
T
he title of this article
should be enough to
arouse the interest or ruffle
the feathers of any pro-
grammer. Most program-

mers’ responses to articles on how to
comment code are:

■ I already know how to comment
code.

■ The author of such an article does
not know the policies of my organi-
zation and therefore is not qualified
to teach me anything.

The first response is easy to both

accept and dismiss. Everyone does
know how to comment code. In C, you
put a /* in front of your comment and
a /* at the end. In BASIC, you start the
line with the keyword REM. But it is
fallacious for programmers to say they
know everything about the proper way
to comment code in every situation.

The second response, commenting
methods change based on “policy,” is a
statement of what is true but not what
is correct. These policies are based on
certain factors:

■ What is the degree of time/schedule
pressure on the programmer?

■ Are there any other programmers on
the project? If so, to what degree do
they interact on the same modules
of code?

■ What is the personnel turnover rate
among the programming staff?

■ Is the organization under any inter-
nal (corporate) or external (contrac-
tual) requirements for code main-
tainability?

■ What are the personal politics
among the programmers or groups
of programmers?

Time pressure is the most obvious
force mitigating against good docu-
mentation. If the programmer is
required to generate too many lines of
code in a given time period, and the
programmer is aware of it, there is no
time to spend writing comments.
Although lack of time is the most com-
monly used excuse, several other rea-
sons are usually hiding under this rock.

If no other programmers are work-
ing on the task, code will typically lie
uncommented, regardless of the time
constraint. Why spend time explaining
the obvious to an audience that does
not exist? This argument is valid only
if the code must be written once and
never reworked or debugged after the
original methodology has left the fore-
front of the programmer’s mind—a sit-
uation that never happens. I have
found, both through personal experi-
ence and through watching others, that
programmers can waste a considerable
amount of time trying to sort through
their own recently-written code.

by STEVE DREVIK

How To Comment Code

58 EMBEDDED SYSTEMS PROGRAMMING MARCH 1996

Good code is maintainable and reusable both by the original pro-
grammer as well as other programmers—that means it’s well docu-
mented. This article presents guidelines for effective documentation.

L
im

e
V

oo
do

o
P

ro
du

ct
io

ns

If several programmers are on the
staff, there is usually more incentive to
comment code. The level of incentive
depends on how much the program-
mers interact with each other on the
same code modules. Modern program-
ming techniques allow dozens of pro-
grammers to work simultaneously on
the same project without ever really
seeing each other’s code. In this case,
programmers eventually fall into the
single-programmer train of thought.
Peer reviews can actually prevent this
problem; the most common comment
that comes out of a peer review is “I
don’t understand this. Why don’t you
add a comment here?”

A high rate of personnel turnover
can affect the level of commenting in
either direction. Some programmers
will comment their code in great detail,
knowing that someone else will have
to take it over soon. More often, how-
ever, programmers will stop comment-
ing, knowing it doesn’t matter and
wanting to get their project done—or
perhaps wanting to build in a little job
security in an unstable environment.
Programmers document their code

most religiously when the turnover is
due to movement within the same
company, rather than people exiting
the company. When programmers
move off a project but stay within the
same organization, they know the next
programmer is only a phone call away.
If the threat of a new programmer close
enough to ask questions doesn’t exist,

commenting work comes to a screech-
ing halt.

In all my career, I have seen a hun-
dred companies ask for access to
source code when contracting for com-
plex customized software. But I have
only seen two of those companies pro-
vide a written specification of how that
supplied code should be commented. I
can’t imagine what those other 98
companies would have done if they
actually brought up the source code
they paid so dearly for, only to find out
it was unintelligible. If my audience
here includes anyone whose line of
work includes writing software specifi-
cations, I would highly recommend
adding a dozen or so pages describing
a minimal system of code commenting.
If my audience includes software
development managers, I would highly
recommend putting in place similar
minimal guidelines about how code
should be commented. For either party
to fail to put minimal code comment-
ing guidelines in this day and age is
short-sighted stupidity. Enough said.

Finally, we come to the issue of per-
sonal politics. An organization can dic-
tate documentation procedures, require
peer reviews, and give the program-
mers enough time to follow those pro-
cedures. But, while you can lead a
horse to water, but you can’t make it
document its code. The most common
stumbling block is the Not Invented
Here (NIH) syndrome loop. I call it a
loop because failure to comment code
properly causes other programmers to
be reluctant to re-use that code, and a
low level of code reuse causes pro-
grammers to slack off on their com-
menting. The blame lies not with the
programmers but with the develop-
ment managers for failing to enact and
enforce strict commenting guidelines
and failing to encourage re-use.

Notice that I referred to “strict” stan-
dards. To prevent NIH syndrome and
assure a high level of code re-use,
commenting must be of the utmost
quality. No matter how well-written a
module is, it cannot be reused if anoth-

No matter how

well-written a

module is, it can-

not be reused if

another program-

mer cannot

quickly determine

how to use it.

MARCH 1996 EMBEDDED SYSTEMS PROGRAMMING 59

er programmer cannot quickly deter-
mine how to use it. A lot of good code
is thrown away because of poor docu-
mentation. It is the responsibility of the
programmer to follow those guidelines
to the letter. If the guidelines are poor-
ly written, the programmer should sug-
gest improvements.

Other stumbling blocks include sim-
ple pecking-order disputes. There is no
better way to humble programmers
than to force them to come to you, beg-
ging you to explain the incredible inge-
nuity of your top-rate code. Such posi-
tioning can also make you appear more
like a guru than a simple programmer
to your boss. I think the recent team
management paradigms have done a
lot to defuse this problem.

There are plenty of reasons why
people do not comment code properly.
The software development managers
are now well-armed and should be able
to determine those reasons, defuse
them, and convince the programmers
of the benefits of well-commented
code. Now what? Is there a right and a
wrong way to comment code?
Absolutely. Let’s look at some of the
common mistakes.

COMMON MISTAKES

In the following example, the start-
up code of an embedded control
product is initializing several serial

ports:

/* Loop through MAX_SIO_PORTS-1 */
for(port = 0; port < MAX_SIO_PORTS-1;

port++)
{
/* Initialize port ‘x’ */
initialize_port(port);
}

Notice the top comment, which tells
what the loop does. The only problem
is that, as a programmer, I already
know C. I don't need another program-
mer to teach it to me again, nor do I
need the same lesson repeated every
time I see a for() statement. What I
would rather know is why the pro-
grammer is looping through

MAX_SIO_PORTS-1, instead of
MAX_SIO_PORTS. As it turns out, the last
serial port is reserved for remote
debugging and is not initialized in this
section of code. Instead, it is initialized
in another section of code. And what
exactly does initialize_port() do? A
better way to comment this case would
be:

/* Initialize all ports except the last
port, which is reserved for remote
debugging.

The last port is initialized in the
function check_for_debugger() */

for(port = 0; port < MAX_SIO_PORTS-1;
port++)

{
/* Initialize port ‘x’, reset the

UART, set baud rate, data/stop bits, and
state of RTS control line */

initialize_port(port);
}

This is probably the most common
and the most serious programming sin.
Your comments should explain why
you are doing something, not what you
are doing. Comments should not teach
language structure.

The second sin is improper docu-
mentation of a module’s interaction
with the rest of the world. What does
the module do? How should it be
called? What are its arguments? Does
it access any global variables? Simply
prototyping is not enough, as we see
here:

void init_port
(

int num,
int speed,
int db,
int par,
int status

);

Isn’t it perfectly clear what the mod-
ule does? Granted, this case is an
extreme one. A more realistic case
might be:

void init_port /* initialize port X */

(
int num,
int speed, /* Rate */
int db, /* Data bits */
int par, /* Parity */
int status /* RTS */

);

This code looks like a serial port ini-
tialization routine. If we want to ini-
tialize the first serial port to 9600 baud,
8 data bits, one stop bit, RTS off, we
apparently call it this way:

init_port (1, 9600, 8, 0, 0);

Or do we send 0 for the port num-
ber? As it turns out, we are wrong on
several counts. The first serial port is
index 0, the logic on the RTS is
reversed because of the UART logic,
and the baud rate is supposed to be an
index into another array:

int baud_rates[300, 1200, 2400, 4800, 9600,
19200, 38400];

The proper way to call it is:

init_port(0, 5, 8, 0, 1);

Or, using #typedefs to make it more
legible:

init_port(PORT_0, BAUD_9600, 8, NONE,
RTS_OFF);

(In fact, use of typedefs in this way
can be considered part of proper docu-
mentation procedures.)

We had no way of knowing all this
just by looking at a poorly-commented
prototype. How about the following?

void init_port /* Initialize a serial
port, reset the UART, set baud rate and
RTS output */

(
int port_num, /* Port index 0...
MAX_SIO_PORTS-1. See ‘sio.h’ for
typedefs */

int baud_rate, /* Index into global
‘baud_rates’ array. See ‘sio.h’ for
typedefs */

60 EMBEDDED SYSTEMS PROGRAMMING MARCH 1996

How To Comment Code

62 EMBEDDED SYSTEMS PROGRAMMING MARCH 1996

How To Comment Code

int data_bits, /* Number of data bits
(7 or 8 allowed) */

int parity, /* Parity bits (see
‘sio.h’ for typedefs) */

int rts_status /* RTS status. See
‘sio.h’ for typedefs */

);

Notice the careful choice of names
for the function arguments. Not all
comments are found between slashes
and asterisks! Choosing good, reason-
ably long variable names is part of the
commenting process. In more archaic
languages (say, Fortran), when vari-
able names had a limited number of
characters, it was standard practice to
document each variable in the function
header. A language that allows long
variable names makes this documenta-
tion unnecessary. However, if you do
not like to use long variable names or
you are working in assembly language,
you should continue this practice.

COMMENTING CHANGES / BUG FIXES

Need I say that no code ever
works right the first time?
Sometimes I feel as though I

spend more time revising than writing.
Usually the revisions consist of fixing
typos, initializing variables that
weren’t initialized, and so on. On occa-
sion, I find myself making somewhat
unusual modifications to make things
work correctly. Sometimes, I have to
do some odd things to work around a
compiler bug or to satisfy some hard-
ware timing requirement. When I fin-
ish editing that file, I am always left
with the ugly feeling that I, or someone
else, will come back to that code later
and wonder why the module was
coded that way, or worse yet, change it
back to something like the original
code.

As an example, I had a version of
compiler that would not do += and -=
operations correctly on huge pointers.
If the fix had not been commented as
follows:

huge char * add_huge_char_ptr
(

huge char * a,
huge char * b

)
{
/* a += b; <-- compiler bug: += and -=

operations don’t work right */
a = a + b;
return(a);

}

Another programmer (or even the
original programmer, if forgetful)
might have been tempted to change
this version back for aesthetic reasons,
causing the system program to go
badly awry.

In some cases, I have found myself
writing half-page or full-page com-
ments about what I have done. In these
situations, more is better. Explain what
you did, why you did it that way, what
other approaches you tried, and the
repercussions of doing it another way.
If you think something might be done
more elegantly another way, but you
don’t have the time to code it now, say
so. Otherwise, another programmer
may be afraid to touch this section of
code when the time is right.

If you don’t have a source code con-
trol system (SCCS) that can document
and date changes, I recommend that all
bug fixes other than typos should also
be accompanied with a short comment
listing the programmer and the date
modified. If the programmer’s initials
are used, this shouldn’t take any more
than 15 keystrokes. Adding the version
number is also a great help in back-
tracking problems later, as well as
answering the boss’s query “which
version has a fix for that?”

DOCUMENTING STANDARD LIBRARIES

Programmers for desktop and
workstation targets benefit
greatly from the availability of

large standard libraries for C++ object
classes and graphic windowing tools.
Embedded system programmers typi-
cally don’t enjoy having such libraries
available because of the very nature of
the target or project. The C++ object
class code may take too much program

64 EMBEDDED SYSTEMS PROGRAMMING MARCH 1996

How To Comment Code

memory, and windowing tools are use-
less unless you are working with a
VGA resolution display. Speed is often
another consideration—standard lib-
rary routines can be slower than need-
specific routines the programmer could
write. Most embedded programmers
find themselves creating their own
standard portable library functions for
things like linked list/queue manage-
ment, sorting operations, and string
operations (parsers, or routines to strip
spaces from a string, for example).

As mentioned previously, these rou-
tines are useless to another program-
mer unless the documentation is writ-
ten such that another programmer can
figure out how to use it in a short peri-
od of time. I suggest a target time of
15-30 seconds, the average patience
level of a typical programmer for
another person’s code. After reading
for 30 seconds, most programmers lose
interest.

I strongly suggest documenting your
standard library routines the same way
major software companies document
their standard libraries: write a docu-
ment using an entire page dedicated to
one function. Use the same format the
major companies do—the format itself
isn’t copyrighted! Show the function
name, the arguments, discuss possible
return values, and so on. Put all the
information in a three-ring binder you
can add to, and give everyone on the
project a copy for reference. Have
everyone put their copy next to their
standard library reference. Not only
does the documentation need to be
good, it needs to be easily available. I
have seen similar functions appear in a
project three or four times, because the
function was either never put into the
standard library, or the fact it was there
was forgotten.

HOW TO DOCUMENT A PROJECT

Documents in source files serve
programmers already familiar
with the project and its devel-

opment environment. However, if the
project is handed over to another pro-
grammer or to another company (or if

the customer has to take over code
development or fixes), a batch of com-
mented source files may prove close to
meaningless. Equally important is the
development environment that weaves
all the pieces together—the
compiler/linker tools, the source code
control system (SCCS), the file sys-
tem, and so on. I guarantee that if the
client tries to take those source files,
load on your average compiler/linker,
and tries to compile and link those files
with default arguments, the client will
fail spectacularly. This situation is
especially true in the embedded sys-
tems environment.

Consider a project being developed
in a command-line environment on a
DOS platform, using a source code
control system and MAKE files. What
are all the components that have an
effect on the system? I can think of
several:

■ Environment variables in the
AUTOEXEC.BAT file

■ The .MAK files themselves
■ Potential links from the .MAK files to

the SCCS software (to check for
updates from the library server)

■ Potential .BAT files that call the

compiler/linker with appropriate
arguments

■ File locations for sources/compil-
er/linker are “hard-coded” into .BAT
or .MAK files

Of equal importance to commenting
code is that of commenting the devel-
opment environment and all its compo-
nents. All project areas on disk should
include a “Documents” directory,
which should contain the following:

■ Explanation of file system layout
and directory structure—location of
source files, target (.obj, .exe, .hex)
files, header files, linked libraries,
and so on

■ Does the compiler/linker need to go
in a certain file location?

■ Description of all .BAT files and .MAK
files—what do they do?

■ Machine requirements for build
environment—memory required,
environment variables, O/S require-
ments, brand of compiler/linker,
and so on

■ Role of and links to the source code
control system (SCCS), if one is
being used

A GOOD PROGRAMMER

Agood programmer is not a pro-
grammer who is productive in
the short term, churning out

code, but is productive in the long
term, writing code that is maintainable
and reusable for the original program-
mers as well as other programmers.
The likelihood of reusability lies less
with the actual code as with its level of
documentation.

Steve Drevik is field applications man-
ager for Celerity Systems, Inc. in
Knoxville, TN, which develops high-
performance digital video servers for
interactive video applications in over-
seas and domestic markets. He has a
Master’s degree in electrical engineer-
ing from the University of Tennessee
and has been working in embedded
systems since 1988. He can be reached
electronically at thedrev@aol.com.

A good program-

mer is productive

in the long term,

writing code that

is maintainable

and reusable for

the original

programmers as

well as others.

	return:

