
On Solving Travelling Salesman Problems
by Genetic Algorithms

Heinr ich Braun

Institut fiir Logik, Komplexitht und Deduktionssysteme, Universi~t Karlsruhe
Posffach 6980, D 7500 Karlsruhe, Deutschland, e-maih braun@ira.uka.de

Abstract

We present a genetic algorithm for solving the traveling salesman problem by genetic algorithms to
optimality for traveling salesman problems with up to 442 cities. Mlihlenbein et al. [MGK 88], [MK 89]
have proposed a genetic algorithm for the traveling salesman problem, which generates very good but not
optimal solutions for traveling salesman problems with 442 and 531 cities. We have improved this
approach by improving all basic components of that genetic algorithm. For our experimental
investigations we used the traveling salesman problems TSP (i) with i cities for i = 137, 202, 229, 318,
431,442, 666 which were solved to optimality in [CP 80], [GH 89].

We could solve medium sized traveling salesman problems with up to 229 cities in < 3 minutes
average runtirne on a SUN workstation. Furthermore we coald solve traveling salesman problems with up
to 442 cities optimally in an acceptable time limit (e.g. the average rtmtime on a SUN workstation for the
TSP (431) is about 30 minutes). The greatest examined problem with 666 cities could be approximately
solved by conslxt~ting a tour with length 0,04% over the optimum.

1 Introduction
The application of genetic algorithms for combinatorial optimization problems was

already intensively studied in the early seventies ([Re 73], [Sc 77]). Nowadays there is a

growing interest in this field in order to find efficient algorithms for parallel computers

IDa 85], ~ a 87], [Go 89]. In the field of optimization problems the genetic algorithms can

coordinate the cooperation of a population of optimum's-searchers [Gr 85], [Gr 87]~

Especially for the traveling salesman problem MiLhlenbein et al. [MGK 88], [MK 89] have

proposed a genetic algorithm, which generates very good but not optimal solutions for

traveling salesman problems with 442 and 531 cities.

We have developed this approach further by improving the underlying basic operators.

Our basic genetic algorithm works roughly as follows:

Initialize population of optimum's searchers
while evolution do
begin

choose parentl and parent2; { selection }
offspring := combination (parentl, parent2); {crossover}
optimize-local (offspring); {mutation}
ifsuited(offspring~ {survival of the fittest}
then replace optimum's searcher with worst fitness by offspring

end;

In the following sections we present fu'stly our solution of efficiently implementing the

basic operators of this genetic algorithm and secondly our insular genetic algorithm. A

more detailed version of our approach can be found in [Br 90].

130

2 B a s i c O p e r a t o r s

2 . I Crossover Operator

Mfihlenbein et al. used in their approach order crossover, which were already proposed

in IDa 85] and JOSH 87] :

Order-Crossover (parentstrlng t,t')
divide parentstring t in tl t2 such that length of tl = k;
t2" := parentstring t" where cities in tl are removed;
offspring t" := tl t2" .

{k is constant (e.g. 40% * n), or random (e.g. between 30% * n and 50% * n) }

Using the order crossover the offspring consists of two substrings, one of parentl and

the other of the remaining part of parent2. We generalized this approach by composing the

offspring through several substrings destinating alternatively from parentl and parent2:

Crossover (parentstring t,t')
tl := parentstring t ; t2 := parentstring t" ; t" := ~ {~ = empty string};
while tl ~ g do begin

divide tl in tl 1 t12 such that length of tl 1 = rain {length of tl,k};
append tll to t" ;
tl := tl where cities in tl 1 are removed;
t2 := t2 where cities in tll are removed;
exchange t I and t 2 ;

end {while};
{ k is constant (e.g. between 20% * n and 40% * n) }

The advantage of our approach is, that a tougher merging of the "genes" of the parents

is obtained, which is desirable especially for large problems.

2 . 2 Mutat ion - Local Optimization

The efficient implementation of the local optimization is crucial for the efficiency of the

genetic algorithm. On the one hand nearly the whole cpu-time is used by the local

optimization, because the remaining operators as crossover, selection etc. are very fast

operators. On the other hand the genetic algorithm needs a good local optimization

operator for solving larger problems (of. the approach in [OSH 87] without local

optimization fails even for problems with only 50 cities).

We used the wellknown 2-opt and or-opt heuristic and tuned them especially for the

genetic algorithm. Firstly we use the known neighbottring restriction, which means a 2-

opt step respectively or-opt step is only allowed, if at least one new edge connects

neighbouring cities (the relation "neighbouring" may be defined asymmetricly by: to each

city are the k-next cities neighbouring (e.g. k=10)). This is a good restriction heuristic,

because it hindered in our experimental investigation no improvement step and decreases

the execution time about one order of magnitude. Secondly we take advantage of the

similarity of the offsprhag with the parent by introducing the concept of activ edges, which

are the edges of the offspring not not belonging to the parent. We could show that at each

2-opt and or-opt step at least one edge has to be activ. By this restriction the execution time

can be decreased about another order of magnitude.

t31

2 . 3 In i t i a l i za t ion o f the p o p u l a t i o n

For the initialization of the population we have to construct efficiently a set of tours,

which are as different and short as possible, in order to achieve a genpool of great

diversity and good genes. Therefore one constructs tours with a greedy heuristic and

improve this by a tour improvement heuristic. Clearly it is not desireable, to use dedicated

heuristics as greedy heuristic (e.g. convex hull) and as improvement heuristic (e.g. Lin

Kernighan), because the major improvements will be efficiently done by the genetic

algorithm.

As tour improvement heuristic we used the 2-opt and or-opt algorithms (cf. mutation -

local optimization). Furthermore we used as an efficient and easy greedy heuristic the well

known nearest neighbour algorithm, which constructs in the beginning good subtours. Its

low overall performance is only caused by its inability for fitting in the last cities properly,

which can be easily improved by 2-opt and or-opt (cf. [LLKS 85]).

2 . 4 Select ion a n d Surv iva l o f the Fi t tes t

As in natural surroundings it holds on average: "the better the parents the better the

offspring" and "the offspring is similar to the parent". Therefore it is on the one hand

desireable to choose the fittest individuals more often, but on the other hand not to often,

beause otherwise the diversity of the population decreases. In our implementation we

select the best individuals 4 times more often than the worst.

Furthermore we only accept an offspring as a new member of the population, i f it differ

enough f rom the other individuals, that means here its fitness differ f rom all the other

individuals at least about amount a. After accepting a new individual we remove one of the

worst in order to hold the populationsize constant. In our implementation we remove the

worst, because the algorithm is not sensible against this selection.

2.5 Genetic Algorithm
Concluding we can notate in the following our genetic algorithm:

Genetic Algorithm (GA) for the TSP

for i := 1 to #pop do {#pop = populationsize (e.g. =100)} {Generation of the population}
begin

choose new starting town s;
tour{i] := nearest-neighbour (starting town = s);
optimize-local (tour{i])

end;

while evolution do
begin

choose parentl and parent2; {selection }
offspring := crossover (parentl, parent2) ; {crossover }
activate.edges (offspring,parentl);
optimize-local (offspring); {mutation }
if -, 3 i < #pop I length(tour{i]) - length(offspring) I < a {survival of the fittest}

^ 3 i _< #pop length(tour{i]) ~ length(offspring)
then replace the longest tour by offspring

end;

132

3 Insular Genetic Algorithm
It is easy to see, that our genetic algorithm always converges, because it converges iff

the sum of the lengths of all tours in the population converges (which does never increase

and is always positiv). Unfortunately it is impossible to predict for such a probabilistic

algorithm, whether it is already converged. In practice the convergence will be assumed,

when in a certain number of steps no new suited offspring could be produced. This may

have two reasons. Firstly the optimum is already generated, that is there are no better tours

available. Or secondly the population is degenerated, that is all tours in the population are

very similar and could therefore not produce a new suited offspring. In our experimental

investigations we found that especially for large problems the population degenerated

before the optimal solution was found.

We developed therefore the island model, where several populations each isolated on

an island are optimized by the genetic algorithm until they degenerate (e.g. for #N steps).

The degeneration is then removed by refreshing the population on each island through

individuals of other island (e.g. neighbouring islands) and the evolution can proceed.

Insular Genetic Algorithm (IGA)

for j := 1 to #island do {#island = number of islands}
for i := l to #pop do {#pop=populationsize} {generation of the island.populations}
begin

choose new starting town s;
tour[j,i] := nearest-neighbour (starting town = s);
optimize-local (tour[j,i])

end;

while evolution do
begin

for j := 1 to #inset do
for k := l to #N do {#N = number of steps until degeneratian}
begin

choose parentl and parent2; {selection }
offspring := crossover (parentl, parent2) ; {crossover}
activate-edges (offspring,parentl);

end

optimize-local (offspring): {mutation}
i f~ 3 i a #pop I length(tour[i,i]) - Iength(offsprlng) I _< a {survival of the fittest}

A 3 i ~ #pop length(tour[j,i]) a length(offspring)
then replace the longest tour on island j by offspring
{for};

for k := I to #m do {#m = number of merging steps }
begin

choose randomly id, i ' j" with tour [i j l new on island i"
and tour {i'd7 new on island i ;

exchange Tour [ij] and Tour [i ' j7
end {for}:

end {while};

{refreshing}

We can choose the populationsize small (e.g. #pop = 20 - 50) for fast improvements,

because the fast degeneration is removed by the refreshing steps.

133

4 Results

As benchmark tests we choose the following traveling salesman problems:

From [CP 80] TSP318 with 318 cities and
from [GH 89] TSP (i) with i cities, i = 137, 202, 229, 431,442, 666.

The following figure shows the typical behaviour of the genetic algorithm (here IGA).

Our statistics are based on 50 trials respectively.

probability for "best tour is
[] optimal
[] <0,1%
[] 0,1-0,25%
[] 0,25-0,5 %
[] 0,5-1,0%

TSP 431 11 75
50

25
01 |

after s steps" 0 4000 8000 12000 16000 steps

Figure I: Statistic of IGA for TSP 431

The computation time for the generation of one (local optimized) offspring (= 1 step)

depends on the problemsize. On a SUN workstation we measured:

22ms forTSP137 28ms forTSP202 34ms forTSP229 38ms forTSP318
52ms forTSP431 57ms forTSP442 93ms forTSP666

In our experimental investigations we measured as average runtime until receiving the

optimal solution: with GA for TSP202 84 s and for TSP229 136s,
with IGA for TSP318 532 s and for TSP431 2080s

5 References

WrgO]

[CP 8O]

ida 85]

iDa 87]

[Go 89]

[Gr 87]

[GH 89]

[LLKS 85]

[MGK 88]

IMK 89]

[OSH 87]

IRe 73]

[Sc 77]

H.Braun, Massiv parallele Algorithmen Jar kombinatorische Optimierungsprobleme und ihre
lmplementierung auf einem Parallelrechner, Dissertation an der Universitllt Karlsruhe, 1990
H.Crowder, M.Padberg, Solving large-scale symmetric travelling salesman problems to
optimality, Management Science, Vol.26, No.5 1980, 495 - 509
L.Davles (Ed.), Applying adaptive algorithms to epistatic domains
Prec. Int. Joint Conf. on Artificial Intelligence, 1985
L.Davies (Ed.), Genetic algorithms and simulated annealing
Pitman London, Morgan Kaufmann Publishers, CA, 1987
D.E.Goldberg, Genetic algorithms in search, optimization and machine learning,
Reading, MA: Addison Wesley, 1989
J.J.Grefenstette (Ed.), Proceedings of the second int. conf. on genetic algorithms,
Cambridge,/viA: Lawrence Erlbaum, 1987
M.Gr6tschel, O.Holland, Solution of large-scale symmetric traveling salesman problems,
To appear: Math.Programming, 1989/90
E.L.Lawler, J.K.Lenstra, A.H.G.Rinooy Kan, D.B.Shmoys (ed.)
The traveling salesman problem, John Wiley & Sons, 1985
H.Miihlenbein, M.Gorges-Schleuter, O.Krfimer, Evolution algorithms in combinatorial
optimization, Parallel Computing, Vol.7, 1988, 65-85
H.Miihlenbein, J.Kindermann, The dynamics of evolution and learning -
towards genetic neural networks, Connection. in Perspective, Pfciffer ed., 1989
I.M.Oliver, Dj.Smith, J.R.C.Holland A study of permutation crossover operators on the
travelling salesman problem, Prec. of the 2. Int. Conf. on Genetic Algorithms, 1987, 224 -230
I.Rechenberg, Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Information, Frommann Verlag, Stuttgart, 1973
H.P.Schwefel, Numerische Optimierung yon Computermodellen mittels der Evolutionsstrategie,
Birkh/tuser, Basel, 1977

