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Abstract. The increasing importance being placed on software measurement has led to an increased amount of
research developing new software measures. Given the importance of object-oriented development techniques,
one specific area where this has occurred is cohesion measurement in object-oriented systems. However, despite
a very interesting body of work, there is little understanding of the motivation and empirical hypotheses behind
many of these new measures. It is often difficult to determine how such measures relate to one another and for
which application they can be used. As a consequence, it is very difficult for practitioners and researchers to obtain
a clear picture of the state-of-the-art in order to select or define cohesion measures for object-oriented systems.

This situation is addressed and clarified through several different activities. First, a standardized terminology
and formalism for expressing measures is provided which ensures that all measures using it are expressed in a fully
consistent and operational manner. Second, to provide a structured synthesis, a review of the existing approaches
to measure cohesion in object-oriented systems takes place. Third, a unified framework, based on the issues
discovered in the review, is provided and all existing measures are then classified according to this framework.
Finally, a review of the empirical validation work concerning existing cohesion measures is provided.

This paper contributes to an increased understanding of the state-of-the-art: a mechanism is provided for
comparing measures and their potential use, integrating existing measures which examine the same concepts in
different ways, and facilitating more rigorous decision making regarding the definition of new measures and the
selection of existing measures for a specific goal of measurement. In addition, our review of the state-of-the-art
highlights several important issues: (i) many measures are not defined in a fully operational form, (ii) relatively
few of them are based on explicit empirical models as recommended by measurement theory, and (iii) an even
smaller number of measures have been empirically validated; thus, the usefulness of many measures has yet to be
demonstrated.
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1.0. Introduction

The market forces of today’s software development industry have begun to place much more
emphasis on software quality. This has led to an increasingly large body of work being
performed in the area of software measurement, particularly for evaluating and predicting the
quality of software. In turn, this has led to a large number of new measures being proposed
for quality design principles such as cohesion. Modules of a high quality software design,
among many other principles, should obey the principle of high cohesion. Stevens et al.,
who first introduced cohesion in the context of structured development techniques, define
cohesion as a measure of the degree to which the elements of a module belong together. In
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a highly cohesive module, all elements are related to the performance of a single function.
Such modules are hypothesized to be easier to develop, maintain, and reuse, and to be less
fault-prone. Some empirical evidence exists to support this theory for systems developed
by structured and object-based techniques; see, e.g., (Card, 1986; Card, 1985), and (Briand
et al., 1994).

In object-oriented software, classes replace modules, with methods and attributes as their
elements. In this context, cohesion is the degree to which the methods and attributes of
a class belong together. Again, recent research has led to a large number of new cohe-
sion measures for object-oriented systems being defined. However, because cohesion is
a complex software attribute in object-oriented systems (e.g., there are several different
mechanisms which are considered to contribute to the cohesion of a class), and there has
been no attempt to provide a structured synthesis, our understanding of the state-of-the-art is
poor. For example, because there is no standard terminology and formalism for expressing
measures, many measures are not fully operationally defined, i.e., there is some ambiguity
in their definitions. As a result, it is difficult to understand how different cohesion measures
relate to one another. Moreover, it is also unclear what the potential uses of many existing
measures are and how these different measures might be used in a complementary manner.
The fact that there also exists little empirical validation of existing object-oriented cohesion
measures means the usefulness of most measures is not supported.

To address and clarify our understanding of the state-of-the-art of cohesion measurement
in object-oriented systems requires a comprehensive framework based on a standard ter-
minology and formalism. This framework can then be used (i) to facilitate comparison
of existing cohesion measures, (ii) to facilitate the evaluation and empirical validation of
existing cohesion measures, and (iii) to support the definition of new cohesion measures
and the selection of existing ones based on a particular goal of measurement. Analogous
research for coupling measurement is described in Briand, Daly, and W¨ust (1996). The cou-
pling framework presented in that paper is considered to be complementary to the cohesion
framework presented here.

The paper is organized as follows. Section 2.0 summarizes the current state of cohesion
measurement in object-oriented system and provides detailed motivation for the need for the
research performed in this paper. Section 3.0 introduces the notation and formalism required
to conduct this research. Section 4.0 provides a comprehensive review and structured
synthesis of existing object-oriented cohesion frameworks and measures. The results of
this review are then used to define a new unified framework for cohesion measurement in
object-oriented systems in Section 5.0. In Section 6.0, a review of empirical validation
studies of cohesion measures takes place.

2.0. Motivation

Object-oriented measurement has become an increasingly popular research area. This is
substantiated by the fact that recently proposed in the literature are (i) several different
frameworks for coupling and cohesion and (ii) a large number of different measures for
object-oriented attributes such as coupling, cohesion, and inheritance. While this is to be
welcomed, there are several negative aspects to the mainly ad hoc manner in which object-
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oriented measures are being developed. As neither a standard terminology or formalism
exists, many measures are expressed in an ambiguous manner which limits their use. This
also makes it difficult to understand how different measures relate to one another. For
example, there are many different decisions that have to be made when defining a cohe-
sion measure—these decisions have to be made considering the measurement goal and by
defining an empirical model based on clearly stated hypotheses. Unfortunately, for many
measures proposed in the literature these decisions and hypothesis are not documented. It
is therefore often unclear what the potential uses of existing measures are and how different
cohesion measures could be used in a complementary manner to obtain a more detailed
picture of the cohesion of classes in an object-oriented system. In short, our understanding
of existing cohesion measures is not what it should be.

Several authors have introduced different approaches and proposed measures to char-
acterize cohesion in object-oriented systems, e.g., Chidamber and Kemerer (1991, 1994),
Hitz and Montazeri (1995), Bieman and Kang (1995), Henderson-Sellers (1996), Lee et
al. (1995), Briand, Morasca, and Basili (1993, 1994). Eder et al. define a framework
aimed at providing qualitative criteria for cohesion; they also assign relative strengths to
different levels of cohesion they identify within this framework (Eder, Kappel, and Schrefl,
1994). However, neither this framework nor the different approaches used have character-
ized existing measures to the different dimensions of cohesion that have been identified.
Therefore, the negative aspects highlighted above are still very prevalent ones. In our review
of the literature, for example, we found 15 different measures1 of object-oriented cohesion.
Consequently, it is not difficult to imagine how confusing the overall picture actually is.

To make a serious attempt to improve our understanding of object-oriented cohesion mea-
surement we have to integrate all existing approaches into a unique theoretical framework,
based on a homogenous and comprehensive formalism. A review of existing measures has
to be performed, and these measures have to be categorized according to the unified frame-
work. This framework will then be a mechanism with which to compare measures and their
potential use, integrate existing measures which examine the same concepts in a different
manner, and allow more rigorous (and ease of) decision making regarding the definition of
new measures and the selection of existing measures with respect to their utility. It should
facilitate the evaluation and empirical validation of cohesion measures by ensuring that spe-
cific hypotheses are provided which link cohesion measures to external quality attributes.
It should also facilitate identification of dimensions of cohesion which thus far have been
overlooked, i.e., for which there are no measures defined. Finally, the framework must be
able to integrate new cohesion measures as they are defined in the future. In that sense both
the formalism and the framework must be extensible.

3.0. Terminology and Formalism

In the past, research within the area of software measurement has suffered from a lack of
(i) standardized terminology and (ii) a formalism for defining measures in an unambiguous
and fully operational manner (that is, a manner in which no additional interpretation is re-
quired on behalf of the user of the measure). As a consequence, development of consistent,
understandable, and meaningful software quality predictors has been severely hampered.
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For example, Churcher and Shepperd (1995a) and Hitz and Montazeri (1996) have iden-
tified ambiguities in members of the well referenced object-oriented suite of measures by
Chidamber and Kemerer (1994). To remedy this situation it is necessary to reach a con-
sensus on the terminology, define a formalism for expressing software measures, and, most
importantly, to use this terminology and formalism. Of course, the level of detail and scope
of the terminology and formalism required are subject to the goal to be achieved.

To rigorously and thoroughly perform a review and a structured synthesis of software
cohesion measures we seek to define a terminology and formalism that is implementation
independent and can be extended as necessary. This will allow all existing work to be
expressed in a consistent, understandable, and meaningful manner and allow the measures
reviewed to be expressed as operationally defined (additional interpretation of ambiguous
measures is given when required). A disadvantage of this approach is that the reader must
first be presented with the formalism before the review can begin in a meaningful fashion.
Given the motivation for such an approach, however, it is argued that this is the only method
to facilitate a rigorous and thorough review.

To prevent the reader having to read a complete terminology list we have provided a
glossary in Appendix A, which includes definitions applicable to object-oriented systems
and to measurement in general. This can be referenced as required. Where appropriate the
terminology defined by Churcher and Shepperd (1995b) has been used.

To express the cohesion measures consistently and unambiguously the following formal-
ism based on set theory is presented. Note that for the sake of brevity we assume that
the reader is familiar with common object-oriented principles and needs no explanation of
them. For those readers not so familiar, simple explanations by means of examples are
provided in Appendix B.

System

Definition 1. System, classes, inheritance relationships
An object-oriented system consists of a set of classes,C. There can exist inheritance

relationships between classes such that for each classc ∈ C let

• Parents(c) ⊂ C be the set of parent classes of classc.

• Children(c) ⊂ C be the set of children classes of classc.

• Ancestors(c) ⊂ C be the set of ancestor classes of classc.

• Descendents(c) ⊂ C be the set of descendent classes of classc.

Methods

A class has a set of methods.
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Definition 2. Methods of a class
For each classc ∈ C let M(c) be the set of methods of classc.

A method can be either virtual or non-virtual and either inherited, overridden, or newly
defined, public or non-public, all of which have implications for measuring cohesion. It is
therefore necessary to express the difference between these categories.

Definition 3. Declared and implemented methods
For each classc ∈ C, let

• MD(c) ⊆ M(c) be the set of methodsdeclared in c, i.e., methods thatc inherits but
does not override or virtual methods ofc

• MI (c) ⊆ M(c) be the set of methodsimplemented in c, i.e., methods thatc inherits but
overrides or non-virtual non-inherited methods ofc

whereM(c) = MD(c) ∪ MI (c) andMD(c) ∩ MI (c) = ∅.

Definition 4. Inherited, overriding, and new methods
For each classc ∈ C let

• MINH(c) ⊆ M(c) be the set of inherited methods ofc.

• MOVR(c) ⊆ M(c) be the set of overriding methods ofc.

• MNEW(c) ⊆ M(c) be the set of non-inherited, non-overriding methods ofc.

Definition 5. Public and non-public methods
For each classc ∈ C, we define

• Mpub(c) ⊆ M(c) the set of public methods ofc, and

• Mnpub(c) ⊆ M(c) the set of non-public methods ofc.

It is Mpub(c) ∩ Mnpub(c) = ∅ andMpub(c) ∪ Mnpub(c) = M(c). A public method can be
accessed by any other method in the system. A non-public method can only be accessed by
a certain subset of methods (for instance, in C++, a method declaredprivate in classc can
only be invoked by methods implemented in classc). Because the restrictions which apply
to the access of non-public methods are language dependent, and because these restrictions
are not important for the discussion of measures later on, we make no assumptions about
the exact restrictions that apply to the access to non-public methods.

For notational convenience, we also define the set of all methods in the system,M(C).

Definition 6. Set of all methods in the system

M(C) is the set of all methods in the system and is represented asM(C) =⋃c∈C M(c).
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Methods have a set of parameters which, as they also influence cohesion measurement,
must be defined.

Definition 7. Parameters
For each methodm ∈ M(C) let Par(m) be the set of parameters of methodm.

Method Invocations

To measure the cohesion of a class,c, it is necessary to define the set of methods that
m ∈ M(c) invokes and the frequency of these invocations. Method invocations can be
either static or dynamic; it is necessary to distinguish between these. Consequently, for
each methodm ∈ M(C) the following sets are defined.

Definition 8. SIM(m) the set of statically invoked methods ofm
Let c ∈ C, m ∈ MI (c) andm′ ∈ M(C). Thenm′ ∈ SIM(m) ⇔ ∃d ∈ C such that

m′ ∈ M(d) and the body ofm has a method invocation wherem′ is invoked for an object
of static type classd.

Definition 9. NSI(m,m′) the number of static invocations ofm′ by m
Let c ∈ C, m ∈ MI (c) and m′ ∈ SIM(m). NSI(m,m′) is the number of method

invocations inm wherem′ is invoked for an object of static type classd andm′ ∈ M(d).

Definition 10. PIM(m) the set of polymorphically invoked methods ofm
Let c ∈ C, m ∈ MI (c) and m′ ∈ M(C). Then m′ ∈ PIM(m) ⇔ ∃d ∈ C such

that m′ ∈ M(d) and the body ofm has a method invocation wherem′ may, because of
polymorphism, be invoked for an object of dynamic typed.

Definition 11. NPI(m,m′) the number of polymorphic invocations ofm′ by m
Let c ∈ C, m ∈ MI (c) and m′ ∈ PIM(m). NPI(m,m′) is the number of method

invocations inm wherem′ can be invoked for an object of dynamic type classd and
m′ ∈ M(d).

As a result of polymorphism, one method invocation can contribute to theNPI count
of several methods. Note that∀m ∈ M(C): SIM(m) ⊆ PIM(m), and therefore∀m,
m′ ∈ M(C): NSI(m,m′) ≤ NPI(m,m′).

Indirect Method Invocations

For a methodm ∈ M(C), SIM(m) andPIM(m) are sets of methods directly invoked bym.
We also need to define the sets of methods indirectly invoked bym. Methodm indirectly
invokes methodm′, if there are methodsm1,m2, . . . ,mn such thatm directly invokesm1,
m1 directly invokesm2, etc., andmn directly invokesm′. This idea underlies the following
definition.
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Definition 12. Indirectly invoked methods
∀m ∈ M(C), let

SIM∗(m) = {m′ | m′ ∈M(C) ∧ ∃n ≥ 1∃m1,m2, . . . ,mn ∈ M(C): m1 = m∧mn = m′ ∧
∀i, 1< i ≤ n: mi ∈ SIM(mi−1)}

PIM∗(m) = {m′ | m′ ∈M(C) ∧ ∃n ≥ 1∃m1,m2, . . . ,mn ∈ M(C): m1 = m∧mn = m′ ∧
∀i, 1< i ≤ n: mi ∈ PIM(mi−1)}

Attributes

Classes have attributes which are either inherited or newly defined. Attributes are modelled
using a similar formalism to that of methods.

Definition 13. Declared and implemented attributes
For each classc ∈ C let A(c) be the set of attributes of classc. A(c) = AD(c) ∪ AI (c)

where

• AD(c) is the set of attributes declared in classc (i.e., inherited attributes).

• AI (c) is the set of attributes implemented in classc (i.e., non-inherited attributes).

Again, for notational convenience, we define the set of all attributes in the system,A(C).

Definition 14. A(C) the set of all attributes
A(C) is the set of all attributes in the system and is represented asA(C) =⋃c∈C A(c).

Attribute References

Methods may reference attributes. It is sufficient to consider the static type of the object for
which an attribute is referenced because attribute references are not determined dynamically.
For the discussion of measures later, it must be possible to express for a method,m, the set
of attributes referenced by the method:

Definition 15. AR(m)
For eachm ∈ M(C) let AR(m) be the set of attributes referenced by methodm.

Types

Attributes and parameters have types which all can contribute to cohesion. The program-
ming language provides a basic set of built-in types; the user can define new class types as
well as traditional types (e.g., records, enumerations). The traditional user-defined types
may be defined locally in a class, or they may be of global scope.
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Definition 16. Basic types, local and global user-defined types

• BT is the set of built-in types provided by the programming language (e.g., integer,
real, character, string).

• UDT is the set of user-defined types of global scope (e.g., records, enumerations).

• For each classc ∈ C, T(c) is the set of types defined within the scope of classc.

The type of an attribute or parameter either is a class, a built-in type or a user-defined type.
Thus, the setT of available types in the system is defined as follows:

Definition 17. T the set of available types
The setT of available types in the system isT = BT ∪ UDT∪C ∪ (⋃c∈C T(c)).

The next definition determines how the types of attributes and parameters will be denoted.

Definition 18. Types of attributes and parameters

For each attributea ∈ A(C) the type of attributea is denoted byT(a) ∈ T .

For each methodm ∈ M(C) and each parameterv ∈ Par(m) the type of parameterv
is denoted byT(v) ∈ T.

No distinction is made between pointers, references, or arrays and the type they are derived
from.

The notation and formalism defined, a mechanism is now available to express existing
cohesion measures in a consistent and precise manner.

4.0. Survey of Cohesion Measurement Approaches and Measures

In this section we perform a comprehensive survey and critical review of existing approaches
and measures for cohesion in object-oriented systems. The section is organized as follows.
In Section 4.1, we present existing approaches and measures for cohesion. In Section 4.2,
the approaches are discussed and compared. In Section 4.3, the cohesion measures derived
from the various approaches are analyzed, which includes theoretical validation of these
measures.

4.1. Existing Approaches to Measure Cohesion

Eder et al. (1994) propose a framework aimed at providing qualitative criteria for cohe-
sion. Chidamber and Kemerer (1991, 1994), Hitz and Montazeri (1995), Bieman and Kang
(1995), Henderson-Sellers (1996), Lee et al. (1995), and Briand et al. (1993, 1994) each
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propose different approaches to measure cohesion in object-oriented or object-based sys-
tems and define various cohesion measures accordingly. We discuss these frameworks and
approaches in the following sections.

4.1.1. Framework by Eder et al. (1994)

Eder et al. (1994) proposed a framework aimed at providing comprehensive, qualitative
criteria for cohesion in object-oriented systems. To that end, they adapted existing frame-
works for cohesion in the procedural and object-based paradigm to the specifics of the
object-oriented paradigm. They distinguish between three types of cohesion in an object-
oriented system: method, class and inheritance cohesion. For each type, various degrees
of cohesion exist. In the following, we will briefly explain the types of cohesion.

1. Method cohesion. Eder et al. apply Myers’ classical definition of cohesion (Myers,
1978) to methods. Elements of a method are statements, local variables and attributes of the
method’s class. They define seven degrees of cohesion, based on the definition by Myers
(1978). From weakest to strongest, the degrees of method cohesion are:

• Coincidental: The elements of a method have nothing in common besides being within
the same method.

• Logical: Elements with similar functionality such as input/output handling are collected
in one method.

• Temporal: The elements of a method have logical cohesion and are performed at the
same time.

• Procedural: The elements of a method are connected by some control flow.

• Communicational: The elements of a method are connected by some control flow and
operate on the same set of data.

• Sequential: The elements of a method have communicational cohesion and are con-
nected by a sequential control flow.

• Functional: The elements of a method have sequential cohesion, and all elements
contribute to a single task in the problem domain. Functional cohesion fully supports
the principle of locality and thus minimizes maintenance efforts.

2. Class cohesion.Class cohesion addresses the relationships between the elements of a
class. The elements of a class are its non-inherited methods and non-inherited attributes.
Eder et al. use a categorization of cohesion for abstract data types by Embley and Woodfield
(1987) and adapt it to object-oriented systems. There are five degrees of class cohesion.
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From weakest to strongest, these are:

• Separable: The objects of a class represent multiple unrelated data abstractions. For
instance, the cohesion of a class is separable, if the methods and attributes can be grouped
into two sets such that any method of one set invokes no methods and references no
attributes of the other set, and vice versa.

• Multifaceted: The objects of a class represent multiple related data abstractions. The
relation is caused by at least one method of the class which uses all these data abstrac-
tions.

• Non-delegated: There exist attributes which do not describe the whole data abstraction
represented by a class, but only a component of it.

• Concealed: There exist some useful data abstraction concealed in the data abstrac-
tion represented by the class. Consequently, the class includes some attributes and
methods which might make another class. For instance, consider a classEmployeehav-
ing, amongst others, attributesDayOfBirth, MonthOfBirth, YearOfBirth, DayOfHire,
MonthOfHire, andYearOfHire. These attributes describe a concealed data abstraction,
“date.” In this case, we would define a new classDatewith attributesDay, Monthand
Year, and replace the date attributes in classEmployeeby two attributesBirthDateand
HireDateof typeDate.

• Model: The class represents a single, semantically meaningful concept.

3. Inheritance cohesion.Like class cohesion, inheritance cohesion addresses the relation-
ships between elements of a class. However, inheritance cohesion takes all the methods and
attributes of a class into account, i.e., inherited and non-inherited. Inheritance cohesion is
strong if inheritance has been used for the purpose of defining specialized children classes.
Inheritance cohesion is weak, if it has been used for the purpose of reusing code. The
degrees of inheritance cohesion are the same as those for class cohesion.

Within this framework, an analysis of the semantics of a given method or class is required
to determine its degree of method, class or inheritance cohesion. Such an analysis is likely
to requires a good knowledge of the system’s application domain, it is subjective, and it
cannot be automated. If we use this framework to derive cohesion measures, the resulting
measures will not be automatically collectable. The definitions of the degrees of cohesion in
this framework should be used as guidelines to derive syntactically-based measures which
are measuring approximations of these degrees of cohesion in a particular context.

4.1.2. Approach by Chidamber and Kemerer (1991, 1994)

Chidamber and Kemerer define cohesion measures which are theoretically based on the
ontology of objects by Bunge (1977, 1979). Within this ontology, thesimilarity of things is
defined as the set of properties the things have in common. Chidamber and Kemerer adapt
this idea to define the cohesion of a class as thedegree of similarityof its methods. The
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degree of similarity of a setM of methods is the number of attributes used in common by all
methods inM , formally denoted byσ(M) = |⋂m∈M AR(m)|. Chidamber and Kemerer
argue thatσ(MI (c)) itself is not a suitable measure for the cohesion of a classc: if all but
one method inc use the same setA ⊂ AI (c) of attributes, and the remaining method only
uses attributes inAI (c) − A, we haveσ(MI (c)) = 0, even though most methods ofc are
similar. Instead, Chidamber and Kemerer propose a cohesion measure LCOM defined as
follows (Chidamber and Kemerer, 1991):

Consider a ClassC1 with methodsM1,M2, . . . ,Mn. Let {Ii } = set of instance
variables (note: attributes in our terminology) used by methodMi . There aren
such sets{I1}, . . . , {In}.
LCOM = The number of disjoint sets formed by the intersection of then sets.

LCOM is an inversecohesion measure. A high value of LCOM indicates low cohesion
and vice versa. The above definition of LCOM has been interpreted in different ways by
different authors. The interpretation by Hitz and Montazeri (1995) will be discussed in
Section 4.1.3. Henderson-Sellers offers the following interpretation (Henderson-Sellers,
1996): LCOM′ = |{Ii ∩ I j = ∅ | ∀i, j, i 6= j }|, i.e., the number of pairs of methods in
classc having no common attribute references. Using our formalism, we define LCOM’ as
follows (and refer to this definition as LCOM1):

Definition 19 (Measure LCOM1).

LCOM1(c)=|{m1,m2} | m1,m2 ∈ MI (c) ∧m1 6=m2 ∧ AR(m1) ∩ AR(m2) ∩ AI (c)=∅}|

Note that this definition only considers methodsimplementedin classc, and that only ref-
erences to attributesimplementedin classc are counted. This is an additional interpretation
of our own; the influence of inheritance on the cohesion of a class has not been addressed
by Henderson-Sellers nor by Chidamber and Kemerer.

In Chidamber and Kemerer (1994), Chidamber and Kemerer give a new definition of
LCOM:

Consider a ClassC1 with methodsM1,M2, . . . ,Mn. Let {Ii } = set of instance
variables used by methodMi . There aren such sets{I1}, . . . , {In}. Let P =
{(Ii , I j ) | Ii ∩ I j = ∅} andQ = {(Ii , I j ) | Ii ∩ I j 6= ∅}. If all n sets{I1}, . . . , {In}
are∅ then letP = ∅.

LCOM=
{|P| − |Q|, if |P| > |Q|

0, otherwise

LCOM is the number of pairs of methods in a class having no common attribute references,
|P|, minus the number of pairs of similar methods,|Q|. However, if|P| < |Q|, LCOM is
set to zero. The definition of this version of LCOM is almost operational. Again, it is not
stated whether inherited methods and attributes are included or not. Using our formalism,
we define this measure as follows:
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Definition 20 (measure LCOM2).

Let P =
{∅, if AR(m)= ∅ ∀m∈M1(c)
{{m1,m2} |m1,m2∈MI (c)∧m1 6=m2∧AR(m1)∩AR(m2) ∩ AI (c)= ∅}, else

Let Q = {{m1,m2} | m1,m2 ∈ MI (c) ∧m1 6= m2 ∧ AR(m1) ∩ AR(m2) ∩ AI (c) 6= ∅}.
Then LCOM2(c) =

{|P| − |Q|, if |P| > |Q|
0, otherwise

4.1.3. Approach by Hitz and Montazeri (1995)

Hitz and Montazeri base their approach to measure cohesion on the work of Chidamber
and Kemerer. They interpret the definition of LCOM in Chidamber and Kemerer (1991) as
follows (Hitz and Montazeri, 1995):

Let X denote a class,I X the set of its instance variables, andMX the set of its
methods. Consider a simple, undirected graphGX(V, E) with V = MX and
E = {(m, n) ∈ V × V | ∃i ∈ I X: (m accessesi ) ∧ (n accessesi )}. LCOM is then
defined as the number of connected components ofGX.

This definition is almost operational. It is not stated whether inherited methods and attributes
are included or excluded in the setsI X and MX. We rewrite the definition of Hitz and
Montazeri using our formalism:

Definition 21 (measure LCOM3).
Let Gc = (Vc, Ec) be an undirected graph with verticesVc = MI (c) and edgesEc =
{{m1,m2} | m1,m2 ∈ Vc ∧ AR(m1) ∩ AR(m2)AI (c) 6= ∅}. LCOM3(c)is the number of
connected components ofGc.

Again, our definition considers only methods and attributes implemented in classc.
Hitz and Montazeri identified a problem withaccess methodsfor LCOM3. An access

method provides read or write access to an attribute of the class. Access methods typically
reference only one attribute, namely the one they provide access to. If other methods of the
class use the access methods, they may no longer need to directly reference any attributes
at all. These methods are then isolated vertices in graphGc. Thus, the presence of access
methods artificially decreases the class cohesion as measured by LCOM3. There is no
empirical justification for this artificial loss of cohesion. To remedy this problem, Hitz and
Montazeri propose a second version of their LCOM measure. In this version, the definition
of graphGc is changed as follows: there is also an edge between vertices representing
methodsm1 andm2, if m1 invokesm2 or vice versa. We define this measure as follows.

Definition 22 (measure LCOM4).
Let Gc = (Vc, Ec) be an undirected graph with verticesVc = MI (c) and edgesEc =
{{m1,m2} | m1,m2 ∈ Vc ∧ (AR(m1) ∩ AR(m2) ∩ AI (c) 6=
∅ ∨ m1 ∈ SIM(m2) ∨ m2 ∈ SIM(m1))}. LCOM4(c) is the number of connected com-
ponents ofGc.
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In the case whereGc consists of only one connected component (LCOM4(c) = 1), the
number of edges|Ec| ranges between|Vc| − 1 (minimum cohesion) and|Vc| · (|Vc| − 1)/2
(maximum cohesion). Hitz and Montazeri define a measure Co (“connectivity”) which
further discriminates classes havingLCOM4(c) = 1 by taking into account the number of
edges of the connected component.

Definition 23 (measure Co).

Co(c) = 2 · |Ec| − (|Vc| − 1)

(|Vc| − 1) · (|Vc| − 2)
, whereEc andVc are defined as in Definition 22.

(The name of this measure in Hitz and Montazeri (1995) is “C”, not “Co”. We use “Co”
instead of “C” in order to avoid the name conflict with our setC of all classes in the system
in Definition 1).

We always haveCo(c) ∈ [0, 1]. Values 0 and 1 are taken for|Ec| = |Vc| − 1 and
|Ec| = |Vc|(|Vc| − 1)/2, respectively.

4.1.4. Approach by Bieman and Kang (1995)

The approach by Bieman and Kang to measure cohesion is also based on that of Chidamber
and Kemerer. They also consider pairs of methods which use common attributes. However,
the manner in which an attribute may be used is different. A methodm uses an attribute
a directly, if a ∈ AR(m). Methodm uses attribute a indirectly, ifm directly or indirectly
invokes a methodm′ which uses attributea: ∃m′ ∈ SIM∗(m): a ∈ AR(m′). Two methods
are called “connected”, if they directly or indirectly use a common attribute.

We define a predicatecau(m1,m2) (common attribute usage) which is true, ifm1,m2 ∈
M1(c) directly or indirectly use an attribute of classc in common:

cau(m1,m2)⇔
( ⋃

m∈{m1} ∪SIM∗(m1)

AR(m)

)
∩
( ⋃

m∈{m2} ∪SIM∗(m2)

AR(m)

)
∩ AI (c) 6= ∅

The measure TCC (tight class cohesion) is then defined as the percentage of pairs of public
methods of the class with common attribute usage:

Definition 24 (measure TCC).

TCC(c) = 2
|{{m1,m2} | m1,m2 ∈ MI (c) ∩ Mpub(c) ∧m1 6= m2 ∧ cau(m1,m2)}|

|MI (c) ∩ Mpub(c) | (|MI (c) ∩ Mpub(c)| − 1)

For the definition of LCC (loose class cohesion), letcau∗ be the transitive closure of
cau.
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Definition 25 (measure LCC).

LCC(c) = 2
|{{m1,m2} | m1,m2 ∈ MI (c) ∩ Mpub(c) ∧m1 6= m2 ∧ cau∗(m1,m2)}|

|MI (c) ∩ Mpub(c) | (|MI (c) ∩ Mpub(c)| − 1)

With respect to inheritance, Bieman and Kang state three options for the analysis of the
cohesion of a class:

(a) exclude inherited methods and inherited attributes from the analysis, or

(b) include inherited methods and inherited attributes in the analysis, or

(c) exclude inherited methods but include inherited attributes.

The above definitions of TCC and LCC conform to case (a). To define these measures
according to case (b), we would have to use the setsM(c) and A(c) instead ofMI (c) and
AI (c) in the definitions ofcau, TCCandLCC. For case (c), we only have to replaceAI (c)
by A(c) in the definition ofcau.

Bieman and Kang identified a problem with constructor methods for TCC and LCC.
Constructor methods provide the class attributes with initial values and therefore access
most or all of the class’ attributes. Ifmc∈ MI (c) is a constructor method which references
all attributes of the class(AR(mc) = AI (c)), thencau(mc,m) is fulfilled for any method
m ∈ MI (c) which references at least one attribute of classc (AR(m) 6= ∅). That is, the
presence ofmccreates many pairs of directly connected methods. Furthermore, ifm1 and
m2 are two methods which reference at least one, but not necessarily the same, attribute of
classc, thencau(m1,mc) andcau(mc,m2) are fulfilled, and thuscau∗(m1,m2). That is,
mc indirectly connects any two methods which use at least one attribute. We see that the
presence of a constructor method artificially increases cohesion as measured by TCC and
LCC, which is not empirically justified. Bieman and Kang therefore exclude constructors
(and also destructors) from the analysis of cohesion (Bieman and Kang, 1995).

4.1.5. Approach by Henderson-Sellers (1996)

Henderson-Sellers sets out to define a cohesion measure having the following properties:

• The measure yields 0, if each method of the class references every attribute of the class
(this situation is called “perfect cohesion” by Henderson-Sellers).

• The measure yields 1, if each method of the class references only a single attribute.

• Values between 0 and 1 are to be interpreted as percentages of the perfect value.

Henderson-Sellers proposes the following measure, which satisfies the above properties:

Consider a set of methods{Mi } (i = 1, . . . ,m) accessing a set of attributes{Aj }
( j = 1, . . . ,a). Let [. . .] the number of methods which access each datum be
µ(Aj ). [. . .]
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LCOM∗ =
1
a

∑a
j=1µ(Aj )−m

1−m

Again, it is unclear whether inherited methods and attributes are accounted for or not. Using
our formalism, we define this measure to be:

Definition 26 (measure LCOM5).

LCOM5(c) =
|MI (c)| − 1

|AI (c)|
∑

a∈AI (c)

|{m | m ∈ MI (c) ∧ a ∈ AR(m)}|

|MI (c)| − 1

4.1.6. Approach by Lee et al. (1995)

Lee et al. propose a set of cohesion measures based on information flow through method
invocations within a class. For a methodm implemented in classc, the cohesion ofm is the
number of invocations to other methods implemented in classc, weighted by the number
of parameters of the invoked methods. The more parameters an invoked method has, the
more information is passed, the stronger the link between the invoking and invoked method.
The cohesion of a class is the sum of the cohesion of its methods. The cohesion of a set of
classes simply is the sum of the cohesion of the classes in the set. Formally, these measures
can be defined as follows:

Definition 27 (measure ICH).

ICHc(m) =
∑

m′∈MNEW(c)∪MOVR(c)

(1+ |Par(m′)|) · NPI(m,m′),

ICH(c) =
∑

m∈MI (c)

ICHc(m), and

ICH(SS) =
∑
c∈SS

ICH(c).

4.1.7. Approach by Briand et al. (1993, 1994)

Briand et al. define a set of cohesion measures for object-based systems (such as Ada
implementations). In the following, we adapt these measures to object-oriented systems.
We make one simplification: the original measures were defined for so-called “software
parts”, i.e., a module or a hierarchy of nested modules. We define the adapted object-
oriented measures at the class level, but do not consider nested classes. Although some
programming languages allow the definition of nested classes, nesting of classes is not a
major issue in object-oriented design. It can be avoided by aggregation (defining attributes
as an instance of another class), which is one of the most important object-oriented design
concepts.



80 BRIAND, DALY AND W ÜST

For the adaption of the cohesion measures to object-oriented systems, we see a class
as a collection ofdata declarationsand methods. Data declarations are (i) local, public
type declarations (subset ofT(c)), (ii) the class itself (as an implicit, public type), and
(iii) public attributes (subset ofAI (c), which also includes constants). A data declaration
a DD-interactswith another data declarationb, if a change ina’s declaration or use may
cause the need for a change inb’s declaration or use. We say there is aDD-interaction
betweena andb.

Examples:

• If the definition of a public typet ∈ T(c) uses another public typet ′ ∈ T(c), there is a
DD-interaction betweent ′ andt .

• If the definition of a public attributea ∈ AI (c) uses a public typet ∈ T(c), there is a
DD-interaction betweent anda.

• If a public attributea ∈ AI (c) is an array and its definition uses public constant
a′ ∈ AI (c), there is a DD-interaction betweena′ anda.

DD-interactions need not be confined to one class. There can be DD-interactions between
attributes and types of different classes. The DD-interaction relationship is transitive. Ifa
DD-interacts withb andb DD-interacts withc, thena DD-interacts withc.

Data declarations also can interact with methods. There is aDM-interactionbetween
data declarationa and methodm, if a DD-interacts with at least one data declaration ofm.
Data declarations of methods include their parameters, return type and local variables. For
instance, if a methodmof classc takes a parameter of type classc, there is a DM-interaction
betweenm and the implicit type declaration of classc.

All DD-interactions between data declarations, and DM-interactions involving parameters
and return types can be determined from the class interface, and thus are available early in
the development process. We defineCI(c) (CI for cohesive interactions) to be the set of all
such DD- and DM-interactions.Max(c) is the set of all possible DD- and DM-interactions
in the class interface.

Definition 28 (measure RCI).

For all classesc ∈ C we defineRCI(c) = |CI(c)|
|Max(c)| .

RCI ranges between 0 and 1, where values 0 and 1 indicate minimum and maximum
cohesion, respectively.

At the end of the high level design phase, designers will usually have a rough idea of
which interactions there exist besides those that can be determined from the class interface.
Three cases are possible:

(a) Some interactions will be known to exist. We will denote the set of all known interac-
tions byK (c). Notice thatCI(c) ⊆ K (c).
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(b) Some interactions may or may not exist, the available information is not sufficient at
the current development stage. We denote the set of these unknown interactions by
U (c).

(c) The remaining interactions are known not to exist.

Using this additional information, we can define three more measures:

Definition 29 (measures NRCI, PRCI, ORCI).For all classesc ∈ C we define:

• The neutral ratio of cohesive interactions:NRCI(c) = |K (c)|/(|Max(c)| − |U (c)|),
(unknown interactions are not taken into account).

• The pessimistic ratio of cohesive interactions:PRCI(c) = |K (c)|/|Max(c)|,
(unknown interactions are considered as if they were known not to be actual interac-
tions).

• The optimistic ratio of cohesive interactions:ORCI(c) = (|K (c)| + |U (c)|)/|Max(c)|,
(unknown interactions are considered as if they were known to be actual interactions).

4.2. Comparison of Approaches

A precise comparison of the approaches shows there are differences in the manner in which
cohesion is addressed. One reason for this is the different objectives of the approaches. For
example, Briand et al. examined only early design information to investigate potential early
quality indicators while other authors investigated information mainly available at low level
design and implementation; hence differences are found in the mechanisms that make a
class cohesive. A second reason is that some of the issues dealt with by some authors are
considered to be subjective and too difficult to measure automatically. For example, the
degrees of method or class cohesion (addressed by Eder et al.) is not something which can
be easily determined automatically or even manually. The following subsections discuss in
detail the significant differences between the various approaches and what can be learned
from these differences.

4.2.1. Types of Connection

By “type of connection” we refer to the mechanisms that link elements within a class and
thus make a class cohesive. In the review of cohesion measures, we can distinguish two
categories:

• In the first category, we find measures focused on counting pairs of methods that use or
do not use attributes in common. Chidamber and Kemerer’s idea of “similar” methods
falls into this category; Hitz and Montazeri have reused this idea in their approach. The
approach by Bieman and Kang also is based on counting pairs of methods that access
attributes in common.
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• In the second category, measures capture the extent to which individual methods use
attributes or locally defined types (LCOM5, RCI), or invoke other methods (ICH).

It is possible to have one measure count different types of connections. For instance,
measures LCOM4, TCC and LCC are focused on counting pairs of methods using common
attributes, and method invocations.

The ICH suite of measures are based on method invocations solely. The attributes of
a class are not considered at all. This is in sharp contrast to the definitions of all other
measures.

4.2.2. Domain of the Measures

Most of the reviewed measures are defined at the class level. However, finer and coarser
domains are also conceivable.

• For an individual attribute or method, we could count the number of other class elements
to which it is connected, thus analyzing how closely related the attribute or method is
to other elements of its class. This could also be interpreted as the degree to which the
attribute or method contributes to the cohesion of its class. From such an analysis, we
could draw conclusions as to how well the attribute or method “fits” into the class, or
whether it should perhaps be moved to another class.

• We can quantify the cohesion of a set of classes or the whole system. This will be
discussed in Section 5.2.

The ICH suite of measures is an example how a measure defined at the method level is
scaled up to the class level and sets of classes. However, this done in a manner such that the
measures are additive, which may not be a desirable property of a cohesion measure (see
the theoretical validation of measures in Section 4.3.3 for further details).

4.2.3. Direct and Indirect Connections

Some of the approaches to measure cohesion include the analysis of indirectly connected
elements. Indirect connections are of potential interest when defining criteria for when to
break up a class. To illustrate this, we apply measures LCOM1 and LCOM3 to the example
classes depicted in Figure 1. In the figure, a classc is represented by a graphGc as in
Definition 21 of measure LCOM3: the vertices are the methods ofc, and there are edges
between similar methods, i.e., methods which use an attribute in common. This is the type of
connection both LCOM1 and LCOM3 are focused on. LCOM1 counts the number of pairs
of methods in a class with no common attribute references. Because each class in Figure 1
has six methods and five pairs of similar methods, we have LCOM1(c) = LCOM1(d), i.e.,
the classes are equally cohesive according to measure LCOM1. LCOM3(c) is defined as
the number of connected components of graphGc. In Figure 1, it is LCOM3(c) = 1 and
LCOM3(d) = 2, i.e., classc is more cohesive than classd according to measure LCOM3.
This reflects an important difference between classesc andd: in classc, each method is
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Figure 1. Example classes.

directly or indirectly connected with every other method. In classd, on the other hand,
there are pairs of methods which are not even indirectly connected. This may indicate that
the methods should not be encapsulated in the same class. Note, however, that there could
be other reasons why the methods should be encapsulated together in one class anyway,
e.g., because of method invocations from one connected component to the other.

Ideally, the graphGc consists of only one connected component (LCOM3(c) = 1). Hitz
and Montazeri remark, that classc can still be more or less cohesive. The number of edges
of graphGc can range betweenn − 1 (minimum cohesion) andn(n − 1)/2 (maximum
cohesion), wheren = |MI (c)| is the number of vertices ofGc. In other words, the
discriminative power of measures counting the number of connected components (such as
LCOM3 and LCOM4) is limited, because a connected component can show various degrees
of connectivity. Therefore, Hitz and Montazeri proposed measure Co, which is a normalized
count of the number of edges ofGc. Measure Co can be used to further discriminate classes
for which graphGc has only one connected component. However, using two measures to
completely determine the cohesion of a class has the drawback that cohesion is no longer
defined on an interval scale, but only on an ordinal scale. In addition, measure Co is not
necessarily a better cohesion measure since it may not be possible to define classes with
fully connected components.

TCC and LCC are also measures which take indirect connections into account, LCC
even in two different ways. First, both measures count pairs of “connected” methods, i.e.,
methods which directly or indirectly use a common attribute. Methodm uses an attributea
indirectly, if a is used by a method which is directly or indirectly invoked bym. Therefore,
TCC and LCC take indirect method invocations into account. TCC counts the number of
pairs of connected methods. It is therefore similar to measure Co, which counts the number
of pairs of “similar” methods. LCC counts the number of directly orindirectly connected
pairs of methods, and this is the second way in which indirect connections are accounted
for by LCC. This again is related to the idea of counting connected components in LCOM3
or LCOM4: Consider a graphG where vertices are methods and there are edges between
connected methods. Then, “two methodsm andn are indirectly connected” is equivalent
to “methodsm andn lie within the same connected component of graphG”. The condition
“each method is directly or indirectly connected to every other method” is equivalent to
“graph G consists of only one connected component”. A low value of LCC corresponds
with a large number of connected components ofG. In that respect, LCC is conceptually
similar to LCOM3 and LCOM4.



84 BRIAND, DALY AND W ÜST

Hitz and Montazeri observe (Hitz and Montazeri, 1995) that a graphGc consisting of
more than one connected component indicates separable class cohesion according to the
framework by Eder et al. (Section 4.1.1).

LCOM5 counts for each attribute how many methods access the attribute. Only direct
connections between methods and attributes are considered. In a completely cohesive class,
each attribute is accessed by every method. Whether such a design is desirable is unknown.

The RCI measures are a count of interactions between elements in the class. In a com-
pletely cohesive class, each element interacts with every other element. Because the in-
teraction relationship is transitive, there need not be a direct interaction between all pairs
of elements in order to have a maximum RCI. As a consequence, RCI does not have the
drawback of LCOM5 that direct interactions between all elements are required to get a
maximum value.

We summarize the results of this discussion:

• Indirect connections appear to be a better criterion than direct connections when indi-
cators for when to split up a class are needed.

• With direct connections, each element of a class needs to be directly connected to every
other element in order for the class to have maximum cohesion. This appears to be an
unrealistic requirement.

• Measures accounting for indirect connections are less discriminative; maximum cohe-
sion is possibly attained for a larger number of classes.

4.2.4. Inheritance

For the analysis of the cohesion of a class c, we have several options available concerning
the attributes and methodsc has inherited. Two straightforward options are:

(a) exclude inherited attributes and methods from the analysis, or

(b) include inherited attributes and methods in the analysis.

These two options form the distinction between class and inheritance cohesion in the frame-
work by Eder et al. (see Section 4.1.1). A child classc represents an extension of its parent
classd. If we exclude inherited attributes and methods, we analyze to what degree this
extension represents a single semantic concept. If we include inherited attributes and meth-
ods, we analyze whether classc as a whole still represents a single semantic concept. These
are two quite different aspects, and both should be considered.

Bieman and Kang offer a third option for the analysis of cohesion (Bieman and Kang,
1995):

(c) include inherited attributes, but exclude inherited methods from the analysis.

Bieman and Kang do not provide any rationale for this option.
A fourth alternative would be to exclude inherited attributes but include inherited methods.

This of course makes little sense, as inherited methods can only access inherited attributes.
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All of the measure definitions in Section 4.1 conform to case (a): inherited attributes and
methods are excluded. However, with the exception of measures TCC, LCC and ICH, this
is a result of our own interpretation of the measures’ original definition. In the original
definition of the RCI measures, inheritance is not addressed, because these measures were
defined in context of object-based systems. In the original definition of all other measures,
the influence of inheritance apparently has not been addressed.

Given the definitions in Section 4.1, we can easily derive new measures conforming to
case (b): in the definitions, the setsMI (c) andAI (c) (non-inherited attributes and methods)
simply have to be replaced by the setsM(c) and A(c) (all methods and attributes of the
class).

4.2.5. Access Methods and Constructors

In object-oriented design, classes usually have “access methods”. An access method pro-
vides read or write access to an attribute of the class. Access methods typically reference
only one attribute, namely the one they provide access to. Thus, many pairs of access
methods can be built, which do not use any common attributes. This constitutes a problem
for measures which count such pairs (i.e., LCOM1, LCOM2, and LCOM3).

In addition, if other methods of the class use the access methods, they may no longer
need to directly reference any attributes at all. Therefore, the presence of access methods
artificially decreases the class cohesion for measures based on method-attribute references.
In the definitions of LCOM4 and Co, this problem has been solved by adding method
invocations to graphGc, cf. Section 4.1.3. In the definitions of TCC and LCC, this problem
is circumvented by introducing “indirectly” used attributes: if a methodm invokes an access
method,m indirectly uses the attributes accessed by that access method.

Constructor methods provide the class attributes with initial values and therefore access
most or all of the class attributes. The presence of such a method constitutes a problem for
measures counting “similar” or “connected” methods and indirect connections (LCOM3,
LCOM4 and LCC). As explained in Section 4.1.4, the constructor method creates an indi-
rect connection between any two methods which use at least one attribute, and artificially
increases cohesion.

Destructors are less problematic, because they do not provide attributes with values and
therefore do not need to reference all attributes.

4.2.6. Summary and Conclusions

From the above discussion we can see that there exists a variety of decisions to be made
during the definition of a cohesion measure. It is important that decisions are based on the
intended application of the measure if the measure is to be useful. When no decision for a
particular aspect can be made, all alternatives should be investigated empirically. A second
observation is that because the different aspects of cohesion are widely independent of each
other, a large number of cohesion measures could be defined—this defines the problem
space for cohesion measurement research in object-oriented systems.
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4.3. Comparison of Measures

The comparison of cohesion measures and approaches is organized as follows. Section 4.3.1
introduces the criteria for comparing the measures. A summary of existing measures
according to these criteria is provided in Section 4.3.2 and conclusions are then drawn
about the state-of-the-art. Finally, Section 4.3.3 presents a theoretical validation of the
cohesion measures and summarizes the results of this section.

4.3.1. Criteria of Comparison of Measures

In this section, we provide a list of criteria required to allow an initial comparison of
measures to be performed and define the different levels of each criterion. These criteria
then form the basic structure for the summary presented in Table 1.

• Name: The name of the measure.

• Definition: The definition of the measure using the defined formalism. The original
definition of the measures are often ambiguous; hence, additional interpretation is
required to define them using the formalism. We provide where necessary the most
likely unambiguous alternative.

• Operationally defined(yes or no): Indicates if the original definition of the measure is
operational or not, i.e., was additional interpretation of the measure’s original definition
necessary to come up with the definition of the measure given in column “Definition”.

• Objectivity (subjective or objective): For an objective measure, the collected mea-
surement data do not depend on the person collecting the data, i.e., the measure is
automatable. For a subjective measure, the measurement data depend on the person
collecting it and hence is not automatable.

• Level of measurement(nominal, ordinal, interval or ratio): The type of scale the mea-
sure is defined on. The type of scale is determined by the admissible transformations
for the used empirical relation system (Fenton, 1991). However, rarely is the empir-
ical relation system used for cohesion provided with the measure. In such cases, the
indicated scale type reflects our intuitive judgment.

• Partially usable (An/HLD/LLD/Imp): This column and column “Usable” address the
question when, in the development process, the measures become applicable. For this
purpose, a generic object-oriented development process consisting of four development
phases is used: analysis, high-level design, low-level design, and implementation.
Details about these development phases can be found in Appendix C.
A measure is classed aspartially usableat the end of a development phase if the
information required for the data collection is available at that phase, but is subject to
refinement in later development phases. The column states the earliest development
phase at which the measure ispartially usable. Measurement values obtained at a
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development phase where the measure ispartially usableare only approximations;
their values are likely to change in subsequent development phases.

• Usable(An/HLD/LLD/Imp): A measure isusableat a given development phase if all
information required for data collection is available and stable, i.e., the information is
refined only to a limited extent in subsequent development phases. We state the earliest
development phase at which the measure isusable.

• Language specific: If the measure is specific to a particular programming language,
the language is provided. If a measure is language specific, this does not imply that the
measure is not applicable to other languages, but adapting the measure will be necessary
before it can be applied to other languages.

• Validation (th, emp, no): Indicates if and how the measure has been validated. There
is a distinction between:

• Theoretical validation (th): The authors have validated their measure theoretically,
usually by analyzing its mathematical properties. The analysis and results can be
found in the first publication referenced in the “source” column (see next item on
this list).

• Empirical validation (emp): The measure has been used in an empirical validation
investigating its causal relationship on an external quality attribute. For these
measures, the validation results are discussed in Section 6.0.

• Source: Literature references where the measure has been proposed.

4.3.2. Overview of Measures

An overview of the cohesion measures introduced in Section 4.1 is presented in Table 1.
Before discussing the individual measures in detail a number of simple, but important
observations can be made.

First, there is no measure in Table 1 which is classified “usable” at the analysis or HLD
phases. For measures classified “partially usable” at analysis or HLD only approximations
of the values that are obtained at LLD or implementation can be computed. Empirical
studies are required to analyze how accurate such approximations are and whether they are
useful predictors of external attributes.

Second, the original definitions of many of the measures are not fully operational, i.e.,
additional interpretation has been required to formalize these measures. Above all, the
measures are imprecise with respect to inheritance.

Third, many measures are neither validated theoretically or, more importantly, empiri-
cally. Consequently, little evidence exists to support the notion that the cohesion measures
are actually useful in terms of predicting relevant external product quality attributes. To
strengthen software measurement research and to convince practitioners of the usefulness
of software measures, a larger number of such validation studies must be performed.
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4.3.3. Theoretical Validation

In this section, we theoretically validate the cohesion measures in Table 1 with respect to
four cohesion properties defined by Briand, Morasca, and Basili (1996). The motivation
behind defining such properties is that a measure must be supported by some underlying
theory—if it is not, then the usefulness of that measure is questionable. The four cohesion
properties defined by Briand et al. are one of the more recent proposals to characterize
cohesion in a reasonably intuitive and rigorous manner. While these properties are not
sufficient to say that a measure which fulfills them all will be useful, it is likely that a
measure which does not fulfill them all is ill-defined.

In the following discussion, letCohesionbe a candidate measure for the cohesion of a
class or an object-oriented system. Relationships capture the connections within a class
on which the respective cohesion measure is focused. Consider, for instance, a measure
counting pairs of similar methods (methods which use an attribute in common). Then
there is a relationship between any two methods which use an attribute in common. For
a classc, the set of relationships within the class is denoted byRc. The set of all intra-
class relationships in an object-oriented system is defined asIR = ⋃c∈C Rc. We sayRc is
maximal, if all possible relationships within classc are present, i.e., it is not possible to add
a relationship to classc and thus obtain a new classc′ such thatRc ⊂ Rc′ , Rc 6= Rc′ . We
sayIR is maximal, ifRc is maximal∀c ∈ C.

Cohesion.1. Nonnegativity and Normalization. The cohesion [of a classc | of an object-
oriented systemC] belongs to a specified interval:

[Cohesion(c) ∈ [0,Max] | Cohesion(C) ∈ [0,Max]] .

Cohesion.2. Null value and maximum value. The cohesion [of a classc | of an object-
oriented systemC] is null if [ Rc | IR] is empty, and the cohesion [of a classc | of an
object-oriented systemC] is Max if [ Rc | IR] is maximal:

[Rc = ∅ ⇒ Cohesion(c) = 0 | I R = ∅ ⇒ Cohesion(C) = 0]

[Rc = maximal⇒ Cohesion(c) = Max | IR maximal⇒ Cohesion(C) = Max].

Cohesion.3.Monotonicity. LetC be an object-oriented system, andc ∈ C be a class inC.
We modify classc to form a new classc′ which is identical toc except thatRc ⊆ Rc′ , i.e.,
we added some relationships inc. Let C′ be the object-oriented system which is identical
to C except that classc is replaced by classc′. Then

[Cohesion(c) ≤ Cohesion(c′) | Cohesion(C) ≤ Cohesion(C′)].

Cohesion.4. Merging of unconnected classes. LetC be an object-oriented system, and
c1, c2 ∈ C two classes inc. Let c′ be the class which is the union ofc1 andc2. Let C′ be
the object-oriented system which is identical toC except that classesc1 andc2 are replaced
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by c′. If no relationships exist between classesc1 andc2 in C, then

[max{Cohesion(c1),Cohesion(c2)} ≥ Cohesion(c′) |Cohesion(C) ≥ Cohesion(C′)].

Cohesion.3 says that if a relationship is added to the system, cohesion must not decrease.
Cohesion.4 says that merging two unconnected classes must not increase cohesion (because
the union of these classes has little cohesion).

The LCOM measures LCOM1 to LCOM5 are inverse cohesion measures: a low value
indicates high cohesion and vice versa. Properties Cohesion.2 to Cohesion.4 are not ap-
propriate for these measures. In order to apply these properties to the LCOM measures, we
have to adapt the properties’ definitions. LetLack of Cohesionbe a candidate measure for
the (inverse) cohesion of a class or an object-oriented system.

Cohesion.2′. Lack of Cohesion[of a classc | of an object-oriented systemC] is zero if
[Rc | IR] is maximal, and it isMax, if [ Rc | IR] is empty:

[Rc = ∅ ⇒ Lack of Cohesion(c) = Max | IR= ∅ ⇒ Lack of Cohesion(C) = Max]

[Rc maximal⇒ Lack of Cohesion(c) = 0 | IR maximal⇒ Lack of Cohesion(C) = 0].

Cohesion.3′. Adding a relationship to the system must not increaseLack of Cohesion:

[Lack of Cohesion(c) ≥ Lack of Cohesion(c′) |
Lack of Cohesion(C) ≥ Lack of Cohesion(C′)].

Cohesion.4′. Merging two unconnected modules must not decreaseLack of Cohesion:

[min{Lack of Cohesion(c1), Lack of Cohesion(c2)} ≤ Lack of Cohesion(c′) |
Lack of Cohesion(C) ≤ Lack of Cohesion(C′)].

Results from Theoretical Validation

There are only a few cohesion measures which fulfill all of the cohesion properties. These
are: TCC, LCC, and the RCI measures. All other measures violate one or more cohesion
properties.

• The following measures are not normalized (Cohesion.1): LCOM1, LCOM3, LCOM4,
LCOM2 and ICH. There is no upper limit of the values that these measures can take.
Normalization is intended to allow for comparison of the cohesion of classes and systems
of different size. Without normalization, this is not possible.

• LCOM5 has been normalized to range between 0 and 1 under the assumption that each
attribute of a class is referenced by at least one method. Of course, having an attribute



92 BRIAND, DALY AND W ÜST

which is not used by any methods is silly. However, in the course of maintenance
activities, such situations may occur, and a cohesion measure should be prepared for
it. If we drop the assumption that each attribute is referenced by at least one method,
LCOM5 yields values between 0 and 2. It is still normalized, however, the maximum
value 2 is taken only ifMI (c) = 2. For|MI (c)| > 2, the maximum possible value is
smaller. This can be seen as follows: LCOM5 takes its maximum value if there are no
references to attributes at all. In this case, the value of LCOM5 ism/(m− 1), where
m = |MI (c)| is the number of methods ofc. Thus, the maximum value of LCOM5 is
2 for m = 2, 3/2 for m = 3, 4/3 for m = 4, etc. This is an anomaly. If we redefine
this measure as

NewCoh(c) =
0, if MI (c) = ∅ or AI (c) = ∅∑

a∈AI (c)
|{m|m∈MI (c)∧a∈AR(m)}|
|MI (c)||AI (c)| , otherwise

we get a cohesion measure which is conceptually similar to LCOM5, but normalized
properly (and not an inverse cohesion measure: large values indicate high cohesion,
small values indicate low cohesion).

• The connectivity measure Co has been normalized to range between 0 and 1 under
the assumption that graphGC consists of exactly one connected component. If we
drop this assumption, Co can yield negative values. Therefore, Co violates properties
Cohesion.1 and Cohesion.2. If we redefine Co as

Co′(c) = 2 · |EC|
|VC| · (|VC| − 1)

,

all four cohesion properties are satisfied.

• LCOM2 is not monotonic (Cohesion.3′): In the pathological case that the methods of
a classc do not reference any of the attributes ofc, we haveLCOM4(c) = 0 (because
P = ∅ by definition, andQ = ∅). If we changec such that exactly one method of
c references exactly one attribute ofc, we getLCOM4(c) > 0, sinceP is no longer
empty. Because LCOM2 is an inverse cohesion measure, this means that the modified
class is less cohesive than the original class. If we drop the case whereP is set to∅ in
the definition ofP, this anomaly disappears.

• ICH violates Cohesion.4. If we merge two unconnected classesc1 andc2 to form a new
classc, we getIC H(c) = IC H(c1) + IC H(c2). That is, the cohesion ofc is rated
higher than that ofc1 andc2.

In the remainder of this section, we point out problems with individual measures which are
not covered by the above cohesion properties.

Measure LCOM2 is known to have little discriminating power. This is partly due to the
fact that LCOM2(c) is set to zero whenever there are more pairs of methods which use an
attribute in common than pairs of methods which do not. As a result, LCOM2 is zero for
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Figure 2. Two different classes with equal values for LCOM2.

Figure 3. Similar classes with different values for LCOM2.

a large number of classes (Basili, Briand, and Melo, 1996). But also for classes where
LCOM2 is greater than zero, the measure is not discriminating. Consider the example
classesc andd in Figure 2, proposed by Henderson-Sellers (1996) (the symbols in the
figure have the same semantics as in Figure 1). For classc, we have|P| = 9, |Q| = 1,
and thus LCOM2(c) = 8. For classd, it is |P| = 18, |Q| = 10, and so LCOM2(d) = 8.
Both classes have the same LCOM2 value, but we would intuitively say that classd is more
cohesive than classc.

Similarly, Hitz and Montazeri (1995) provide an example of a set of classescn (see
Figure 3), which are structurally very similar but yield different values LCOM2(cn). The
values depend on parametern, the number of methods in the class. For example, forn < 5
we have LCOM2(cn) = 0, for n = 5, 6, 7, and 8 LCOM2(cn) takes values 2, 5, 9, and 14,
respectively.

Table 2 summarizes the results of this section. Column “Cohesion Criteria” indicates for
each measure what makes a class cohesive according to the measure. “Indirect connec-
tions” indicates if the measure accounts for transitive dependencies in the class. “Inheri-
tance” specifies how inheritance has been treated in the original definition of the measure
(n.a. stands for “not addressed”). “Known problems” summarizes any problems we have
identified for the measure. Columns C.1 to C.4 indicate violations of the above cohesion
properties Cohesion.1 to Cohesion.4 (for inverse cohesion measures, columns C.2 to C.4
indicate violations of properties Cohesion.2′ to Cohesion.4′). Violations of properties are
marked with an “X”.
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Table 2.Cohesion measures—specific properties.

Cohesion Indirect
Measure Criteria connections Inheritance Known Problems C.1 C.2 C.3 C.4

LCOM1 sharing of attributes no n.a. access methods X

access methods,
LCOM2 sharing of attributes no n.a. not discriminating: X X

no negative values

LCOM3 sharing of attributes yes n.a. access methods, X
constructors

LCOM4 sharing of attributes, yes n.a. constructors X
method invocations

Co sharing of attributes, no n.a. X X
method invocations

access methods,
LCOM5 attribute usage no n.a. optimal cohesion is X

bad design

TCC sharing of attributes, no
method invocations three alternatives

LCC sharing of attributes, yes offered constructors
method invocations

ICH method invocations no exclude X X
inherited methods

RCI yes n.a.
NRCI type and attribute yes (originally
PRCI usage yes defined for
ORCI yes object-based

systems)

5.0. A Unified Framework for Cohesion Measurement

In this section, a new framework for cohesion in object-oriented systems is proposed. The
framework is defined on the basis of the issues identified by comparing the various ap-
proaches to measure cohesion (Section 4.2) and the discussion of existing measures. The
objective of the unified framework is to support the comparison and selection of existing co-
hesion measures with respect to a particular measurement goal. In addition, the framework
should provide guidelines to support the definition of new measures with respect to a par-
ticular measurement goal when there are no existing measures available. The framework,
if used as intended, will

• ensure that measure definitions are based on explicit decisions and well understood
properties,

• ensure that all relevant alternatives have been considered for each decision made,
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• highlight dimensions of cohesion for which there are few or no measures defined.

The framework consists of five criteria, each criterion determining one basic aspect of the
resulting measure. First, we describe each criterion: what decisions have to be made,
what are the available options, how is the criterion reflected by the cohesion measures in
Section 4.1. We then discuss how the framework can be used to derive cohesion measures.
For each criterion, we have to choose one or more of the available options which will be
strongly influenced by the stated measurement goal.

The five criteria of the framework are:

1. The type of connection, i.e., what makes a class cohesive.

2. Domain of the measure.

3. Direct or indirect connections.

4. Inheritance: how to assign attributes and methods to classes, how to account for poly-
morphism.

5. How to account for access methods and constructors.

These criteria are necessary to consider when specifying a cohesion measure. However,
they are not sufficient, as other aspects such as properties of measures (e.g., those proposed
in Briand, Morasca, and Basili (1996)) and results from empirical validation studies have
to be considered too. The influence of these aspects is not addressed here.

We now describe each of the criteria in the order given above.

5.1. Framework Criteria

5.1.1. Type of Connection

By type of connection we mean the mechanism that makes a class cohesive. In Table 3 we
summarize types of connections used by the measures in Section 4.1. A connection within
a class is a link between elements of the class (attributes, methods, or data declarations).
For each type of connection, the elements are listed in the columns “Element 1” and
“Element 2”. Column “Description” explains the type of connection. Column “Design
phase” indicates from which design phase on the type of connection is typically applicable.
Column “Measures” lists for each type of connection, which of the reviewed measures use
that type of connection. The numbers in column “#” are used later to reference the types
of connections.

5.1.2. Domain of the Measure

The domain of the measure specifies the objects to be measured (methods, classes etc.).
Table 4 shows possible domains for the cohesion measures, and for each domain, the
measures from Section 4.1 having that domain.
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Table 3.Types of connection.

# Element 1 Element 2 Description Design Measures
phase

1 methodm attributea m referencesa HLD LCOM5
of classc of classc

2 methodm methodm′ m invokesm′ HLD ICH, LCOM4, Co
of classc of classc

3 methodm methodm′ of m andm′ directly reference an
of classc classc, m 6= m′ attributea of classc in common HLD LCOM1, LCOM3, LCOM4,

(“similar methods”) Co, LCOM2

4 methodm methodm′ of m andm′ directly or indirectly
of classc classc, m 6= m′ reference an attributea of classc HLD TCC, LCC

in common (“connected methods”)

5 data data declaration data-data interaction HLD RCI, NRCI, ORCI, PRCI
declaration in classc
in classc

6 methodm data declaration data-method interaction HLD RCI, NRCI, ORCI, PRCI
of classc in classc

As we see, most measures are defined at the class level. Measures defined at the attribute
and method level are also conceivable. These measures count the number of connections a
method or attribute has to other elements of the class. Measures defined on the class level
can be scaled up to sets of classes or the whole system.

5.1.3. Direct or Indirect Connections

We have to decide whether to count direct connections only or also indirect connections.
For example, consider a methodm1 which is “similar” to a methodm2 (connection type #3),
which in turn is similar to methodm3. Then methodsm1 andm2 are directly connected

Table 4.Mapping of measures to domains.

Domain Measures

attribute —

method ICH

class LCOM1, LCOM2, LCOM3, Co, LCOM4, LCOM5,
TCC, LCC, ICH, RCI, NRCI, PRCI, ORCI

set of classes ICH

system —
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Table 5.Measures counting direct and indirect connections.

Type Measures

direct LCOM1, Co, LCOM2, LCOM5, TCC, ICH

indirect LCOM3, LCOM4, LCC, RCI, NRCI, ORCI, PRCI

through a connection of type #3, as are methodsm2 and m3. Methodsm1 and m3 are
indirectly connected.

Table 5 shows which measures in Section 4.1 count direct connections only and which
also count indirect connections.

5.1.4. Inheritance

Two aspects are to be considered with respect to inheritance:

• How do we assign methods and attributes to classes?

• For method invocation: shall we consider static or polymorphic invocations?

The aspects can be dealt with in the order they are listed here.

a) How to assign methods and attributes to classes

As we found in the review of the cohesion measures, we have two options available con-
cerning the attributes and methods a classc has inherited for the analysis of the cohesion
of c:

(a) Exclude inherited attributes and methods from the analysis.

A child classc represents an extension of its parent classd. If we exclude inherited
attributes and methods, we analyze to what degree this extension represents a single
semantic concept.

(b) Include inherited attributes and methods in the analysis.

If we include inherited attributes and methods, we analyze whether classc as a whole
still represents a single semantic concept.

All of the measures as they are defined in Section 4.1 conform to option (a). Again, note
that for most measures this is due to our own interpretation, as this aspect has not been dealt
with in the original measures’ definitions.

b) Polymorphism

The next question is how to deal with polymorphism. This is relevant only if the chosen
type of connection involves method invocations (types #2 and #4), for the special case that a
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Table 6. Mapping of measures to options for accounting for
polymorphism.

Type Measure

account for polymorphism ICH

do not account for polymorphism LCOM4, Co, TCC, LCC

method of a class c contains a polymorphistic method invocation of a method implemented
at an ancestor of classc. We have two options:

• Account for polymorphism, i.e., for a methodm, we consider invocations of all methods
m′ ∈ PIM(m).

• Do not account for polymorphism, i.e., for a methodm, we consider invocations of
methodsm′ ∈ SIM(m) only.

Table 6 shows which measures in Section 4.1 account for polymorphism and which do not.
Only measures counting connection of types #2 and #4 are considered in the table.

5.1.5. How to Account for Access Methods and Constructors

As we have seen in the review of the measures, access methods and constructors may
artificially increase or decrease the values for cohesion measures. How to account for
access methods and constructors should be a conscious decision in the definition of a
cohesion measure and is therefore part of the framework.

a) Access Methods

Access methods cause problems for measures which count references to attributes (connec-
tion types #1 and #3). Instead of referencing an attribute directly, the access method may
be used, which is not accounted for by these types of connections. Thus, the number of
references to attributes is artificially decreased. A solution to this problem is to count the
invocation of an access method as reference to the attribute. However, this solution may
be difficult to implement in practice because it is not always possible to recognize access
methods automatically.

Access methods also cause problems for measures that count pairs of methods which use
common attributes (connection types #3 and #4). Because access methods usually access
only one attribute, many pairs of methods that do not reference a common attribute can be
formed using access methods. Thus, the cohesion is artificially decreased. A solution to
this problem is to exclude access methods from the analysis.

The available options for how to deal with access methods are summarized in Table 7.
Column “Connections” indicates the types of connections for which the respective option
is applicable.

The measures as defined in Section 4.1 all conform to option 1.
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Table 7.Option to account for access methods.

Option Description Connections

1 Do nothing (treat access methods as regular methods) All types

2 Consider the invocation of an access method as a reference to
that attribute #1, #3

3 Exclude access methods from the analysis #3, #4

Table 8.Options to account for constructors.

Option Description Connection

4 Do nothing (treat constructors as regular methods). All types

5 Exclude constructors from the analysis #3, #4

b) Constructors

Constructors cause problems for measures that count pairs of methods which use attributes in
common (connection types #3 and #4). Constructors typically reference all attributes. This
artificially increases the cohesion of the class, because it generates many pairs of methods
that use an attribute in common. A solution to this problem is to exclude constructors
from the analysis. We thus have two options how to account for constructors, which are
summarized in Table 8.

The measures in Section 4.1 all conform to option 4; for measures TCC and LCC, appli-
cation of option 5 has been suggested.

5.2. Application of the Framework

We apply the framework to select existing measures or to derive new measures for a given
measurement goal. Note that the framework is not intended to be used as a means to search
cohesion measures in an ad hoc manner, or to generate an exhaustive set of theoretically
possible cohesion measures. Application is performed by following two steps:

• For each criterion of the framework, choose one or more of the available options basing
each decision on the objective of measurement.

• Choose the existing measures that match the decisions made, or, if none exist, con-
struct new cohesion measures. Remember that properties such as those presented in
Section 4.3.3 can also be used to guide the definition and theoretical validation of new
measures.

In the context of applying this framework, the measurement goal must at least specify the
underlying hypothesis which drives measurement. The hypothesis will be of the form “In-
ternal attribute cohesion (as measured by the cohesion measures to be defined) has a causal
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effect on external quality attribute Y.” The external attribute Y could be maintainability,
reliability etc. As discussed in Briand, El Emam, and Morasca (1995), we believe that
product measures by themselves, no matter how well defined, are not guaranteed to capture
any relevant phenomenon regarding the quality of the system under study. It must be shown
empirically that they are related to some external quality attribute of interest. In other
words, it is crucial to provide evidence that they are relevant quality indicators in order to
be used and relied upon.

It is recommended to first define measures for the external attribute in the hypothesis and
then apply the framework to derive cohesion measures. Having an operational definition of
the external quality attribute may help in the processes of choosing the appropriate cohesion
measures.

Construction and Normalization of the Cohesion Measures

As a result of the application of the criteria 1, 3, 4, and 5, we have identified the set of
connections in a class that are of interest to us. In criterion 2 we determined the domain
of the measure. We now describe how to construct the normalized cohesion measures
accordingly.

For the definition of the measure, we need two figures: the number of actual connections of
interest, and the maximum number of possible connections of interest. For measures defined
for attributes and methods, these figures include the connections of interest in which the
attribute or method actually participates respectively can participate. For measures defined
for classes, the figures include the connections of interest in the class (actual and possible
connections). For sets of classes and the whole system, the figures include connections of
interest in all relevant classes (actual and possible).

If we define the cohesion measure as

number of actual connections of interest

maximum number of possible connections of interest

we get a measure which is normalized to range between 0 and 1.
Since we normalize the measures, we cannot count multiple connections between elements

separately. For instance, a method can reference the same attribute several times, these
are multiple connections between the method and the attribute. If we counted multiple
connections separately, the maximum number of possible connections would be infinite.
The ICH measures in Section 4.1 count individual connections, i.e., multiple invocations of
the same method are counted separately. Therefore, the ICH measures are not normalized
and cannot be normalized.

5.3. Summary

We conclude the discussion of the unified framework with the following remarks.

• The measures generated with this framework are proportions of the maximum possible
number of connections within classes. This leads to the to the highest level of mea-
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surement, the ratio level, which means the most powerful types of statistical analysis
techniques can be performed.

• These measures, however, are not guaranteed to be useful. To be useful, the measures
must be empirically validated with respect to the external quality attribute of interest
specified in the measurement goal. We believe that measures of internal product at-
tributes have no inherent significance in isolation. They become useful only if they are
related to external quality attributes.

• Existing measures have been classified according to the options available for each
criterion of the framework. This classification allows existing measures to be compared.
The classification has shown that some particular options of the framework criteria have
no or only few corresponding measures proposed.

6.0. Empirical Validation Studies

In this section, we discuss empirical studies that have been performed with the reviewed
cohesion measures. In Section 6.1, we focus on studies conducted to empirically validate
measures, i.e., show the usefulness of the measures. These are studies where at least one
of the measures discussed in Section 4.1 has been used to investigate the relationship of
internal attribute cohesion to an external quality attribute of a software product.

We briefly present the results of these studies and analyze their validity. In Section 6.2,
we give a brief overview of empirical work other than validation that has been performed
using the reviewed cohesion measures. Section 6.3 summarizes the results of this section.

6.1. Empirical Validation Studies

We are aware of only three publications that empirically validate some of the measures
presented in Section 4.1. In Section 6.1.1, we describe the systems and dependent variables
used in the studies in more detail. In Section 6.1.2 we presents the results from the analyses,
and in Section 6.1.3 we analyse the validity of these results.

6.1.1. Systems and Dependent Variables Used

The systems and dependent variables used in the studies are described in Table 9.

6.1.2. Results of the Studies

Li and Henry (1993)

In Li and Henry (1993), measures of the suite by Chidamber and Kemerer (1991) were
tested, including measure LCOM3. Li and Henry proposed several multivariate regression
models and conducted least-square regression and F-tests to estimate their predictive power.
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Table 9.Description of systems and dependent variables.

Publication Li and Henry (1993) Basili, Briand, and Melo (1996) Briand, Morasca, and Basili (1994)

Systems two commercial systems eight systems from a student’s three industrial systems
(UIMS, QUES) project, developed by (GOADA, GOESIM, TONS)

eight teams in four months

Application UIMS: User Interface System Information system for video GOADA: ground support,
domain of QUES: Quality Evaluation rental businesses simulator, navigation for
systems System satellites

Design method Classic-Ada design language OMT (Rumbaugh et al. - no information available -
(object-oriented extension of 1991)
Ada)

Implementation Classic-Ada programming C++ Ada
language language

Size 39 classes (UIMS), total of 180 classes in all GOADA:
70 classes (QUES) eight systems, sizes of systems 90 KSLOC / 525 Ada units

between 5 and 14 GOESIM:
KSLOC 170 KSLOC / 676 Ada units

TONS:
50 KSLOC / 180 Ada units

Developers - no information available - eight groups of three students, - no information available -
had already some experience
with C or C++, no previous
experience with object-oriented
analysis/design

Dependent Maintenance effort: number Fault-proneness: were faults Fault-proneness: were faults
Variable of lines changed in a class detected in a class during detected in a unit during

over a period of 3 years, cal- acceptance testing (yes or acceptance testing (yes or
culated as follows: each no). Each system underwent no).
deleted line counts 1, each eight hours of acceptance
added line counts 1, each testing, detected faults were
modified line counts 2 (one then traced back to classes.
deletion and one addition)

Independent Chidamber and Kemerer’s Chidamber and Kemerer’s RCI
Variable metrics suite (Chidamber metrics suite (Chidamber

and Kemerer, 1991) and Kemerer, 1994)

Modeling tech- linear least-square regres- logistic regression logistic regression
nique sion

Unfortunately, Li and Henry only reported theR2, adjustedR2, and p-values from the F-
tests for their regression models, but—with one exception—not the regression coefficients
and p-values for each independent variable. We therefore cannot draw any conclusions
whether LCOM3 has been found to be a significant predictor for maintenance effort. For one
multivariate model, the regression coefficients are given. For system UIMS, the regression
coefficient for LCOM3 is 2.762436; for system QUES, it is−2.195476. That is, increasing
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LCOM3 suggests an increase in maintenance effort in UIMS (this is the trend expected by
the authors), but a decrease in maintenance effort in QUES. The unexpected trend in QUES
is not explained by Li and Henry.

Basili et al. (1996)

In Basili et al. (1996), the measures of the suite by Chidamber and Kemerer (1994) were
tested, including LCOM2. Univariate logistic regression was performed to test the predic-
tive power of each measure in isolation. Then, several multivariate models were built in a
stepwise selection process, and tested.

LCOM2 is the only measure that has not been found significant both in the univariate and
multivariate analysis. The measurement values of LCOM2 showed small variance, so that
this measure could not be used as predictor. Basili et al. attributed this to the definition of
LCOM2: the measurement value is set to zero whenever there are more pairs of methods
in a class which use common attributes than pairs of methods which do not. As a result,
LCOM2 is zero for a large number of classes which otherwise would yield (different)
negative values for LCOM2.

Briand et al. (1994)

Briand et al. tested measure RCI (more precisely, a version for object-based systems which
also considers nested modules) and some measures for coupling. For each system GOADA,
GOESIM, and TONS, univariate logistic regression was performed to test the predictive
power of each measure in isolation. Then, a multivariate model was built for each system
in a stepwise selection process, and tested. Table 10 summarizes the results for measure
RCI from these analyses. Column “C” gives the regression coefficient, column “p” the
p-value, i.e., the statistical significance, determined by a likelihood ratio test. The value
in column “1ψ” for univariate analysis is an evaluation of the impact of the measure on
the dependent variable.1ψ is based on the notion of odds ratio. The odds ratioψ(X)
represents the ratio between the probability of having a fault and not having a fault when the
value of the measure isX. 1ψ is defined as1ψ = ψ(X + 1)/ψ(X), i.e.,1ψ represents
the reduction or increase in the odds ratio (expressed in the table as a percentage) when the
valueX increases by one unit.

6.1.3. Threats to Validity

We distinguish between three types of threats to validity of an empirical study:

• Construct validity: The degree to which the independent and dependent variables ac-
curately measure the concepts they purport to measure.

• Internal validity: The degree to which conclusions can be drawn about the causal effect
of the independent variables on the dependent variables.
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Table 10.Results for measure RCI.

GOADA GOESIM TONS

C 1ψ p C 1ψ p C 1ψ p

Univariate 0.63 19% 0.000 0.215 12% 0.047 0.34 14% 0.001
Analysis

Multivariate 0.4 0.006 0.3 0.07 0.2 0.16
Analysis

• External validity: The degree to which the results of the research can be generalized to
the population under study and other research settings.

We now apply these criteria to the studies described above.

Construct Validity

The choice of the dependent variable used in Li and Henry (1993) to measure maintainability
(or maintenance effort) is questionable: The “number of lines changed in a class” may say
little about the actual effort (in terms of person-hours etc.) spent on the maintenance of
a class: some changes to a class may require more effort than others, even though they
contribute the same or even less to the count of “number of lines changed”, and vice versa.

Internal Validity

In Briand, Morasca, and Basili (1994) and Basili, Briand, and Melo (1996), the function
of some measures as “design measures” is emphasized, i.e., these measures are applicable
in early stages of the development process. If these measures are found to be useful, they
can be used to detect problems in the design before implementation starts, thus potentially
saving time and effort for rework of the design. However, in the studies measurement
was performed only after implementation. If measurement had taken place, say, before
implementation started, different measurement data would have been obtained, because the
description of the system before implementation is less complete than after implementation.
This in turn could have led to different results in the statistical analyses. The validity of
the measures in early development phases is therefore still to be confirmed. In order to
demonstrate the usefulness of measures in early development phases, the measures must be
applied to the deliverables of the early design phases.

External Validity

Basili et al. list the following facts that may restrict the generalizability of their results
(Basili, Briand, and Melo, 1996).
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• The systems developed are rather small: they lie between 5000 and 14000 source lines
of C++ code.

• The systems developed have a limited conceptual complexity.

• The developers may not be as well trained and experienced as average professional
programmers.

The first point (rather small systems) also applies to the studies in Li and Henry (1993):
system UIMS has 39 classes, system QUES has 70 classes. We have no information
concerning the conceptual complexity of the systems and the experience of the developers
for the studies in Li and Henry (1993) and Briand, Morasca, and Basili (1994).

6.2. Other Empirical Studies

In this section, we briefly present other empirical work that has been performed with the
measures in Section 4.1.

Bieman and Kang (1995) analyzed the impact of cohesion as measured by TCC and
LCC on private reuse, i.e., reuse via inheritance and reuse via instantiation. Reuse via
inheritance for a classc has been defined as the number of classes that inherit fromc.
Reuse via instantiation for a classc has been defined as the number of other classes where
the classc is instantiated (for instance through aggregation, or if an object of classc is
created in a method of another class). The authors found no relation between cohesion
and reuse via instantiation. However, classes with a higher number of descendents tended
to have lower cohesion. This is contrary to what the authors expected to find. They did
not provide an explanation for this trend. The usefulness of this study is limited, since the
dependent variable, private reuse, is a measure of aninternal attribute. Internal attributes
represent no externally visible qualities of the system. They do not have any inherent
meaning or usefulness unless they are seen in relationship with some external attribute.

In Chidamber and Kemerer (1994), the measures proposed in that paper were applied
to two systems. The distribution of the measurement values was presented and an ad hoc
interpretation of the data was done (e.g., explanations for differences in the distribution of
the measurement values between the two systems). This study showed that the measures are
collectable in large systems. However, we cannot draw any conclusion about the usefulness
of these measures from this discussion.

6.3. Summary

In Basili, Briand, and Melo (1996), LCOM2 was not found to be a significant predictor of
fault-prone classes. From the description of the studies in Li and Henry (1993), we cannot
tell whether LCOM3 was a significant indicator for the number of lines changed in a class.
The only successful validation reported is for measure RCI (Briand, Morasca, and Basili,
1994) as a predictor of fault-proneness in an object-based programming environment. This
small amount of empirical validation work that has been published is of concern. More
empirical work is definitely required.
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One reason for the small amount of empirical validation work may be that measures
are often provided without underlying empirical models; without these, there can be no
hypothesis testing. Another reason is that for empirical validation we need to define and
measure an internal and an external attribute, and measuring an external quality attribute
can in practice be difficult. Measuring an internal attribute is relatively easy: measures are
quickly defined and, in order to apply the measure, we only need access to the artifacts
of some already existing systems. Typically, we have some systems available and can
perform the measurement. Measuring an external quality attribute is more problematic,
because we need additional information besides the measured system. For instance, if we
want to measure maintenance effort, we need a system for which we have the appropriate
maintenance effort data. Typically, we do not have systems for which the additional required
information is available, since few organizations have adequate measurement programs in
place.

Trade-offs in the definition of the external attribute to circumvent these problems limit
the usefulness of the study. For instance, in Li and Henry (1993) maintenance effort has
been defined as the number of lines changed in a class. One advantage is that the number
of lines changed in a class can be calculated if we have several versions of the same system,
i.e., we do not need actual effort data. However, as already highlighted, the number of lines
changed is not a straightforward indicator of the actual effort spent on the maintenance of
the class.

7.0. Conclusions

Based on a standardized terminology and formalism, we have provided a framework for the
comparison, evaluation, and definition of cohesion measures in object-oriented systems.
This framework is intended to be exhaustive and integrates new ideas with existing mea-
surement frameworks in the literature. Thus, detailed guidance is provided so that cohesion
measures may be defined in a consistent and operational way and existing measures may
be selected based on explicit criteria.

We have also used this framework to review the state-of-the-art, about which we draw the
following conclusions:

• There is a very rich body of ideas regarding the way to address cohesion measurement
in object-oriented systems.

• However, many measures are not based on explicit empirical models and, therefore,
their intended application is a priori difficult to determine.

• Very few measures have undertaken a thorough empirical validation. In other words,
the usefulness of many of the measures is currently not empirically supported.

• When empirical validations do exist, they are sometimes seriously flawed because of
threats to the validity of their results, e.g., construct validity when the dependent variable
used in the analysis does not capture accurately the external quality attribute of interest.
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Therefore, it appears that, although many good ideas have been reported, there is too little
empirical work in (cohesion) measurement, especially in the context of object-oriented
systems. This can only hinder effective research and the design of satisfactory solutions
for the practitioners of measurement.

Future work includes the identification of guidelines describing how—in the course of
applying the framework to define or select cohesion measures—the measurement goal at
hand influences the choice of the available options for each criterion of the framework. To
this end, we also plan to perform an exhaustive empirical investigation of the measures
reported in this article.
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Appendix

A. Glossary of Terms

Standard terminology used for object-oriented concepts is provided as follows:

• Component: Any system entity whose properties may be measured. Most important
are typically classes, methods, and attributes.

• Class: Compound structure encapsulating data and functional elements.

• Object: Instance of a class.

• Attribute: A data item encapsulated in a class. Other names: instance variable, data
member, state variable.

• Method: A procedure or function encapsulated in a class. Other names: operation,
service, member function.

• Inheritance: “Is-a” relationship between two classes. A class c may inherit from class
d. The methods and attributes of class d are then available to class c.

• Parent class: If class c inherits from class d, class d is a parent class. Other name:
superclass.

• Child class: If class c inherits from class d, class c is a child class. Other name: subclass.

• Descendent class: The descendent classes of a class c are the children classes of class
c, their children etc. (any class that directly or indirectly inherits from class c).

• Ancestor class: The ancestor classes of a class c are the parent classes of class c, their
parent classes etc. (any class, from which c directly or indirectly inherits).
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• Signature: Unique identifier that identifies a method. The signature specifies the
method’s name, the parameters it takes, and the return type.

• Interface: The set of all signatures defined as public within a class, i.e., the interface
characterizes the complete set of messages that can be sent to an instance of that class.

• Body: The body of a method is its implementation. The body of a class is the imple-
mentation of its methods.

• Access Method: A method whose sole purpose is to provides access to one or more
attributes of the class.

• Constructor: A method which creates and initializes an object of a class.

• Virtual method: A method which has no implementation. The implementation of the
method is deferred to children classes.

• Abstract class: A class which has at least one virtual method. No objects can be
instantiated from an abstract class.

• Message: Classes, via their methods, send messages to request services from other
classes, possibly including specific recipients and parameters.

• Polymorphism: An identifier may refer to instances of different classes (typically having
a common ancestor) at run-time, allowing objects to be bound to this identifier to respond
to the same set of messages in different ways (however, the semantics of the response
should be similar for all objects).

Also defined is the applicable measurement terminology. The definition of the terms “mea-
sure”, “internal attribute”, “external attribute”, “theoretical validation” and “empirical val-
idation” are taken from Briand, El Emam, and Morasca (1995):

• Measure, domain, range: LetD be a set of empirical objects to be measured (e.g., a set
of classes, methods), andR be a set of formal objects (e.g., real numbers). A measure
is a mappingµ: D → R, which maps every element ofD onto an element ofR. We
call D thedomainof measureµ, R therangeof µ. Other name: metric.

• Internal attribute: A quality or property of a software product that can be measured in
terms of the product itself, e.g., size, coupling, etc.

• External attribute: A quality or property of a software product that can not be measured
solely in terms of the product itself. For instance, to measure maintainability of a
product, measurement of maintenance activities on the product will be required in
addition to measurement of the product itself.

• Operationally defined: A measure is considered operationally defined if no further
interpretation of its definition is required to use it, i.e., it is stated in an unambiguous
manner.
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Figure 4. Example methods.

• Theoretical validation: A demonstration that a measure is really measuring the internal
or external attribute it purports to measure.

• Empirical validation: A demonstration that a measure is useful in the sense that it is
related to an interesting external attribute in an expected way.

• Measurement goal: Specification of the objectives of measurement in a given context.
In this paper, it is assumed that the objective of measurement is to test a hypothesis of
the form: “Internal attribute X has an impact on external attribute Y”, i.e., to conduct an
empirical validation. Other information that typically is included in the measurement
goal: the development phase at which measurement is to take place, the environment in
which measurement is to take place (company, development team, methodology used
etc.), properties for measures of internal or external attributes.

B. Explaining the Formalism

This appendix provides illustrating examples for some of the definitions used in the formal-
ism provided in Section 3.0.

Declared and Implemented Methods

In Definition 3, setMD(c) of methodsdeclared in cand setMI (c) of methodsimplemented
in c were defined.

Consider the example classes in Figure 4. For classc, M(c) = {c: : m1, c: : m2, c: : m3}
whereMD(c) = {c: : m1} and MI (c) = {c: : m2, c: : m3}. For classd, because of inher-
itance,M(d) = {d: : m1, c: : m2, d: : m3, d: : m4} with MD(d) = {c: : m2} and MI (d) =
{d: : m1, d: : m3, d: : m4}.

Notice that unique labels, e.g., “c: : m1”, are used to represent any given method. In
the case where a class inherits a method and does not override it, the method retains the
identity provided by the parent class. In the example, classd inherits methodc: : m2 of
classc and does not override it. Thus,MI (c) ∩ MD(d) 6= ∅ becausec: : m2 ∈ MI (c)
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andc: : m2 ∈ MD(d). In the other cases each method is provided with a new identity.
For example,d: : m3, d: : m4 6∈ M(c). In addition, certain object-oriented programming
languages allow “method overloading” where a class can have two or more methods with
the same name but different signatures. Such methods will still be provided with a unique
identity.

Inherited, Overriding and New Methods

In Definition 4, setsMI N H (c), MOV R(c) and MN EW(c) of inherited, overriding and new
methods of a class c were introduced. In the example in Figure 4 it isMN EW(d) = {d: : m4},
MOV R(d) = {d: : m1, d: : m3} andMI N H (d) = {c: : m2}.

For any classc ∈ C and methodm ∈ MNEW(c) there is no method with the same signature
declared in any ancestor class ofc. MI N H (c), MOV R(c) andMN EW(c) form a partition of
M(c): they are pairwise disjoint, andMI N H (c) ∪ MOV R(c) ∪ MN EW(c) = M(c).

Method Invocations

Consider the example in Figure 5. We make the following remarks:

• Methodc: : mc1 invokes methodd: : md using a pointer to an object of typed. Class
d is the “static type” of the object being pointed to. At run-time, the dynamic type of
the object may be of classd or any descendent class ofd. Due to polymorphism, the
actual method being executed can be implemented in classd or any descendent class
of d (in the example, eitherd: : md or d1: :md may be executed;d2: :md is identical
to d: : md).

• The body ofc: : mc1 contains a total of three statements which invoke methodd: : md.
How often the methodd: : md is actually invoked at run-time, however, cannot be
determined from static analysis.

In the following, we show the values forSIM, NSI, PIM andNPI from Definitions 8 to 11 for
methodc: : m1 in Figure 5. It isSIM(c: : mc1) = {d: : md} andNSI(c: : mc1, d: : md) = 3.
As a result of inheritance, the same method can be statically invoked for objects of different
classes. Methodd: : md is statically invoked twice for an object of typed, and once for an
object of typed2. It isPIM(c: : mc1) = {d: : md, d1: :md}, whereNPI(c: : mc1, d: : md) =
3 andNPI(c: : mc1, d1: :md) = 2. As a result of polymorphism, one method invocation
can contribute to the NPI count of several methods.

Notice that the static type of an object for which a methodm′ is invoked may be an abstract
class andm′ may be a virtual method. The dynamic type of an object cannot be an abstract
class because an object cannot be an instance of an abstract class.
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Figure 5. Example method invocation.

Figure 6. Example class with attributes.

Declared and Implemented Attributes

To illustrate declared and implemented attributes (Definition 13), consider the example in
Figure 6. It isAD(c) = ∅ and AI (c) = A(c) = {c: : x, c: : y, c: : z}. For classd AI (d) =
{d: : a, d: : b}, AD(d) = {c: : x, c: : y, c: : z}, andA(d) = {d: : a, d: : b, c: : x, c: : y, c: : z}.

Like methods, attributes are modeled as elements of sets and require a unique identity.
As with methods, non-inherited attributes of a class are provided with their own identity,
whereas inherited attributes are provided with their identity in some ancestor class. Notice
no distinction is made between constant attributes and regular attributes. For instance, for
classd, d: : b ∈ A(d).



112 BRIAND, DALY AND W ÜST

Attribute References

In Definition 15, setAR was introduced to model the set of attributes referenced by a
method. In Figure 6, it isAR(d: : f ) = {d: : a, c: : x, c: : y, d: : b}. Notice there is no
distinction between read and write accesses to attributes as none of the measures discussed
make this distinction.

C. A Generic Object-Oriented Development Process

In the survey of measures in Section 4.2, we classify the measures according to when during
the development process they become applicable. To be able to classify the measures
consistently, it must be known when certain deliverables required for measurement are
available. To achieve this requirement, a generic development process with four steps and
the deliverables available at the end of each is defined. These deliverables comprise of
modeling concepts which are similar to those used by most object-oriented methodologies
and are exemplified by means of a mapping to Jacobson’s OOSE method (Jacobson et al.,
1992). In general, each step will be performed in several iterative cycles, the deliverables
being updated as the problem and solution are more clearly defined.

• Analysis (An): The following deliverables are available at the end of the analysis phase:

– High level classes: High level classes model the entities in the problem domain.
A high-level class (HLC) will in later phases be implemented by one or more
regular classes, i.e., classes as they are provided by programming languages. At
the analysis phase we know nothing about the internal structure of HLCs. We do
have a good idea of the services the HLC provides.

– Inheritance relationships: we have knowledge of some inheritance relationships
between HLCs, derived mainly as identification of “type-of” relationships. In
general, the number of inheritance relationships identified during analysis will be
relatively small.

– Other relationships: These are relationships between HLCs such as “uses”, “consists-
of”, etc. These relationships are derived on the basis of the services a HLC is to
provide. For example, if HLCA requests a service which is provided by HLCB,
there is a uses relationship betweenA andB.

Note that it is also usual for the system to be decomposed into subsystems, i.e., groups
of closely related HLCs. This occurs for ease of understandability and iterative en-
hancement.

Mapping to OOSE: In the following, terms specific to the OOSE terminology are set
in quotes to distinguish them from our standard terminology. The analysis phase cor-
responds to the “Robustness analysis” in the OOSE method. The artifacts described
above are those found in the “Analysis model”: HLCs are “objects” (“interface, entity or
control objects”); inheritance relationships have their direct counterpart in OOSE; the
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other relationships are called “associations” (“communication associations, acquain-
tance associations”). The services provided by each HLC (i.e., “object” in OOSE) are
not part of the “Analysis model”, but are evident from the “use cases” defined in an
earlier process step of OOSE.

Most object-oriented methodologies feature an early analysis phase and introduce a
graphical notation, where high-level classes are represented by boxes (or circles), and
relationships (inheritance, uses, etc.) are represented by different kinds of arrows
between circles or boxes). The information contained in these diagrams is considered
to be the measurable output of the analysis.

– High-level design (HLD): During high-level design, the HLCs are refined. This
involves the following decisions: which regular classes are needed to implement
a high-level class, what methods must a HLC provide, what input and output pa-
rameters will the methods need, in which “regular” class should each method be
implemented, what data will each class hold. Also, we will know which function-
ality each method has to fulfill, and have a rough idea about which other methods a
method uses. The methods at this level are “high-level” methods. Several methods
may be required later to implement one “high-level” method, that is, new methods
will be added later. Also, the input and output parameters are still subject to later
refinement.

As the refinement of the HLCs creates new classes, new inheritance relationships
between classes will arise. For instance, if we identified a number of classes
which perform network communication, these classes are likely to have some
functionality (methods) in common (e.g., wait for message, send message, receive
message). This functionality could be factored out in a common parent class of the
network communication classes.

Mapping to OOSE: The high-level design corresponds to the first half of the “Con-
struction” phase of the OOSE method. The HLCs are mapped onto “blocks”, and
each block consists of one or more classes (the implementation environment will
influence the choice of classes). Using “interaction diagrams”, “stimuli” between
blocks are determined, and what information is passed with each “stimulus”. The
“stimuli” correspond to the “high-level” methods, the information passed corre-
sponds to the parameters.

– Low-level design (LLD): During low-level design, algorithms for each method
are designed. Typically, techniques such as state-transition graphs, flowcharts, or
program description languages (PDL) are used. The design of algorithms, as well
as determining the precise signature for each method, is likely to identify the need
for new methods and attributes. There is also detailed information about which
methods and attributes are used by any given method.

Further possibilities for class abstraction can still be discovered at LLD and the use
of library classes is considered. This can result in some new classes being added
to the system and minor rearrangement of the inheritance hierarchy.
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Mapping to OOSE: The low-level design phase corresponds to the second half
of the “Construction” phase in OOSE. State-transition graphs are used to design
algorithms for the methods of each class.

– Implementation (Imp): After implementation the source code is available. Map-
ping to OOSE: OOSE has a process step “Implementation” which produces the
source code.

D. Levels Of Cohesion As Defined By Myers

In this appendix, we restate the definition of cohesion given by Myers (1978) in the context
of structured design. In the following, the term “module” refers to a set of one or more
contiguous program statements having a name by which other parts of the system can invoke
it. Myers identified six levels of cohesive modules. Listed from lowest (worst) to tightest
(best) cohesion, these are:

• Coincidental: A module has coincidental cohesion if its function cannot be defined, or
if it performs multiple, completely unrelated functions.

• Logical: The module performs a set of related functions, e.g., a module that performs all
input and output operations for the program. Which function is performed on invocation
is determined by an argument passed to the module.

• Temporal: The module performs multiple sequential functions which are weakly related
(for instance modules that do all the “initialization” or “termination clean-up”).

• Procedural: The module performs multiple sequential functions, where the sequential
relationship between all of the functions is implied by the specification of the module.

• Communicational: The module performs multiple sequential functions, where the se-
quential relationship between all of the functions is implied by the specification of the
module, and there is a data relationship among all of the functions (all functions operate
on the same set of data).

• Functional: The module performs a single specific function (transformation of some
input data to some output data).

Notes

1. Note that this figure includes variations of the same measure, e.g., there are four different versions of the
LCOM (lack of cohesion in methods) measure originally proposed by Chidamber and Kemerer (1991).
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