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Abstract

Reflection is a wide-ranging concept that has been studied
independently in many different areas of science in general,
and computer science in particular. Even in the sub-area
of programming languages, it has been applied to differ-
ent paradigms, especially the logic, functional and object-
oriented ones. Partly because of different past influences, but
also because researchers in these communities scarcely talk
to each others, concepts have evolved separately, sometimes
to the point where it is hard for people in one community
to recognize similarities in the work of others, not to speak
about cross-fertilization among them. In this paper, we pro-
pose a synthesis covering mainly the application of computa-
tion reflection to programming languages. We compare the
different approaches and try to identify similar concepts hid-
den behind different names or constructs. We also point out
the different emphasis that has been given to different con-
cepts in each of them. We do not claim neither completeness
nor closeness in our treatment. We rather aim at building
bridges between programming languages communities, and
address other aspects when they appear relevant.

1 Introduction

Reflection has long been studied in philosophy and formal-
ized to some extent in logic [Fef62]. It arised naturally in arti-
ficial intelligence, where it is intimately linked to the end goal
itself: reflection is viewed as the emergent property respon-
sible, at least in part, for what is considered an “intelligent
behavior”. Perhaps surprisingly, it has been also applied in
the area of programming languages under the name of com-
putational reflection. Computational reflection dates from
Brian Smith’s seminal work in the early 80s [Smi82, Smi84].
In his way to formalize the concept of reflection, he devel-
oped two languages: 2-Lisp and 3-Lisp. Although Smith
gave much more attention to the representation relation he
called φ that a computational process bears to its subject
domain, his work quickly became famous in the functional
community for the ability 3-Lisp was giving to a program to
reflect about its own computation using reflective towers.

This approach inspired much work in the functional pro-
gramming community until the late 80s, probably because
reflection was growing in a fertile ground. Thanks to its
quote construct, Lisp is famous for its metalinguistic power.
It allowed from its very beginning the manipulation and exe-
cution of program fragments, which are a primitive manifes-
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tation of reflective concepts. Lisp metacircular interpreters
were also widely explored and debated. The Lisp commu-
nity therefore had a long experience with the kind of things
reflection wanted to enable.

By the beginning of the 90s, it was becoming quite clear
that in order to master the inherent complexity of a fully re-
flective programming language, structuring mechanisms were
badly needed. The object-oriented paradigm imposed itself
to take up the challenge. This trend was not completely
innocent. A whole subset of the object-oriented commu-
nity has been profoundly influenced by Lisp, especially the
one revolving around Smalltalk and naturally, around object-
oriented extensions of Lisp itself (the quintessence of which
being the Common Lisp Object System, CLOS). In fact,
some of the proeminent persons in the OO community are
the same that were very influential in the Lisp one a decade
before. But, the implementation of the original concepts in
this new paradigm prove to be different enough to make it
difficult to relate them to the functional ones. Unsurpris-
ingly, Smalltalk is one of the most reflective language, with
its “object-to-the-bottom” principle, unfortunately mostly
ignoring itself as such. The Metaobject Protocol of CLOS
is the most achieved reflective programming language and
system to date.

Quite independently, the logic programming community
become interested in concepts near to the reflective ones, es-
pecially metaprogramming. As Lisp, Prolog included from
its very first implementations mechanisms for the manipu-
lation of programs at run-time, therefore enabling metapro-
gramming: metavariables are used to transform a term into
a goal and thus play the role of apply, clauses are accessi-
ble through the system predicate clause/2 (not to speak
about the debated assert/1 and retract/1), which re-
turns them in the form of terms, themselves inspectable
through the system predicates =../2, arg/3 and functor/3.
Metaprogramming quickly became so common in Prolog that
any self-respecting textbook includes the so-called vanilla
meta-interpreter for Prolog written in three clauses (see,
for example, [SS86]). A series of conferences devoted exclu-
sively to metaprogramming in logic has also been organized
[AR89, Bru90, Pet92, MET94]. Finally, the new language
Gödel [HL94] has been designed with the aim of making
metaprogramming more declarative, by implementing prim-
itively the manipulation of terms in a ground representation
(see §3.2.1).

The development of reflection independently in three dif-
ferent programming paradigms makes it difficult to under-
stand the relationship between similar concepts expressed
in different ways from community to community, and even
from language to language. The goal of the present paper is
to compare and contrast some of the reflective languages and



more generally results coming from the three communities.
We do not claim to address all aspects of such a compari-
son in this short paper, but rather to build bridges between
communities by sharing our experience of being involved in
the three for almost eight years. We don’t concentrate on
computational reflection in programming languages either,
but we rather address some other work relevant to our goal.

The rest of the paper is organized as follows. The next
section introduces the terminology and concepts of compu-
tational reflection. The Section 3 presents the design of sev-
eral reflective languages in the three paradigms of logic, func-
tional and object-oriented programming. The Section 4 dis-
cusses some formal notions associated to computational re-
flection, such as the notion of reflection coming from logic as
well as some attempts to give a formal semantics of reflective
programming languages. We then draw some conclusions.

2 Terminology and basic concepts

For a long time, terminology and basic concepts have been
the Achille’s heel of computational reflection. As noted ear-
lier, the actual implementation of reflection in programming
languages uses a lot of techniques and mechanisms that ex-
isted a long time before reflection: the ability to manipulate
programs as run-time data, the ability to inspect data struc-
tures at run-time (such as terms in Prolog), first-class enti-
ties, metaprogramming, etc. In the past years, we have seen
a tendency to mix reflection and the use of these techniques.
In a sense, the tools were taken for the concept. A link cer-
tainly exists between first-class entites, higher-order func-
tions, metaprogramming and reflection, but no one stands
for the other.

Reflection has been defined in a fairly general way by Brian
Smith during the ECOOP/OOPSLA’90 workshop on reflec-
tion [WRM90]:

“An entity’s integral ability to represent, operate on,
and otherwise deal with its self in the same way that
it represents, operates on and deals with its primary
subject matter.”

In programming languages, the incarnation of this defini-
tion appears as follows [BGW93]:

“Reflection is the ability of a program to manipulate as
data something representing the state of the program
during its own execution. There are two aspects of such
manipulation : introspection and intercession. Intro-
spection is the ability for a program to observe and there-
fore reason about its own state. Intercession is the abil-
ity for a program to modify its own execution state or
alter its own interpretation or meaning. Both aspects re-
quire a mechanism for encoding execution state as data;
providing such an encoding is called reification.”

Reification must be distinguished from first-class entities.
When an entity is first-class in a language, it means that
this entity can be created at run-time, passed as actual pa-
rameters to procedures, returned as result of a function and
stored in a variable. All what is needed is to provide pro-
grams with values of a suitable abstract data type defined
by the language. In functional languages, functions are first-
class for example. It means that functions (actually closures)
are values that can be manipulated as any other values in the
language. Reification goes well beyond by imposing that we
have complete control over this value in the language itself.
In particular, we should be able to modify its representation
using the language itself. We should also be able to inspect it

at run-time. Making an entity first-class is strictly included
in its reification, but not the opposite.

Coming back to reflection, Pattie Maes gave in her thesis
[Mae87] the following definitions that summarize pretty well
the notion of reflection in computational systems:

• A computational system is something that reasons
about and acts upon some part of the world, called the
domain of the system.

• A computational system can be causally connected to
its domain. This means that the system and its domain
are linked in such a way that if one of the two changes,
this leads to an effect upon the other.

• A meta-system is a computational system that has as its
domain another computational system, called its object-
system. [. . . ] A meta-system has a representation of its
object-system in its data. Its program specifies meta-
computation about the object-system and is therefore
called a meta-program.

• Reflection is the process of reasoning about and/or act-
ing upon oneself.

• A reflective system is a causally connected meta-system
that has as object-system itself. [. . . ] When a system is
reasoning or acting upon itself, we speak of reflective
computation.

Although meta-interpreters have been used intensively in
the implementation of reflective systems, metaprogramming
is not reflection. But note that, in reflection, accessing the
metalevel representation is done on purpose, to perform some
task. The metaprogramming approach gives the program-
mer access to this representation because he has his hand
on the meta-interpreter, which he can change to perform the
task he was originally intending to do. Reflection goes the
other way around. An implementation pre-exist to which we
have no access, except from the program itself, by reflection.
Metaprogramming played an important role in the imple-
mentation of reflective languages because, in practice, it is
difficult to access the metalevel information in an existing
language, where typically the implementation is completely
sealed. A meta-interpreter is interesting because it is much
easier to make its data available to the programs it runs than
modifying the language’s implementation.

Maes said [Mae87]: “The main difference between a meta-
level architecture and a reflective architecture is that a meta-
level architecture only provides static access to the represen-
tation of the computational system, while a reflective archi-
tecture also provides a dynamic access to this representa-
tion.” The kind of change we can do in the metaprogram-
ming approach is to modify the meta-interpreter prior the
execution of the program. Reflection on the other hand al-
lows the program to change its behavior while running, de-
pending upon its current execution (such as the inputs and
intermediate results).

In computational reflection, a distinction is traditionally
made between structural and behavioral reflection. The
two concepts are defined as follows:

• structural reflection implies the ability of the language
to provide a complete reification of both the program cur-
rently executed as well as a complete reification of its ab-
stract data types1;

1e.g., in a language providing lists as ADT, structural reflection
calls for providing the programs with a complete reification of the
implementation of the list ADT, whose internal representation or op-
erations could then be modified.



• behavioral reflection implies the ability of the language
to provide a complete reification of its own semantics (pro-
cessor) as well as a complete reification of the data it uses
to execute the current program.

The distinction has been made mainly because it is much
simpler to implement structural reflection efficiently than
behavioral reflection. For instance, languages such as Lisp
and Prolog have included some structural reflection features
for years. Accordingly, behavioral reflection is much less
spreaded, but it is the main focus of today and future re-
search.

3 Design of reflective programming languages

3.1 Functional programming

3.1.1 Lisp quote and its rationalization

Lisp has always enjoyed a powerful metalinguistic facility in
its quoting mechanism. Quote introduces a simple metalevel
designation for reified expressions, by using the data rep-
resentation of that expression as designator. Moreover, the
data representation “returned” by quote is the quoted object
itself, and most of the time a list, the fundamental ADT of
Lisp, which makes it inspectable and mutable at run-time
using the usual list primitives. Quote is not only responsible
for the ability of a Lisp program to manipulate expressions
as data, it also make sure the data can be executed after
a quick decoding making a true Lisp expression out of its
quoted representation. This decoding is automatically done
by the eval function. But, this behavior is considered anoma-
lous [Mul92], and indeed it makes it difficult to manipulate
the reified expressions.

When Smith invented computational reflection and imple-
mented it in Lisp, he was aware of this problem. He first pro-
posed 2-Lisp to address issues related to structural reflection
and the representation relationship between a computational
process and its subject domain. Crucial to 2-Lisp is a ra-
tionalization that clearly distinguishes levels of designation
between the metalevel data representation and the base level
code representation. In 2-Lisp, no automatic decoding ap-
pears in the evaluation process. Instead, two primitives, UP
and DOWN, help to mediate the metastructural hierarchy,
and there is no other mean to remove quotes. More recently,
Muller [Mul92] proposed M-Lisp with a similar motivation.
M-Lisp is claimed to be a simpler, or rationalized, 2-Lisp.

3.1.2 3-Lisp and behavioral reflection

Perhaps because the 2-Lisp solution to self-reference was too
complicated (according to Muller), Smith’s work is much
more famous for his second language 3-Lisp implemented in
collaboration with des Rivières [dRS84], which introduced
computational reflection. The goal of 3-Lisp is to give pro-
grams the ability to reason about and modify their own com-
putation represented by an expression, an environment and
a continuation. The reflective system proposed by 3-Lisp is
described as follows:

• a reflective tower is constructed by stacking a virtually
infinite number of meta-circular interpreters, each one ex-
ecuting the one under itself and the bottom one (level 1)
executing the end-user program (level 0).

• reflective computations are initiated by calling reflective
procedures, which are procedures of three parameters;
upon invocation, the reflective procedure is passed the

argument structure of the current expression (its own in-
vocation), the current environment and the current con-
tinuation.

The reflective tower is needed to overcome the well-known
problem of introspective overlap: if a reflective procedure is
passed the current environment and continuation, its own
execution modifies these data. The 3-Lisp solution is to exe-
cute the reflective procedure not as the code in the program
but as code within the interpreter itself. A reflective pro-
cedure p invoked at level n is thus executed on the current
arguments, environment and continuation of level n (which
are manipulated by level n + 1’s meta-interpreter) by the
meta-interpreter of level n + 2. Since a reflective procedure
can call another reflective procedure, we potentially need an
infinite number of levels in the reflective tower. In practice,
in the same way there exists well-formed recursions whose
individual execution always need a finite number of recur-
sive calls, a well-formed reflective program will need a finite
number of tower levels for each of its runs.

It is worth notice that Smith called 3-Lisp a procedurally
reflective language. In Smith’s mind, the word procedural
reflection stands for systems where there is a strict imple-
mentation relationship between the object system and its
metalevel. The approach is not the only possible one for re-
flection in general, but it is the one of choice for most reflec-
tive languages. When the metalevel data structures are the
same that are actually used to run the object level, the causal
connection essential to reflection comes for “free” since the
object level and the metalevel representation evolve in per-
fect synchronization. Another important aspect of 3-Lisp is
that an implementation has been given that avoids the actual
levels of meta-intepretation by using a shifting-level proces-
sor [dRS84]. This implementation, although extremely oper-
ational (the words are Friedman’s and Wand’s ones [WF86]),
was a first non-reflective description of the reflective tower.

3.1.3 3-Lisp followup

In the first of a series of three papers [FW84, WF86, WF88],
Friedman and Wand undertook the task of implementing the
kind of behavioral reflection offered by 3-Lisp but without re-
sorting to a reflective tower. This idea led to a mini-language
called Brown featuring reflective procedures, through which
we can access a reification of the program’s run-time data
structure (expression, environment and continuation) as well
as the inverse operation now called reflection which rein-
stalls reified data structures into the interpreter. On the
other hand, Brown (and its successors) completely avoided
the representation and designation issues raised by 2-Lisp.

Brown84 turned out to implement a subset of the reflec-
tive capability exhibited by 3-Lisp that didn’t need to resort
to towers at all. Challenged by Smith to extend their tech-
niques to the tower itself, Friedman and Wand proposed in
the second and third paper a denotational account of re-
flective towers using metacontinuations. One of the salient
feature of this new Brown86 is that it models the reflec-
tive tower with only one unique interpreter active at any
time (a property that Danvy and Malmkjaer called single-
threadedness [DM88]). In this context, a metacontinuation
can be thought as a list of continuations, each one repre-
sentating the state of an interpreter above the one currently
active. Brown86 defines reification the act of calling a re-
flective procedures that receives a reification of the current
arguments, environment and continuation as actuals. It de-
fines reflection as the act of reinstalling an expression, an
environment and a continuation in the interpreter one level
below in the tower. When a piece of code reflect, a new in-



terpreter is spawn with the given initial state and the state
of the one currently executing is pushed into the metacon-
tinuation. When the interpreter below invokes a reflective
procedure, a thunk is built from the reflective procedures
and is passed to the metacontinuation to be run one level
higher in the tower. On the other hand, if the interpreter
below returns, the first continuation in the metacontinua-
tion is restored so that the intepreter above is restarted at
the point it stopped when the lower one was spawned.

The Brown experience gave the whole reflection commu-
nity much insights into computational reflection, but it actu-
ally failed to reach its goal to give a denotational account of
reflection in a way we will explain in Section 4. After Fried-
man and Wand, Danvy and Malmkjaer pursued the work
and proposed the language Blond [DM88]. Blond is similar
to Brown except in some specific aspects. Brown turned out
to be flawed in the treatment of environments, a problem
solved in Blond. Also, Blond made a distinction between
what it calls pushy and jumpy continuations in the man-
agement of metacontinuations. Three other languages con-
tributed to this school of reflection: Stepper [Baw88], and
more recently IR [JF92] and Black [AMY93].

3.2 Logic programming

All the different issues mentionned earlier (esp. in 3.1) have
also been studied in logic programming but under different
names. We look at them (and also new one) in the following.

In logic programming, structural reflection has been the
first one to be introduced. The main concern at that time
was to facilitate the problem of managing system’s database
of clauses. The predicates clause/1, assert/1, retract/1
and call/1 are good examples of procedures used in Prolog
for structural reflection because with them, goals and clauses
are treated as first-class objects represented by terms. Com-
putational reflection has been studied to respect the con-
ceptual basis of logic programming that is logic programs
are theories and execution is deduction. The need is for
an ability to explicitly refer to theories (leading to struc-
tural reflection) and to “discuss” derivability from their the-
ories (leading to computational reflection). The main ap-
proach was then to construct a system which amalgamates
an object-level logic system L with a metalanguage M suit-
able for formalizing the derivability relation of the original
object language system. The resulting system is more ex-
pressive and problem-solving power than the original object
language system alone. As said in [Bow82] (and similarly in
[Wey80]), the amalgamation of languages L and M consists
of L and M together with

1. a naming relation (similar to the quote mechanism of
functional programming) which associates with every lin-
guisting expression of L at least one variable-free term of
M . This relation constitutes the causal connection needed
for reflective systems.

2. a representation of the derivability relation ⊢L by means
of a predicate symbol Demo in the context of sentences Th
of M .

3. the following rules called reflection principles
[Fef62] [Bow82] (sometimes called downward and
upward reflection [LMN91] respectively) given by:

Th ⊢M Demo(A′, B′)

A ⊢L B
and

A ⊢L B

Th ⊢M Demo(A′, B′)

A reflective system which respects these particularities is
said to be an amalgamating language [Bow82] [Dem94].

Some reflective systems have been created in a way that they
could be called amalgamating systems: metaProlog [Bow85],
Reflective Prolog [CL89] and the different 3-Prolog languages
[Dem94]2. These systems are concerned mainly with the
representation of the predicate Demo presented earlier.

However all these amalgamating systems are relatively in-
efficient (because of the meta-programming techniques they
use). For this reason, some people have tried to create
non-amalgamating ones. Although the latters are all much
less powerful than the preceding ones because the pred-
icate Demo is not entirely explicitly represented (by Th),
they integrate reflective mechanisms useful for certains log-
ical applications. Examples of the non-amalgamating sys-
tems are FOL [Wey80], R-Prolog* [Sug90], CPU [LMN91]
and ALPES-IProlog [BCL+88]. Most of these systems have
tried especially to resolve practically and theoritically prob-
lems related to the logical representation of goals, clauses
and variables.

3.2.1 Quote mechanism

As we said earlier, in reflective systems a quote mechanism
is essential. But this naming relation has been implemented
in different ways and with different power. The most nat-
ural implementation is to represent all reflective objects as
logical terms in the language. This technique is used in most
Prolog implementation, and it expects object-level variables
that are represented by meta-level variables. This repre-
sentation is said to be non-ground. In the language Gödel
[HL94], a ground representation (object-level variables are
represented by ground logical terms) is preferred to make
the quote mechanism completely uniform (all meta-objects
are terms) and most powerful. This quote mechanism is used
in the reflective systems metaProlog of Bowen (and a simi-
lar language GCP [Chr90] which is not said to be reflective
even if it has some reflective features) and in some of the
set of 3-Prolog languages. However the ground representa-
tion is not efficient (not until now maybe in a near future
[HL94] by using efficient concurrency and partial evaluation
[Gal93]) because in the Demo definition, all the substitution
procedure must be simulated, a process which is very co-
suming in time and space. For this reason, most reflective
languages uses a quote mechanism less powerful but much
more efficient (for example by using non-ground representa-
tion). This is the case of the systems R-Prolog* (it uses lists
as meta-level representation for reflective objects), Reflective
Prolog, CPU, ALPES-IProlog and some simple 3-Prolog lan-
guages.

In some languages, the quote mechanism is also used to
create an explicit distinction (as two types) between object-
level terms and meta-level terms. This is the case for the lan-
guages R-Prolog*, metaProlog and some 3-Prolog languages.
In metaProlog, the distinction is made in a similar way than
in Gödel (where all terms are statically typed) by consider-
ing the term used for representing object-level variables as
special and unique.

3.2.2 Reflective mechanism

It has to be noted that all but one reflective languages
use explicit reflective mechanism with reflective pro-
cedures. These procedures (called reflective predicates

2In this paper, we have written several different reflective languages
with different degrees of reification: 3-PrologP reifies the object-
level program clauses (and possibly Demo), 3-PrologU reifies the sub-
stitutions made by unification, 3-PrologR reifies the resolvent and
3-Prolog* reifies all the different previous structures and implements
an infinite reflective tower as in 3-Lisp.



in R-Prolog* and 3-Prolog) could be specified explicitly in
the program (by goals). Or some predicates are said to
be reflective because they contain in their definition some
explicit use of upward and downward reflection which are
specific predicates creating causal connection and access to
reflective structures. This is the case of the languages CPU
and ALPES-IProlog. Only one language (Reflective Prolog
[CL89]) uses an implicit reflective mechanism which is
made by defining reflective operations as metalevel defini-
tions and taking care of reflective calls by an extended reso-
lution procedure.

3.2.3 Reification and reflection

The last issue most important for reflective languages is
causal connection. In logic programming, this mechanism
is implemented in two different ways: by using special predi-
cates or by using specific parameters to reflective predicates.
The former creates an indirect causal connection and
the latter, a direct one. An indirect causal connection is a
transfert in two directions (usually up and down) of reflective
information made at different time of execution. A direct one
is rather about at the same moment. In most logical reflec-
tive languages, indirect causal connection is used because
it is easier to implement. For example, in CPU [LMN91],
the reflection mechanism triggers the computation from the
object-level to the meta-level domain by upward reflec-
tion (a predicate reflect up) and vice versa downward
reflection (a predicate reflect down). These two mecha-
nisms are not executed at the same time as they should be
done virtually: upward reflection is made first (to “read”
reflective structures) and later in the execution, downward
reflection is made (to “write” them back). Comparable in-
direct causal connection mechanisms are used in metaPro-
log, ALPES-IProlog and Reflective Prolog. In one way in-
direct causal connection could be compared with reflection
and reification mechanisms used in functional programming.

The direct causal connection is used in R-Prolog* and the
different languages 3-Prolog. It works as follows: reflective
predicates receive additional parameters containing the dif-
ferent reflective information (down) and other additional pa-
rameters (up) which represent reflective information after
modification (by reflective predicates execution).

3.3 Object-oriented programming

Two major trends single out in the history of object-oriented
programming. The first, examplified by Simula-67, C++,
Eiffel and Beta, is shaped by software engineering and mod-
ularity principles. It led to typed languages and is charac-
terized by a relatively rigid object model alien to reflective
concepts. The second trend, born in the world of untyped
and already partly structurally reflective languages. It led
to much more flexible languages where classes are typically
treated as first-class entities. This trend is examplified by
Smalltalk as well as object-oriented extensions of Lisp: Fla-
vors, Loops, Ceyx, and CLOS. This second trend is playing
a major role in reflection.

3.3.1 Structural reflection in OOP

The evolution of flexible object-oriented languages has been
first marked by a quest for the right metaclass/class/instance
model that led to a full notion of structural reflection in what
concerns the object model of the language. In summary, the
history stands as follows. Smalltalk-72 already included the
idea that everything should be an object, even a class. The

class introduces structural reflection in the sense that it de-
scribes the structure of an object. Smalltalk-72 made classes
first-class entities, but yet they were considered as instances
of themselves. Besides including inheritance, Smalltalk-76
introduced metaclasses, classes of classes. Note that in OOP,
each object has a class, which is called its instantiation class.
As an object, the Smalltalk-76 class has its own instantiation
class called its metaclass. Smalltalk-80 pursued this idea,
but imposed some important limits on metaclasses [Coi87]:

• metaclasses do not have names and they are treated by
the system in such a way to hide them as much as possible
from the end-user.

• all metaclasses are instances of the same class Metaclass,
hence the number of metalevels is fixed and metalinks
cannot be created indefinitely

Loops [BKK+86] propose a meta-architecture similar to
the one of Smalltalk, except that it allows metaclasses to be
created explicitly. On the other hand, metaclasses are still
distinct from classes and a maximum number of metalinks is
still fixed. The ObjVLisp model [Coi87] has been proposed to
unify metaclasses and classes and to allow an indefinite num-
ber of metalinks to be created. After all, the only difference
between classes and metaclasses is that the latter’s instances
can themselves have instances (i.e. they are classes). The
ObjVlisp model is minimal, since it is based on two classes
only, Object and Class. It also solves the potential infinite
metaregression by making Class its own instance. ObjVLisp
is a model that has been applied first to an object system
written in Lisp, but it has also been applied to Scheme, to
Smalltalk (Classtalk [BC89]), and to an object-oriented ex-
tension of Prolog (ObjVProlog [MLV89, MLV90]).

3.3.2 Towards full reflection

Unsurprisingly, Smalltalk is one of the most reflective lan-
guage to date, unfortunately mostly ignoring itself as such.
With its “object-to-the-bottom” principle, Smalltalk pio-
nnered a design principle basic to reflection, which is that ev-
erything should be expressed in the terms of the language it-
self. On the other hand, Smalltalk was not designed with the
aim of making this organization so manifest in the language
to incite people to use and modify it, a goal pursued by re-
flection. For reflection practionners, it became obvious that
a static description of the language in terms of classes and
objects, although necessary to properly organize things, was
not enough to enable a full fledged reflective programming
paradigm. We need a manifest description of the protocols
activating the different objects in order to execute the pro-
gram. The Metaobject Protocol of CLOS [KRB91, GWB91]
tries to achieve exactly that. It does not only describe the
objects involved in the representation of the computational
process, it also exhibits the protocols responsible for the ac-
tual execution of the program.

3.3.3 Behavioral reflection in OOP

As we have seen, a behavioral reflection model must allow
programs to intervene in the current execution in order to
execute some reflective code that will analyse or modify the
course of events. In functional programming, 3-Lisp invented
reflective procedures for that. The vantage points where a
program can reflect in 3-Lisp is at procedure invocation. In
OOP, procedure invocation is traded for message passing.
Hence, it is natural to use message passing as vantage points
where to reflect, and to use methods to represent the re-
flective code. The execution of a message is divided in two



phases: a lookup phase to find the method that corresponds
to the message’s selector, and the apply phase which actu-
ally executes that method. Behavioral reflection in OOP has
been implemented mainly by giving the user the control over
these message passing mechanisms. This has been done in
two different ways:

• In traditional OOP languages such as Smalltalk, the mes-
sage passing mechanisms has been reified as: a lookup and
an apply method. These methods are typically held by a
meta-object to which is linked the object. Every message
sent to an object o is then transformed into a sequence of
two messages: a lookup message sent to the meta-object
of o that yields a method to which an apply message is
sent to invoke it. Reflective code can be implemented
by creating subclasses of standard meta-objects and re-
defining the lookup method and by creating subclasses of
the standard class describing methods and redefining the
apply method.

• In OOP languages based on the notion of generic func-
tion, such as CLOS, behavioral reflection has been intro-
duced by reifying the generic function invocation protocol,
making apply-generic-function itself a generic func-
tion. Reflective code can be implemented by defining sub-
classes of the standard class describing generic functions
and by redefining the method apply-generic-function
for these new classes.

3.4 Comparison

In the following, we initiate a comparison between the cur-
rent application of reflection to functional, logic and object-
oriented programming languages.

3.4.1 Structural reflection

Structural reflection in functional and logic programming
have concentrated on the issues of quoting as well as amal-
gamation of language and metalanguage. Lisp is not an
amalgamating language in the sense of Bowen [Bow82] be-
cause he requires an explicit representation of the language’s
processor. But the Lisp quote construct does amalgamate
language and metalanguage: it uses a term of the base lan-
guage to represent itself at the metalevel, albeit in a quoted
form. The work of Smith on 2-Lisp and Muller on M-Lisp
have focused on non-amalgamating representations, distin-
guishing between levels of designation that are mediated by
explicit conversion operations UP and DOWN. In logic pro-
gramming, amalgamation is intimately linked to the problem
of logic variables. When an amalgamation is used, the deduc-
tion at the metalevel becomes fragile. If the language allows
the terms to be looked at, nothing prevent the metalevel
from unifying base level variables to metalevel terms, which
would result in an absurd deduction (or even paradoxes, see
below). To rule out this eventuality, some languages have
adopted a type system that prevents the inappropriate mix-
ing of metalevel and base level entities.

It is worth noticing that quoting, or converting through UP
in 2-Lisp of M-Lisp, acts as if a piece of code is translated
into a metalevel representation. This metalevel representa-
tion may be inspected or modified, and then translated back
into base level code. However, at any time, a particular piece
of code exists only in one representation, either the base level
or the metalevel one. Hence, there is no need for something
like a causal connection link between two different repre-
sentation. In functional programming, the manipulation of
functions as list have been abandoned a long time ago. In

Prolog, the manipulation of (interpreted) code is still used3,
but again only one representation at a time exists. If a mod-
ification has to be made to a clause, the program first seizes
it as a term, modifies it without connection to the actual
program, and then reinstalls the new clause.

In OOP, structural reflection has been dominated by the
quest for a complete and minimal metalevel model to rep-
resent instances, classes and metaclasses. Classes are used
to reason about the structure of their instances, but there is
no distinct representation of an instance when it is refered
to at the metalevel. In this sense, OOP does also amalga-
mate language and metalanguage. The quote construct of
Lisp, associated with the use of lists to represent the base
level term, corresponds to the object’s identity and its class
as first-call entity. In Smalltalk, having access to the list of
instance variables declared in the class allows the program
to access the object as a vector: we can compute the in-
dex of the instance variable and send the object messages
like instVarAt: and instVarAt:Put:. Therefore, instead of
having two representations, we have two different protocol to
access the same information: the standard one at the base
level (which usually encapsulates the state of the object) and
one at the metalevel (which sees the object as a vector of val-
ues). Compared to the quote construct, the OOP provides
two points of view (base and meta) on the same piece of
information, which are obviously causally connected.

OOP languages like Smalltalk and CLOS have also in-
cluded an extensive representation of programs with ob-
jects. In Smalltalk, methods are represented by instances
of the class CompiledMethod. These objects do not store the
source code itself but rather a bytecode representation. The
source code is easily accessible (the browser uses it directly)
because the instance of CompiledMethod stores a pointer
into the source file where the corresponding method is de-
fined. Note that a change to a previously compiled method
must be explicitly recompiled to be taken into account by
Smalltalk; there is no causal connection between the textual
representation and the bytecode representation. There is a
causal connection between the bytecode representation and
the physical’s processor code actually run by Smalltalk, but
this is a different story that goes beyond the present paper.
CLOS follows a similar patterns with its generic functions
and methods implemented as CLOS objects.

3.4.2 Behavioral reflection

Behavioral reflection has been divided into access to the lan-
guage’s processor on one hand, and access to the actual data
used to run the program on the other hand. We now look at
these two issues in turn.

Ideally, all reflective languages should provide the pro-
grams with a complete reification of the language’s processor.
A representation of the processor should be given in terms of
the language itself, which could be modified by the program
to be adapted to its own execution. This ideal has been tried
in languages of the three paradigms without great success,
mainly because of a lack of efficiency (or lack of suitable im-
plementation techniques to render it efficient). For example,
3-Lisp does not reify the processor itself. Its functional suc-
cessors have essentially followed the same trend, as well as
the object-oriented ones except some attempts around the
reification of apply methods. In logic programming, on the
other hand, the reification of the derivability relation has
been the focus of several works. But by now, very few still

3Mainly because asserts and retracts are the only means to mem-
orize results across backtracking.



work on it, mainly for efficiency reasons.4

Admittedly, making the language processor fully accessible
is a formidable challenge to our current implementation tech-
nology. An interesting approach recently explored is to pro-
vide the users with an open compiler through they could in-
troduce modifications to the language’s semantics [LKRR92].
This approach has similar properties as the metaprogram-
ming approach using metainterpreters: modifications can be
done once before the program execution, so they cannot de-
pend upon the current inputs or intermediate results. In
Smalltalk, the compiler is part of the program run-time sys-
tem, so it is theoretically possible to recompile part of the
program at run-time, thus obviating the previous remark.

Several languages have been proposed with a less powerful
model of behavioral reflection, yet giving the programs access
to the processor’s run-time data. In functional programming,
3-Lisp have popularized the reification of the standard func-
tional processor’s registers containing the current expression
(actually the argument structure), environment and contin-
uation. A reflective procedure is passed these informations
upon invocation. Reflective procedures are a weaker means
to modify the language processors since their semantics can
be viewed as actually inserting new lines of code into the
processor itself. The same kind of approach has been tried
successfully in the logic programming paradigm.

Moreover, two alternatives have been tried as far as the
pair of opposite operations reification-reflection is concerned.
Automatic pairing consists to have reflective procedure re-
ceiving the run-time data as parameters and to reinstall them
automatically when the reflective procedure returns control
to the interpreter. The other alternative, the manual one,
consists to provide two primitives, one that reads the data
and returns it in a reified form, and the second that takes
a reified representation of the data and reinstalls it into the
processor’s internal data structure.

A last point concerning the comparison between logic,
functional and object-oriented behavioral reflection concerns
the presence or absence of reflective towers. Pionnered by 3-
Lisp, it was not obvious that reflective towers were involved
in other forms of behavioral reflection, such as the one imple-
mented in OOP languages. Interestingly, des Rivières [dR90]
has shown that the CLOS MOP includes in fact a reflective
tower hidden within its reification of the generic function in-
vocation protocol. A little later, Malenfant et al. [MDC94]
have shown a similar result for languages using a more tradi-
tional lookup◦apply reflective protocol also give rise to reflec-
tive towers. Hence, reflective towers seem to be intimately
linked to the current model of behavioral reflection, no mat-
ter what is the underlying programming paradigm.

3.4.3 Methodology of reflective computation

Ideally, a reflective language should support a methodology
of reflective computation giving its users as much flexibility
as possible. It should be possible to modify the behavior of
some construct for the whole execution of a program, or for
short period of (execution) time. It should also be possible
to modify the behavior of some construct for all the program
only for some of its subparts. None of the language currently
proposed achieves this level of flexibility.

In functional programming and logic programming, the
main efforts revolved around reflective procedure that are
called at some point during the computation. Upon the end

4Some people still work on making the language Gödel (which rei-
fies the full derivability relation [HL94]) as efficient as Prolog by using
partial evaluation and parallel implementation techniques. Unfortu-
nately this is not achieved yet.

of this reflective computation, the base level is restarted per-
haps in a new state resulting from the reflective computation
itself. All the meta-interpreters in the towers are the same
and stay unchanged during the whole execution. As a re-
sult, the kind of reflective computation of these models have
been restricted to punctual intervention during the execu-
tion. 3-Prolog [Dem94] is a notable exception to this since
it allows the program to specify that some reflective predi-
cates must be called repeatedly, without having to explicitly
insert calls to them within the program code. A repeated
reflective predicate will be called between each reduction of
the 3-Prolog metalevel solver. No other language based on
reflective procedures considered this kind of behavior.

In OOP, the main efforts revolved around local reflection.
In the lookup◦apply approach, lookup methods are redefined
locally for some objects only while apply methods are rede-
fined locally for some methods only. Similarly, in the reified
generic function approach, the invocation protocol is changed
locally, in a per generic function way. As a result, the kind
of reflective computation you can do is also restricted; it is
awkward to change one aspect of the implementation for all
the objects. An open research problem is to decide what is
the scope of a change in the lookup and apply methods and
reflective computation in general [Fer89]. Should they be
attached to individual objects, to classes (and apply to all
their instances), to metaclasses (and apply to the instances
of all its class instances) to individual messages (and apply
only to one call)?

As noted previously, the ideal complete reification of lan-
guage’s processor has stayed out of reach mainly for effi-
ciency reasons. Consequently, modifications spawning over
the whole program execution are difficult to implement.
With the reified compiler approach, it becomes possible to
modify the semantics of the language in a per construct ba-
sis. However, very few such experiences have been reported
yet.

4 Formal notions for Reflection

We discuss here of formal notions used to characterize re-
flection in programming languages of the three different
paradigm, preceded by a historical discussion of reflection
in logic freely inspired by [Per85, Per88], [Wey80], [Bow82],
[Fef62] and [Cos90].

4.1 Historical discussion

Gottlieb Frege developed the first formal quantificational
logic over a period of more than two decades culminating
in 1903. The idea was to have a universal language for
logic. For Frege, an object c and the properties P it may
have were all objects to be reasoned about in the same
way, i.e., with the same basic rules and notations. Frege
had certain comprehension axioms that specifically created
object-notations “P” for P , and stated that sentences us-
ing properties as predicates could be equivalently rephrased
using properties as objects. These axioms in effect state
a relationship between a name and what it names [Per85]:
Has(c, “P”) ↔ P (c) or equivalently, but closer to Frege’s
notation: c ∈ {x|P (x)} ↔ P (c).

In the same year Bertrand Russell showed that Frege’s sys-
tem was inconsistent. Russell then proposed that objects be
arranged in a hierarchy with different notations and rules,
thus avoiding the possibility of self-reference that led to the
inconsistency in Frege’s system. The resulting “typed” (anal-
ogy could be made with the notion of reflective tower which is
also a way to avoid inconsistency in programming languages)



has as its first level of notations precisely that of Frege, but
without the damaging axioms that created objects out of
properties at the first level. For Russell, properties of first-
level objects are to be viewed as second-level objects. For
this reason we refer to first-order logic and higher-order log-
ics. However as we know many significant concepts cannot
be expressed at all with levels. The original simplicity and
plausibility of Frege’s approach has then continued to attract
interest, and much of modern logic has been motivated by
efforts to revise it to preserve its desirable features while re-
moving inconsistency. But what seems to be needed is an
avoidance of separated levels altogether, so that all concepts
are treated at the same (first) level. In fact it appears rea-
sonable to allow a certain number of levels to be collapsed
into first-order logic, and leave the rest out. It would not be
desirable to collapse all levels into first-order logic because
it is just what causes Russell’s paradox. The main problem
was thus addressed in logic as the need to find a way to col-
lapse all levels into one without contradiction, i.e. the need
to have a self-referential or universal language. In [Per85], it
has been said that quotation seems necessarily involved at
some point if we are to have a self-describing language and
to treat logical terms as some sort of first-class entities.

In a same way, other reflective notions (other than the
ones going back to famous Gödel incompleteness theorems
in mathematical logic) have been introduced related to sym-
bolic logic in the sixties. The main idea was concerned with
the “reflection principles” mentioned earlier. The concept of
reflection principle was introduced by Feferman [Fef62] where
it was intended as “the description of a procedure for adding
to any set of axioms A certain new axioms whose validity
follows from the validity of the axioms A and which formally
express, in the language of A, evident consequences of the
assumption that all the theorems of A are valid”. Later in
[Kre68], different reflection principles are discussed for es-
tablishing the complexity of different axiomatic systems. In
particular, Kreisel says:

“Turning now to uses of reflection principles we recall
two from the literature. First given a system S that has
been recognized to be sound, reflection principles provide
a systematic method for constructing stronger systems
[. . . ]. Second, they provide a method for comparing the
strength of formal systems. Thus, if S ⊆ U (where U
is another system) and if the reflection principle RS

5

can be proved in U then U has more theorems than S.
What makes reflection principles useful is that they have
a clear intuitive meaning, and so, if such a principle is
provable in U , we have a good chance of finding a proof.”

4.2 Logic for computation

A more pragmatic form of reflection principles, based on a
different naming mechanism, was proposed by Weyhrauch
[Wey80] and then in [Bow82]. We have already discussed the
reflective principles presented in the latter. In practice, this
approach leads to explicit reflection, that is, explicit calls to
Demo must appear in clauses to specify that a goal should be
attempted at the metalevel. These results remind clearly the
need of meta-programming facilities to amalgamate object-
level with some meta-level languages.

In Perlis [Per85], a theory of “quotation” and “unquota-
tion” is presented to refer to certain statements as true and
false. The author concentrates on the importance of the roles
of truth and self-reference in commonsense reasoning. In his
following article [Per88], he has showed that modal logics

5A suitable one that is called local reflection principle for S by the
author.

are on no firmer ground than first-order ones when equally
endowed with substitutive self-reference. Thus his work has
tried to understand the relationship between self-reference
and modal logic.

4.2.1 Declarative semantics in the logical style

The next attempts to formalize of reflection are very close
to the classical Horn-clause language semantics [Llo87]. In
[Cos90], the declarative and procedural semantics of the Re-
flective Prolog [CL89], which, on the basis of a naming mech-
anism (that allows the representation of terms and atomic
formulas), makes a different use of amagamating languages’
reflection, both procedurally and semantically. Declarative
semantics is defined in a model-theoretic fashion, providing
a least model semantics based on the definition of a con-
cept of Reflective Herbrand Model of a theory. The least
reflective Herbrand model is then characterized as the least
fixpoint of a suitable mapping, in order to provide a link
between the declarative and procedural semantics of a pro-
gram. Derivation by resolution is extended to include forms
of implicit reflection to shift between levels. Extended reso-
lution is proved sound and complete with respect to the least
reflective Herbrand model of a program.

In [Sug90], a declarative semantics of R-Prolog* is dis-
cussed. Because computational reflection is a sort of proce-
dural notion, the usual declarative semantics given as logical
consequence of programs cannot be adopted. In order to in-
corporate a procedural aspect of reflective computation, the
notion of interpretations and models is extended based on the
equivalence classes of syntactic objects. They prove sound-
ness and completeness of their R-refutation mechanism with
respect to the declarative semantics defined. However, that
reflective operations in R-Prolog* could lead to somewhat
dangerous situations which are not studied semantically.

In [Chr90], a declarative semantics of a meta-programming
language (called GCP ) concerned with metagoals is pro-
posed. Although this language does not say offering com-
putational reflection, it has a good structural reflection by
using a kind of ground representation and also it is explic-
itly compared with metaProlog [Bow85]. The development
of the semantics presented is quite traditional [Llo87] ex-
cept that the Herbrand interpretations defined are said to
be concerned with metagoals instead of with goals. It seems
however that it is similar to the analysis of meta-programs
made in [HL89] and [HL94].

4.3 Semantics in the functional style

In Section 3.1, we have presented the work of Friedman
and Wand with the development of the different versions of
Brown in response to 3-Lisp. In fact, as mentioned earlier,
Wand and Friedman tried to settle a denotational account
of reflective towers [FW84], which culminated with [WF88].
Smith has defended for a long time that the denotational
framework was not the right tool to approach the problem.
Although he essentially argued that denotational semantics
was forcing the distinction in levels of designation to disap-
pear, and thus evacuating the essence of reflection, the final
word came from the observation that the compositionality
principle of denotational semantics is irremediably impaired
by reflection [DM88]. Hence, the denotational semantics ap-
proach, even though it has been helpful to understand the
nature of reflection, cannot fully express its semantics. New
approaches must be sought to reach the goal.



4.4 Rewriting systems

Recently, Friedman and Mendhekar [MF93] as well as Malen-
fant, et al. [MDC94] independently applied the theory of
rewrite systems to this end, with encouraging results. The
goal of Friedman and Mendhekar is to develop a program-
ming logic for reflective languages. They introduce a reflec-
tive extension of the λv-calculus and provide it with a simple
operational semantics where reflective operations are based
on the underlying rewrite systems. They get a reflective lan-
guage that includes an infinite tower model similar to the
one described by Smith. An equational logic from this se-
mantics is developped. However the resulting logic is shown
to be weak because of the reflective properties.

Malenfant, Dony and Cointe have formalized the use of
the lookup◦apply reflective protocol using the theory of pri-
ority rewrite systems. In these systems, each rewrite rule
is assigned a priority and the reduction process garantees
that among all rules applicable to the reduction of a redex,
the one with higher priority will be effectively used. The
authors have exhibited a mapping that, applied at each mes-
sage sending point, transforms the reflective object-oriented
program into a rewrite system, which is shown to be ter-
minating. The theory applies only to the reflective protocol
itself, not to the rest of the computation (method execution),
but a complete rewriting semantics can be envisaged.

4.5 New promising approaches

Over the last few years, the categorical approach has gained
considerable acceptance especially in the lazy functional pro-
gramming world. Originally proposed by Moggi as a conve-
nient framework for structuring the semantics of languages
[Mog89] [Mog91], they were popularized by Wadler [Wad90]
[Wad92] and others as a technique for structuring functional
programs. In fact, monads can be used to give the semantics
of various computational effects such as state, exceptions,
or I/O in applicative programming languages. Would it be
possible to give a monadic semantics of computational re-
flection? Filinski [Fil94] says:

“The correspondence principle can be embodied in an
introspective language extension which could be called
monadic reflection by analogy to computational re-
flection, given by two operators:

Γ ⊢ E : Tα

Γ ⊢ µ(E) : α
and

Γ ⊢ E : α

Γ ⊢ [E] : Tα

For any E : Tα, µ(E) reflects the value of E as an “effect-
ful” computation of type α. Conversely, given a general
computation E : α, [E] reifies it as the corresponding
“effect-free” value of type Tα.”

Note that the two operators mentioned are quite compa-
rable to the reflection principles exposed in the earlier Sec-
tion 3.2 on logic programming.

Recently a lot of research is made to introduce new formal
calculi based on a categorical semantics. In [Mog91], it is
said that “the logical approach (to express these new cal-
culies compared with the more commun operational and de-
notational approach) gives a consequence relation ⊢, namely
Ax ⊢ A iff the formula A is true in all models of the set of
formulas Ax, which can deal with different programming lan-
guages (e.g. functional, imperative, non-deterministic) in a
rather uniform way, by simply changing the set of axioms Ax,
and possibly extending the language with new constants”.
This tendency to use a logical approach based on categorical
notions seems to be quite promising to study programming

languages and particularly computational reflection . Some
people [HD94] have already tried to reason in the new logical
frame proposed by Moggi [Mog91] and they say about it the
following lines that corroborates in a way with the idea that
monads could be used to model computational reflection.

“Moggi’s framework seems to provide a solid basis for
studying both the relation between implicit and explicit
representations of control and the relation between im-
plicit and explicit representations of state, in a typed
setting.”

However much more research should be done to find the
right relation between monadic reflection and computational
reflection.

Finally, Cartwright and Felleisen [CF94] introduce a new
format for denotational language specifications, extended
direct semantics, that accommodates orthogonal exten-
sions (as reflective mechanism) of a language without chang-
ing the denotations of existing phrases. It is not yet clear
how the new approach could be use to formalize reflective
languages. Further research must be done.

5 Conclusion

In this paper, we have described the different approaches
to reflection in three major programming paradigms: logic,
functional and object-oriented programming. We have com-
pared them and pointed out similarities as well as fundamen-
tal differences. We have also defined the main concepts of
computational reflection and presented some historical de-
velopment of the idea of reflection in logic, as well as recent
attempts at formalizing the concept of reflection.

It is our hope that this comparison, albeit incomplete, will
help building bridges among the different research commu-
nities. If it encourages them to share their respective accom-
plishments in order to cross-fertilize their work, our goal will
be fully achieved.
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