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Abstract  

We present a genetic algorithm for solving the traveling salesman problem by genetic algorithms to 
optimality for traveling salesman problems with up to 442 cities. Mlihlenbein et al. [MGK 88], [MK 89] 
have proposed a genetic algorithm for the traveling salesman problem, which generates very good but not 
optimal solutions for traveling salesman problems with 442 and 531 cities. We have improved this 
approach by improving all basic components of that genetic algorithm. For our experimental 
investigations we used the traveling salesman problems TSP (i) with i cities for i = 137, 202, 229, 318, 
431,442, 666 which were solved to optimality in [CP 80], [GH 89]. 

We could solve medium sized traveling salesman problems with up to 229 cities in < 3 minutes 
average runtirne on a SUN workstation. Furthermore we coald solve traveling salesman problems with up 
to 442 cities optimally in an acceptable time limit (e.g. the average rtmtime on a SUN workstation for the 
TSP (431) is about 30 minutes). The greatest examined problem with 666 cities could be approximately 
solved by conslxt~ting a tour with length 0,04% over the optimum. 

1 Introduction 
The application of  genetic algorithms for combinatorial optimization problems was 

already intensively studied in the early seventies ([Re 73], [Sc 77]). Nowadays there is a 

growing interest in this field in order to find efficient algorithms for parallel computers 

IDa 85], ~ a  87], [Go 89]. In the field of optimization problems the genetic algorithms can 

coordinate the cooperation of a population of optimum's-searchers [Gr 85], [Gr 87]~ 

Especially for the traveling salesman problem MiLhlenbein et al. [MGK 88], [MK 89] have 

proposed a genetic algorithm, which generates very good but not optimal solutions for 

traveling salesman problems with 442 and 531 cities. 

We have developed this approach further by improving the underlying basic operators. 

Our basic genetic algorithm works roughly as follows: 

Initialize population of optimum's searchers 
while evolution do 
begin 

choose parentl and parent2; { selection } 
offspring := combination (parentl, parent2);  {crossover} 
optimize-local (offspring); {mutation} 
ifsuited(offspring~ {survival of the fittest} 
then replace optimum's searcher with worst fitness by offspring 

end; 

In the following sections we present fu'stly our solution of efficiently implementing the 

basic operators of  this genetic algorithm and secondly our insular genetic algorithm. A 

more detailed version of our approach can be found in [Br 90]. 
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2 B a s i c  O p e r a t o r s  

2 .  I Crossover Operator 

Mfihlenbein et al. used in their approach order crossover, which were already proposed 

in IDa 85] and JOSH 87] : 

Order-Crossover (parentstrlng t,t') 
divide parentstring t in tl t2 such that length of tl = k; 
t2" := parentstring t" where cities in tl are removed; 
offspring t" := tl t2" . 

{k is constant (e.g. 40% * n), or random (e.g. between 30% * n and 50% * n) } 

Using the order crossover the offspring consists of two substrings, one of parentl and 

the other of the remaining part of parent2. We generalized this approach by composing the 

offspring through several substrings destinating alternatively from parentl and parent2: 

Crossover (parentstring t,t') 
tl := parentstring t ; t2 := parentstring t" ; t" := ~ {~ = empty string}; 
while tl ~ g do begin 

divide tl in tl 1 t12 such that length of tl 1 = rain {length of tl,k}; 
append tll to t" ; 
tl := tl where cities in tl 1 are removed; 
t2 := t2 where cities in tll are removed; 
exchange t I and t 2 ; 

end {while}; 
{ k is constant (e.g. between 20% * n and 40% * n) } 

The advantage of our approach is, that a tougher merging of the "genes" of the parents 

is obtained, which is desirable especially for large problems. 

2 . 2  Mutat ion - Local Optimization 

The efficient implementation of the local optimization is crucial for the efficiency of the 

genetic algorithm. On the one hand nearly the whole cpu-time is used by the local 

optimization, because the remaining operators as crossover, selection etc. are very fast 

operators. On the other hand the genetic algorithm needs a good local optimization 

operator for solving larger problems (of. the approach in [OSH 87] without local 

optimization fails even for problems with only 50 cities). 

We used the wellknown 2-opt and or-opt heuristic and tuned them especially for the 

genetic algorithm. Firstly we use the known neighbottring restriction, which means a 2- 

opt step respectively or-opt step is only allowed, if at least one new edge connects 

neighbouring cities (the relation "neighbouring" may be defined asymmetricly by: to each 

city are the k-next cities neighbouring (e.g. k=10)). This is a good restriction heuristic, 

because it hindered in our experimental investigation no improvement step and decreases 

the execution time about one order of magnitude. Secondly we take advantage of the 

similarity of the offsprhag with the parent by introducing the concept of activ edges, which 

are the edges of the offspring not not belonging to the parent. We could show that at each 

2-opt and or-opt step at least one edge has to be activ. By this restriction the execution time 

can be decreased about another order of magnitude. 
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2 . 3  In i t i a l i za t ion  o f  the  p o p u l a t i o n  

For  the initialization of  the population we have to construct efficiently a set of  tours, 

which are as different and short as possible, in order to achieve a genpool of  great 

diversity and good genes. Therefore one constructs tours with a greedy heuristic and 

improve this by a tour improvement heuristic. Clearly it is not desireable, to use dedicated 

heuristics as greedy heuristic (e.g. convex hull) and as improvement  heuristic (e.g. Lin 

Kernighan),  because the major  improvements  will be efficiently done by the genetic 

algorithm. 

As tour improvement  heuristic we used the 2-opt and or-opt algorithms (cf. mutation - 

local optimization). Furthermore we used as an efficient and easy greedy heuristic the well 

known nearest neighbour algorithm, which constructs in the beginning good subtours. Its 

low overall performance is only caused by its inability for fitting in the last cities properly, 

which can be easily improved by 2-opt and or-opt (cf. [LLKS 85]). 

2 . 4  Select ion a n d  Surv iva l  o f  the  Fi t tes t  

As in natural surroundings it holds on average: "the better the parents the better the 

offspring" and "the offspring is similar to the parent". Therefore it is on the one hand 

desireable to choose the fittest individuals more often, but on the other hand not to often, 

beause otherwise the diversity of  the population decreases. In our implementation we 

select the best individuals 4 times more often than the worst. 

Furthermore we only accept an offspring as a new member  of  the population, i f  it differ 

enough f rom the other individuals, that means here its fitness differ f rom all the other 

individuals at least about amount a. After accepting a new individual we remove one of the 

worst in order to hold the populationsize constant. In our implementation we remove the 

worst, because the algorithm is not sensible against this selection. 

2.5  Genetic Algorithm 
Concluding we can notate in the following our genetic algorithm: 

Genetic Algorithm (GA) for the TSP 

for i := 1 to #pop do {#pop = populationsize (e.g. =100)} {Generation of the population} 
begin 

choose new starting town s; 
tour{i] := nearest-neighbour (starting town = s); 
optimize-local (tour{i]) 

end; 

while evolution do 
begin 

choose parentl and parent2; {selection } 
offspring := crossover (parentl, parent2) ; {crossover } 
activate.edges (offspring,parentl); 
optimize-local (offspring); {mutation } 
if -, 3 i < #pop I length(tour{i]) - length(offspring) I < a {survival of the fittest} 

^ 3 i _< #pop length(tour{i]) ~ length(offspring) 
then replace the longest tour by offspring 

end; 
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3 Insular Genetic Algorithm 
It is easy to see, that our genetic algorithm always converges, because it converges iff  

the sum of  the lengths of all tours in the population converges (which does never increase 

and is always positiv). Unfortunately it is impossible to predict for  such a probabilistic 

algorithm, whether it is already converged. In practice the convergence will be assumed, 

when in a certain number of  steps no new suited offspring could be produced. This may 

have two reasons. Firstly the optimum is already generated, that is there are no better tours 

available. Or secondly the population is degenerated, that is all tours in the population are 

very similar and could therefore not produce a new suited offspring. In our experimental 

investigations we found that especially for large problems the population degenerated 

before the optimal solution was found. 

We developed therefore the island model, where several populations each isolated on 

an island are optimized by the genetic algorithm until they degenerate (e.g. for  #N steps). 

The degeneration is then removed by refreshing the population on each island through 

individuals of  other island (e.g. neighbouring islands) and the evolution can proceed. 

Insular Genetic Algorithm (IGA) 

for j := 1 to #island do {#island = number of islands} 
for i := l to #pop do {#pop=populationsize} {generation of the island.populations} 
begin 

choose new starting town s; 
tour[j,i] := nearest-neighbour (starting town = s); 
optimize-local (tour[j,i]) 

end; 

while evolution do 
begin 

for j := 1 to #inset do 
for k := l to #N do {#N = number of steps until degeneratian} 
begin 

choose parentl and parent2; {selection } 
offspring := crossover (parentl, parent2) ; {crossover} 
activate-edges (offspring,parentl); 

end 

optimize-local (offspring): {mutation} 
i f~  3 i a #pop I length(tour[i,i]) - Iength(offsprlng) I _< a {survival of the fittest} 

A 3 i ~ #pop length(tour[j,i]) a length(offspring) 
then replace the longest tour on island j by offspring 
{for}; 

for k := I to #m do {#m = number of merging steps } 
begin 

choose randomly id, i ' j"  with tour [ i j l  new on island i" 
and tour {i'd7 new on island i ; 

exchange Tour [ij] and Tour [ i ' j7  
end {for}: 

end {while}; 

{refreshing} 

We can choose the populationsize small (e.g. #pop = 20 - 50) for fast improvements, 

because the fast degeneration is removed by the refreshing steps. 
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4 Results  

As benchmark tests we choose the following traveling salesman problems: 

From [CP 80] TSP318 with 318 cities and 
from [GH 89] TSP (i) with i cities, i = 137, 202, 229, 431,442, 666. 

The following figure shows the typical behaviour of  the genetic algorithm (here IGA). 

Our statistics are based on 50 trials respectively. 

probability for "best tour is 
[ ]  optimal 
[] <0,1% 
[ ]  0,1-0,25% 
[] 0,25-0,5 % 
[] 0,5-1,0% 

TSP 431 11 75 
50 

25 
01  | 

after s steps" 0 4000 8000 12000 16000  steps 

Figure I: Statistic of IGA for TSP 431 

The computation time for the generation of one (local optimized) offspring (= 1 step) 

depends on the problemsize. On a SUN workstation we measured: 

22ms forTSP137 28ms forTSP202 34ms forTSP229 38ms forTSP318 
52ms forTSP431 57ms forTSP442 93ms forTSP666 

In our experimental investigations we measured as average runtime until receiving the 

optimal solution: with GA for TSP202 84 s and for TSP229 136s, 
with IGA for TSP318 532 s and for TSP431 2080s 
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