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Part I. Limitations On Data Processing Arising From Quantum Theory

In the second part of this talk | will speak abeublution. In the first part | will present a
conjecture which states that there is a maximumativhich data processing can proceed.
This maximum rate applies to all data processistesygs, manmade as well as biological.

Practical computers do not reach this rate, whicdhwever, seems to constitute an ultimate
physical limitation on the progress of computerigles

Biological systems are subjected to the same limitaHence we get an upper bound on the
amount of data processing that is going on in mas&nd on the amount of bits that have been
processed since the beginning of life on earth.

| hope that this conjecture may stimulate the dismn towards a tightening of concepts in
artificial data processing and biological evolutilike.

The conjecture is the followindlo data processing system whether artificial orfgzcan
process more tha(® ><1047) bits per second per gram of its mass.

This figure refers to a self-contained system whkespower supply is included in the total
mass. "Processing afbits" is defined as the transmission of that mhity over one or
several channels within the computing system.

For example, in a conventional digital computeoinfation flows back and forth between
the arithmetic unit and the memory. These connaestaonstitute channels. The arithmetic
unit itself may be considered to be a channel betwts input and output terminals. In an
analogue computer there are integrator units, a@aders, and curve drawing units which
are connected by channels. We count the numbadtsopér second that flow through all the
channels within a computer and this we define agtiocessing rate.

Some people to whom | have communicated the boand triticized it as being too
imprecise. They would favor sharper estimatespecsic systems. Such sharp bounds are
certainly desirable. The importance of the bourat tlam giving lies in its universality. It is
independent of the details of constructions. Itlgspo serial computers as well as to
parallel machines. Bounds even if not sharp camteeesting. Some of the most important
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formulas in mathematics are inequalities ratheequmalities.

The number 2 x1Y bits per second is a small number when comparddmrocessing rates
that one would need to carry out certain searclgeses. For examplelinsky [9], p. 9,

gives the number of all possible move sequencebeass as about 1. A mosaic of 100 x

100 cells, each of which may either be black orteyrhas 30,000, 107’000possible patterns.
(A resolution of 100 x 100 is not very fine grain&landard television resolves about 525 x
360 points).

Theorem proving and problem solving also lead fooeentially growing "problem trees." If
our conjecture is true then it seems that thecdiffies that are currently encountered in the
field of pattern recognition and theorem proving wot be resolved by sheer speed of data
processing of some future supercomputers.

We have stated our bound per gram and second. @helout p x10seconds in a
yeal{M}. The age of the earth is about1mp™? years, its mass less than 6 aigrams.

Hence even a computer of the size of the earthdcool process more than aboutieits
during a time equal to the age of the earth.

It has been argued that the "number of elementatycges in the universe is finite, and hence
that there is a limit to what a computer can daisTs probably true. However, | prefer to
have a quantitative statement.

We may arrive at the number as follows:

In order that information can be acted upon by ahime it must be represented physically.
Von Neumann [16has called observables that are used to reprggennation "markers".
Examples of frequently used markers are: The poesenabsence of a whole in a paper tape
or punch card; the state of a flip-flop, magnetamabf a ferrit core or of a strip on a

magnetic tape, charged spots in a Williams tubeagittal storage.

The information obtained by measuring a randonmatéei that is capable afvalues, each
taken with probabilityp; . . . pn, equals

H(p1, . . .pn) =

This function assumes its maximum far=p2 . . . =pn = 1/ andH(1/n, . .. 1h) =log n.

Hence if a marker can assumdifferent states of which only one is presentrgt ane
moment then it can represent at mosplodits of information.

Suppose that energy levels are used as markerpoSeiphe levels have to lie within a certain
interval, say ©, Emax). Suppose further that energy levels can be medswuith an accuracy

DE only. Then at most = Emax/DE different levels can be distinguished. If at eagtant
no more than one level is occupied, then a maximbilog (n + 1) bits may be represented. If
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instead of one marker with energy levels@® Emay two markers with levels inQ, 1/2
Emax) each are used then 2 logZ + 1) bits can be represented. The optimal usegifen
amount of energEmax is attained ih markers with values inQ, DE) are used. In this case
bits can be represented.

Any self-contained computing system of mass miges to a limitation in the maximum
energy that it can utilize as a marker. This fokosimply from the fact that mass and energy

are related by Einstein's equatiars mc2, wherec is the light velocity in vacuum. Thus
Emax= me2 »m x 9 x 1& cnf seé? <m x 1071 enf sec?.

Heisenberg's uncertainty principle, on the otherdhaives a lower limit for the accuracy
with which energy can be measured. It asserts

DEDt 3h,

whereDE is the uncertainty in energy. At the duratiorthed measurement,is Planck’s
constantDE is defined as the mean deviation from the expiectasalue oft.

Thus a computer of mass m using energy levels dsensacan measure no more than

(Emax/ h) Dt bits

during the time intervaDt. (Note thatEma>J1'1 Dt is a dimensionless quantity).

Information received through a channel must be oreasby the receiver. This is done by
measuring a time varying signal, for example a tuang/ing voltage or the presence or
absence of photons or particles. It seems thasacdy measurement is equivalent to an
energy measurement. Frequency and energy areddgte = hn. Hence, if we measure
frequency we also measure energy. If we utilizeapsdtion and spin we have instead of a
linear channel a three or more dimensional char8wath a channel is equivalentrtdinear
channels if its dimension is it does not matter whether we have one or sechia@hnels.
The total energy available for all channels id &ihax

Thus any machine of mass m processes no more than
Emax h'! bits per unit of time < 1021) /(6 %X 6 x 1027) bits/sec < & 10*7 bits/sec,

where m is measured in grams. This is a generdunsats, mainly for two reasons: We need
measuring apparatus for measuring the markers aridpthe mass of the computer has to
serve this purpose. Secondly, in view of the dediniof DE the probability of measuring the
value of the marker correctly is less than ondi¢ital computations the accuracy
requirements are very high. To achieve high acquradundancy has to be included into the
program, thus reducing the effective processing rat

Criticism: According to Shannon's theory/4,13,14] the rate of information transmission
through a channel of bandwidilax is nmaxlog (1 + S/N) bits per second, where S/N is
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the signal to noise power ratio. Since energy aegluency are related ly= hn we have

mc? hl logp(1+ S/N). We thus obtain the same rate of transomser S/N = 1. On the other

hand we have not included in our considerationtAeymal noise. In order to reconcile the
results we must interpret N as quantum-mechanigigerarising. from quantum mechanical
fluctuations of the observable used for the infdramatransmission in the channel.

The argument does not penetrate all the ramifinataf the problem and | have formulated
the result as a "conjecture."”

Bledsoe's absolute bound on memory access tihee communicated the above
conjecture to W. W. Bledsoe in November 1960. Hmédiately pointed out an interesting
consequenceBfedsoe [1]. The time that is necessary to measure informatidhe memory
and to communicate it to the place where it is usede "memory access time." Bledsoe has
shown that if the above conjecture is true, thamghs an absolute lower limit for the,
memory access timeT that is valid for all computers:

DT 3 1020 Sec.

There is only one assumption involved, namely thatdensityd of the material employed In
the computer is less than 20. This is true on earth

Let our bound 2 x1% bits per second be denotedbyt implies that the largest number of
bits that can be stored per gram of matter witla@gess time dDT equals

b x DT bitslg

If the density, of matter id, then we have at most

db x DT bits/cn®
A computer of volumé/ therefore has a memory of no more than
Vdb x DT bits.
Bledsoe argues: Information must be transportedinvihe computer. The speed of light is an
upper bound for the speed of communication. Theageclength of the communication path

in a computer of volum¥ is about (1/4/)1/3. For optimal performance communication

time and measuring time should be about equal.\(;ﬁ‘ﬁ3 »cDT. There is an (empirical)
bound on the density of matter. The smallest machanceivable is a 2 bit machine. When
we combine these figures we obtain an absoluterlwand for the access time in any
computer:

d x 4C3 (DTmin)3b DTmin 2 2.
Hence ifd £ 20, then

DTmin 3 1020 sec.

This figure does not immediately give a bound omphocessing rate in larger machines since
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data may be processed in parallel. The minimumsactieme, however, limits the processing
rate in serial machines such as Turing machines.

Thermodynamical Limitations

Brillouin [17] has shown that each observation on a system oidmac oscillators has a cost

in entropy. Consider a system consisting of onlg gonantized harmonic oscillator. An
observation whether the oscillator is at an enstate greater than a given number has a cost
in entropy

DS 3A1k.
Herek is Boltzman's constant and ;

A1 = In 2 for "high temperaturéih <kT and [in) / (kT) for "low temperaturefhn3 kT,
whereT is the temperature of a surrounding thermostat aFsystem of oscillators the
constantA| is replaced by a constaAt, which increases monotonely withlapproximately

like logn). The reliability normalization corresponds toignal to noise ratio S/N = 1. (The
noise is due to thermal and quantum mechanicaluatons.)

The cost in energy that has to be dissipatétis DS x T, thus
DE 3 (In 2)KT for high temperatures; ariuh for low temperatures

If we interpret the outcome of such an observatisone bit of information then the cost of
energy per bit iDE. The system considered is a very special one. iNealess, entropy
considerations that are true for harmonic oscitatend to be true in generahndauer [8]
considering a very different but also rather sdesyiatem arrived at a minimum costldt per
bit. He seems not to have included quantum mechhfictuations in his considerations.

Thus, in order to achieve low cost in energy desgm per bit a computer must operate a) at
low temperature@nd b) avoid high frequency quanta. Since a fastsimission rate through

a channel means high frequency quanta, the compuist usenany channelso minimize
cost.

Example: A computer operating at a temperafuneay employ quanta up to
D =kTh?
without losing efficiency due to cost arising frdmgh frequency quanta.

At T =300° (» room temperature)
Nmax>» 1.38x 1018 x 300 x 16° sect
4 x 1012 seé1

Existing computers operate at frequencies up f1108 secl. Thus they work still in the
thermodynamical range. At 1°K we havgax » 100 se¢l. Ultra-fast microminiaturized
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computers with cryotron circuitry some day may reawitching speeds of 1¥ sec and thus
enter the region where "gquantum noise" becomesiangn "thermal noise."

Part Il. Evolution Processes and Optimization

The preceding discussion lets us see optimizatioblpms in a new light. Suppose we have a
real valued functior(x1, . .Xn). Suppose the variables take values 0 or 1. Therfuinction

can assume up td'@lifferent values. Given the task to find one afdé vectors ofd, . . .

Xn) for whichf(xs, . . .xp) assumes its maximum. Suppose alsofitxat . . .xp) can be
computed for each n-tuplg . . .xn. For smalin this problem can be solved by inspection:
We computd(x1, . . .Xn) for all possible value combinationsyaf .... xn and select an
n-tuple (or one of possible several) for whidk largest. Iih is small (1 < 10) the task is

rather trivial. Fom = 30 there are already a billion numbers to lopka n = 300, $00,

10%. If each of these possibilities requires at |east bit of data processing, then the task
cannot be carried out within the restrictions desad in part I.

Biological evolution is an optimization processrétent years it has been discovered that the
method of coding hereditary information is univétsaoughout nature. All cells that divide
from bacteria to mammals contain DNA. The DNA i®ag double stranded molecule which
looks Me a long ladder with crosslinks when streagled out. There are four different kinds

of crosslinks (adenine-tymine, tymine-adenine amangne-cytosine and cytosine-guanine).
Arbitrary sequences of these four different kinflawcleotide bridges seem to be chemically
possible. It is believed that the exact sequendkese bridges constitutes the hereditary
information. It has been shown that removal oraepient of a single bridge can cause a

mutation. A gene seems to correspond to abovinL@leotide bridges. Human somatic cells

are estimated to have about £ Huicleotide bridgesMuller [10]) and about 1bto 4714
genes. Since there are four kinds of bridges eaaloith up to two bits. Hence there is no

more than 180 bits of information in the human genes. Other gersystems contain similar
amount of nucleotide bridges.

Unless the evolution of life has relied on someifdi guidance” it must have had to contend
with the difficulties involved in optimization th&have explained.

Suppose "fitness" of a genotype could be measunetencally. Letf(x1 . . .xn) be this

function. Then, if all nucleotide bridges have ®dounted, we havelg\lopossibilities. If

genes rather than nucleotide bridges are courtted, there are still 100G, 103000possible
values. As we have seen, this number to much tge far a straightforward search or for a
trial and error process.

Now every freshman taking calculus learns thatwhg to find a relative maximum of a

differentiable function is to look for its criticgloints. A point 1@1(0) .. .xn(o)) is a critical
point if and only if

19 % (x1@) =0 forn=1, .. .n.
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Every local extrema is a critical point, but nateviversa. Suppose we deal with a haploid
system and asexual evolution.

Suppose the environment remains constant, thatsribarfitness functiof(xy, . . .xn) is not

time dependent. Suppose we "mutate” (change) am&' geinary variable) at a time. Then
the evolution process leads quickly to a stablatpoi

Let Dnf xl(o), .. .xn(o) =f(X1...*n...Xn)-f(X1, . . . %Xn...Xn) Wherexq . . .xpare
binary variables andxn denotes the complementaf. We will call a point}@l(o)'\n, C.
xn(o)) such than

Dnf xl(o), .. .xn(o) £ 0 for alln
a "point of stagnation."

Obviously a local maximum is a point of stagnatibat the converse is not true. A point of
stagnation need not even be a saddle point asllogving example shows:

f(0,0)= 1/2,f(0,1) =f(1,0) = 0,f(1,1) = 1.

In this case, to make any further progress we haedange two variables at once. In general
we may have to change any number of variables l@t\#eanch at once to make any further
progress. If we have to chanigeariables at once, there are

different combinations to tryn(k) is largest fok = n/2. By Stirling's formula which gives a
good approximation for large n:

In(n!) » n(In n-1).

IO% » N.

Thus we are caught again by the flood of possidithat have to be tried. Instead of
changing exactly one "gene" (binary variable) sitre we may operate such that each gene
has a certain probabilityto change. In many cases optimal speed of impremém reached
for p = 1/ wheren = number of genes. (Compaeemermann [5] The probability for any

one pair of genes to change simultaneous;lﬁ,iéor tripletsp3. Hence this mode of
operation is extremely slow to overcome pointstafysation. W. W. Bledso&]3] has
investigated this question in some special cases.

Thus

It is thus fairly obvious that any evolution proseghether occurring in nature or whether
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applied to numerical problems is bound to havecdiffies with points of stagnation.
Difficulties have indeed been experienced by seévarideagues who have tried to solve
complicated optimization problems through evolutiopampareMinsky's comments [9]
Friedberg §,7] tried to let a computer evolve a very simple pamg However, it took the
machine 1000 times longer than it would have tdkaah it relied on pure chance alone. In
many cases where evolution has been tried thesfithunction was very complicated. For
examplef(x1, . . .Xp) has been taken to be the "performance” of a garagegy depending
uponxi . . .Xp as parameter§(xi, . . .Xn) can only be sampled by actually playing the game.
To avoid unnecessary complications | have chosemyofirst experiments fitness functions
that are well understood theoretically and whenealth of efficient numerical techniques
exist.

With the help of Mr. S. Salaff | have carried oongutation experiments to solve systems of
linear equations by evolution. This has been datdmorder to compete with existing
numerical technigues, but in order to understatigl what is going on. Given a system of
linear equations

When a "trial vector5'<1(0) .. .xn(o) is inserted into the system one obtains residues

(@, .. xy©) {

if the system has a unique solution, then
f(xl(o), .. .xn(o)) =0
if and only if €19 . . .x,@)is the solution.

As fitness function we take

The variables in this case are continuous. We lmayever, discretize them and change them
by increment$Xx;. Or we may convert the whole problem, after diszirgy it, into a binary
problem. In either case experiments have bornevbat is to be expected: Depending upon
the step size we reach a point of stagnation wimai or may not be near the solution. For
well conditioned systems (ratio of largest to sestlkeigenvalue close to one) and with some
previous knowledge about the range of the variadaesforn not large (no larger than about
10) the method gets us in a few minutes machine timse to the solution. For badly
conditioned system the process gets trapped aina @icstagnation. The following diagram
shows a level line of the fitness function of a lgambnditioned system in two variables and
illustrates how the process gets trapped:
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A reduction in step size results in further progrest after a while the process gets trapped
again. Nature must have to contend with the saffieully. It seems plausable to conjecture
that sexual mating has the purpose to overcomatgitns where asexual evolution is
stagnant. In higher animals we have the diploidlraasm. In single-celled animals we often
find a haploid system where from time to time twdividuals join to exchange genetic
material. Even viruses, often harmful, serve aulgairpose in the process of transduction.
The individuals then may go on for many generatiwitisout further exchange, till finally
another exchange of genetic material takes place.

With the help of Mr. Salaff, who has done all thregramming, | have tried to apply such a
"mating game" to artificial evolution processes. iWlasexual evolution (hill climbing) has
been tried a good deal, little has been done, t&moyledge, with mating.

At first we have tried linear systems. Startingnirdifferent initial values we have evolved by
asexual evolution approximate solutions till wectead points of stagnation. Different starts
usually lead to different points of stagnation. #¥en have mated populations of such
solutions according to various schemes: In paoHectively, by linear superposition and by
random combinations. After mating we applied anotband of asexual evolution. None of
these schemes, however, gave any spectacularsiesult

In disappointment | left linear systems aside amrded to another set of problerhfnear
programming.

Given a set of linear inequalities

wherem 3n. The task is to minimize a cost function
f(X1, . . .Xp) =C1X1 +...Ch Xn + CQ

under the condition that the poixt . . . xpsatisfies the constraints (the inequalities).

Geometrically the inequalities define a convexaset the task is to find that point in the
convex set which has minimum distance from the @lan

C1X1+...Cnxpn-c0=0
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The problem is well understood theoretically. Weehthe simplex method, due to G.
Dantzig, by which linear programming problems carsblved.

Let us consider asexual evolution: We start anaoaly selected point in the convex set. We
change the variables in small steps. After a moatve test whether the cost has decreased.
If not, we make a step in the opposite directiofterAdecreasing the cost we test whether the
constraints are still satisfied. If this is theeage go to the new point, if not we try another
variable (or direction). After a number of tries wed up at (or close to) the boundary of the
convex set-but usually not at the solution of thebjem. We have reached a point of
stagnation. To make further progress in cost redn@nd in order to stay in the set, two
variables have to be changed simultaneously. feveo the trouble of computing the
dependency we reach after a while the intersecidwo boundary planes which is a n-2
dimensional plane and we have two dependenciess@od.

What happens if instead we play the "mating garelffpose we have different random starts
and end up on different boundary planes. Then plsiflmear superposition brings us back
into the set. This is due to the fact that thessebnvex. A new round of asexual evolution
gives us a new "population” of points on the boupgdanes. Then we iterate the mating
process, then the asexual evolution and so oneTdrera number of fine points that affect
the problem and which | am not discussing here.shmll problems (4 variables or less) the
process works well and brings us close to the goiuh a few seconds machine time.
Already for 8 variables, however, the whole popolatends to "degenerate,"” to drift over to
one of the boundary planes. In this case we dgebback Into the set and the process
stagnates again. S. Salaff and | are presentlygtyi employ additional selection routines
that, we hope, will minimize this effect. If sucskd we shall have given an example, where
the "mating game" really works. | plan to write tne details in a Technical Report. W. W.
Bledsoe is investigating the effect of mating tleiwally. He presently is concerned with the
effect of mating on gene distributions in large plgpions. He has shown that random mating
transforms a binomal distribution of genes intareomial distribution Bledsoe [18]

As a further development | seethe v$deuristicsl would call "heuristical” any method,
constraint, or guidance principle that helps tenglate unpromising possibilities in a search
process. Heuristics have been applied succes$fulNewell, Shaw and Simon and by
Gelernter. | expect thattheory ofheuristics will be needed and that the mathemlatica
motion of homomorphismmay play a central role.
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Conclusion

Evolution is a fact of life. It has gone a long wayexplain biological phenomena. | hope |
have demonstrated that there still is a lot toda@ded about it. The previous discussion
shows that it is quite impossible to attribute lecsgon advantage to single genes which
remains constant for many generations. Such a medehply not true. This assumption,
however, is being used in much of mathematical geneDiscussions based on this
assumption may be valid for short term changespnpulation. They must be viewed with
suspicion when conclusions are drawn that affectynggnerations.

Secondly, | believe that we must try to understavalution in simple cases first before we
can hope to use it successfully in complicatedsd®erhaps we can then develop evolution
schemes which may be useful in integer programnmog;convex programming or even in
machines that learn to play games or recognize et

The experiences of various groups who work on moldolving, theorem proving and
pattern recognition all seem to point in the sainection: These problems are tough. There
does not seem to be a royal road or a simple mailtnach at one stroke will solve all our
problems. My discussion of ultimate limitations e speed and amount of data processing
may be summarized like this: Problems involving vasmbers of possibilities will not be
solved by sheer data processing quantity. We noast for quality, for refinements, for tricks,
for every ingenuity that we can think of. Computiaster than those of today will be a great
help. We will need them. However, when we are came@ with problems in principle,
present day computers are about as fast as theyihvbe.

We may expect that the technology of data procgssiih proceed step by step-just as
ordinary technology has done. There is an unlimiteallenge for ingenuity applied to

specific problems. There is also an unending needédneral notions and theories to organize
the myriad details.

. Supported in part by the Preparation Systems Bra@ffice of Naval Research.
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Editor's Footnotes

A. It should be noted that the number of secondsyear is slightly more than p ><7_L(being
on average ~31,557,600.
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