with Method Object, Replace Data Value with Ob-
ject and Extract Class. These guidelines are a good help in
improving cohesion, yet provide only limited help in resolv-
ing coupling issues. More specifically, they all trade strong
coupling with a number of external classes with strong cou-
pling to only a single class.

Disappointing results were provided by the guideline on
Extract Method. This guideline does not help in improving
neither cohesion nor coupling. We stongly believe that strict
boundaries should be specified on the minimal number of
attribute or method usages in the extracted statements.

Summarizing, we are convinced that the guidelines on
Move Method, Replace Method with Method Object, Re-
place Data Value with Object and Extract Class can be used
to identify good refactoring opportunities. Their applica-
tion will improve coupling and cohesion. While we assume
this improvement will lead to improved maintainability, this
still requires rigorous empirical validation of the reduction
in maintenance effort for representative maintenance tasks
on representative software systems.

3. Lessons Learned

Opportunities for improvements in coupling and cohe-
sion are scarce Over the domain of all possible applica-
tions of a refactoring on a software system, those opportu-
nities which can truly improve coupling and cohesion are
hard to find.

Most of the time, the resolution of a refactoring op-
portunity leads to the advent of new opportunities. This
is because the resolution of a refactoring opportunity is
triggered by specific coupling/cohesion characteristics, and
subsequently changes these characteristics. This can cause
thresholds for other guidelines to be surpassed, thereby in-
troducing a new refactoring opportunity.

In other words, the refactoring process is a dynamic pro-



cess which requires continuous re-evaluation of the targeted
quality attributes over the detection-resolution cycle. There-
fore, the number of refactoring opportunities will increase
and decrease over the application of refactorings. This cor-
responds to the changing needs for improvement regarding
coupling/cohesion during the evolution of a software sys-
tem.

Evaluation of refactoring series requires automation
In order to optimize the efficiency of a refactoring process,
both analysis and resolution can be automated. To auto-
mate the analysis, information on both internal and external
attribute and method usage, including the frequency, must
be retrievable.

Using this information, a profile for each method can be
computed, which can be compared with the profile of each
guideline. For efficiency, this comparison can be ordered
according to the improvement regarding coupling and co-
hesion, as described in the previous sections.

Once a match between a method (or set of methods) and
a guideline has been identified, the target for redistribution
can be determined using the information gathered in the
analysis.

When tool support for such an automated refactoring
process is available, a series of specific applications of
guidelines can be considered as paths in a search space.
Therefore, it is possible to compute such an optimal path
by trial-and-error, and only commit the result of that series
of refactorings which performed optimal regarding the im-
provement of coupling cohesion.

This way, refactoring strategies can be statistically iden-
tified as being a) beneficial for coupling and cohesion; and
b) frequently applicable. Such efforts could make reuse of
refactoring know-how at the level of (series of) composite
refactorings feasible.

Guidelines should be customizable We specified the
proposed guidelines using qualitative descriptions such as:
a lot of common attribute usage, references to many differ-
ent external classes, etc. To be able to adhere to a guideline,
these descriptions must be quantified, by searching for spe-
cific thresholds for each of the analysis elements. Research
on the customization of such metric thresholds to improve
design quality has been performed by [9]. Such a research
approach for the customization of guidelines can also be
applied on the level of refactorings we adhere to in this pa-
per. This would be very interesting, as this is the level of
refactoring for which (limited) tool support exists in current
popular Integrated Development Environments.

Moreover, a generic strategy for calculating these thresh-
olds for separate software projects can provide even further
customization. Such a strategy would dictate how to cus-
tomize the detection of refactoring opportunities for spe-

cific software systems as maintained by specific teams. This
would actually be no luxury, as different people respond dif-
ferently on specific coupling and cohesion characteristics.

Our main argument for stimulating customization in the
refactoring process is that maintainability should be instan-
tiated towards the people maintaining the software. When
such a maintenance team would change, different maintain-
ability criteria can be set out, and the refactoring process
can be customized to achieve these specific maintainability
criteria.

Refactoring opportunities can be prioritized During
the analysis and, using the guidelines, its subsequent res-
olution, it became evident that there exists a natural order
between the different guidelines. The specific coupling and
cohesion characteristics of the class in question can dictate
which guidelines should be applied first. For example, Re-
place Method with Method ObjectG4, Replace Data Value
with ObjectG5 and Extract ClassG6 can be considered as the
most coarse grained and efficient improvement in cohesion,
as they literally split off responsibilities and compose col-
laborations. Once cohesive classes have been established,
coupling can be targeted at a more fine grained level. To
do so, responsibilities can be distributed between classes
with guidelines Move MethodG2 and Move MethodG3 to
improve coupling.

Such feedback allows to formulate suggestions for a spe-
cialized refactoring process to improve coupling and cohe-
sion characteristics under the form of a decision tree. When
alternative refactoring opportunities are found, we can use
this prioritization to identify the most efficient.

However, before such a decision tree can be composed,
more refactorings must be analysed. Moreover, more quan-
titative data on the application of these guidelines over a
larger set of software systems is required. Therefore, more,
and more advanced tool support is needed, to both automat-
ically detect the associated refactoring opportunities, and
also, to automatically apply the associated guidelines.

4. Future work

Our work currently disregards other recognized indica-
tors for maintainability such as size and inheritance com-
plexity. As a result, it is imaginable that the improvement
in coupling/cohesion is traded for a deterioration regarding
these other quality attributes. Therefore, we were very cau-
tious not to over-generalize the usefulness of the proposed
guidelines. We explicitly deferred from claims which were
unrelated with coupling/cohesion.

In the future work, we plan to apply the approach pre-
sented in this paper on these other quality attributes. We
expect that trade offs between the improvement of one, and



the deterioration of another quality attribute will be identi-
fied.

Ultimately, these trade offs can be evaluated in manipu-
lation experiments in which hypothesis on the effort reduc-
tion for specific maintenance tasks caused by the applica-
tion of the guidelines can be tested.

Our enthusiasm about the results of this work stimulates
us in analyzing more refactorings. Again, tool support is
a limiting factor in the validation of such analysis. How-
ever, during the analysis, the profiles for refactoring oppor-
tunities associated with the specific guidelines specify how
automated support for refactoring can be implemented.

The main criteria to select other refactorings for future
study are: a) intuitive assumption that the refactoring can
affect the particular quality attributes; and b) intuitive as-
sumption about the applicability of the refactoring. In ex-
ample, regarding coupling/cohesion, we are also interested
in the replacement of type code (with Class, Subclass or
State/Strategy), Replace Subclass with Fields and Replace
Parameter with Explicit Methods. Regarding size and in-
heritance complexity, our wish list includes Pull Up/Push
Down Field/Method, Replace Inheritance with Delegation,
Replace Conditional with Polymorphism, Replace Type
Code with Subclasses.

4.1. Related work

We’d like to remark the difference between this work and
[4]. While they composed heuristics to find applications
of refactorings over the history of a software system, we
composed heuristics to apply refactorings.

Our approach for finding refactoring opportunities is ex-
tremely close to the work of [9], which described the auto-
matic detection of transformations by selecting candidates
based on rules defined in terms of metric thresholds. These
rules can also be interpreted as code smells, and be ex-
pressed in languages such as the Object Constraint Lan-
guage [13].

Sahraoui also analyzed the impact spectrum of a refac-
toring on specific metric values. The difference between
our work lies in that we a) translate the analyzed impact
on specific metrics to the associated coupling and cohesion
dimensions; and b) exploit the results of this analysis by
providing guidelines to optimize the improvement of cou-
pling/cohesion.

Another work which is quite related is provided by [12].
Tahvildari analyzed the impact of meta-pattern transforma-
tions on an object-oriented metrics suite consisting of met-
rics for various quality attributes. Our focus is on lower
level refactorings and their impact on the specific quality
attributes coupling and cohesion.

A quantitative evaluation method to measure the main-
tainability enhancement effect of program refactoring is

presented in [7]. They analysed three phases in the process
of program refactoring, of which their contribution is to-
wards the phase of validation of the refactoring effect. They
analyse the effect of a number of refactorings on coupling
metrics by pre- and post-refactoring measurements.

Lastly, another approach for finding refactoring opportu-
nities is by using visualization techniques [10]. Excellent
work on software visualization has resulted in a tool called
CodeCrawler, which allows the visualization of software el-
ements to be arranged according to metric calculations [8].

5. Conclusion

Finding refactoring opportunities is a non-trivial activity
which should be based on insight in ways to improve partic-
ular quality attributes. In this work, we focused on reverse
engineering these refactoring opportunities that can lead to
an improvement in coupling/cohesion of the code.

We identified specific applications of Move Method, Re-
place Method with Method Object, Replace Data Value
with Object and Extract Class to be beneficial. However, we
also experienced that guidelines can be insufficiently spe-
cific. This was the case for a specific application of Extract
Method, which was harmful for cohesion.

Guidelines were composed which describe these specific
applications. Profiles were specified for each of the targeted
refactoring opportunities, which stipulate the associated de-
tection analysis.

Concluding, we demonstrated that by exploiting the re-
sults from coupling/cohesion impact analysis, it is possible
to achieve quality improvements with restricted refactoring
efforts. This effort is restricted to the analysis and resolu-
tion of a limited set of refactoring opportunities which are
known to improve the associated quality attributes.

6. Acknowledgments

This work has been sponsored by the Belgian National
Fund for Scientific Research (FWO) under grants ’Founda-
tions of Software Evolution’ and ’A Formal Foundation for
Software Refactoring’. Other sponsoring was provided by
the European Science Foundation by means of the project
’Research Links to Explore and Advance Software Evolu-
tion (RELEASE)’.

References

[1] L. C. Briand, J. Daly, and al. A unified framework for cou-
pling measurement in object-oriented systems.IEEE Trans.
Software Engineering, 25(1):91–121, 1999.

[2] L. C. Briand, J. Daly, and J. Ẅust. A unified framework for
cohesion measurement in object-oriented systems.Empiri-
cal Software Engineering, 3(1):65–117, 1998.



[3] L. C. Briand and J. Ẅust. The impact of design properties
on development cost in object-oriented system.IEEE Trans.
Software Engineering, 27(11):963–986, 2001.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactor-
ings via change metrics. InProc. Int. Conf. OOPSLA 2000.
ACM Press, 2000.

[5] B. Du Bois. Opportunities and challenges in deriving metric
impacts from refactoring postconditions. to be published in
International Workshop on Object Oriented Reengineering
(WOOR), ECOOP-workshop, 2004.

[6] M. Fowler. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[7] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quanti-
tative evaluation of maintainability enhancement by refac-
toring. In Proc. Int’l Conf. Software Maintenance, pages
576–585. IEEE Computer Society Press, 2002.

[8] M. Lanza and S. Ducasse. Polymetric views-a lightweight
visual approach to reverse engineering.IEEE Trans. Softw.
Eng., 29(9):782–795, 2003.

[9] H. A. Sahraoui, R. Godin, and T. Miceli. Can metrics help to
bridge the gap between the improvement of oo design qual-
ity and its automation? InProc. International Conference
on Software Maintenance, pages 154–162, october 2000.

[10] F. Simon, F. Steinbr̈uckner, and C. Lewerentz. Metrics based
refactoring. InProc. European Conf. Software Maintenance
and Reengineering, pages 30–38. IEEE Computer Society
Press, 2001.

[11] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured
design.IBM Systems Journal, 13(2):115–139, 1974.

[12] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-
driven software re-engineering.J. Syst. Softw., 66(3):225–
239, 2003.

[13] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards
automating source-consistent UML refactorings. InPro-
ceedings of UML 2003 – The Unified Modeling Language.
Springer-Verlag, 2003.


