
Making the future safe for the past:
Adding Genericity to the JavaTM Programming Language

Gilad Bracha, Sun Microsystems, gilad.bracha@sun.com
Martin Odersky, University of South Australia, odersky@cis.unisa.edu.au

David Stoutamire, Sun Microsystems, david.stoutamire@sun.com
Philip Wadler, Bell Labs, Lucent Technologies, wadler@research.bell–labs.com

Abstract

We present GJ, a design that extends the Java program-
ming language with generic types and methods. These
are both explained and implemented by translation into
the unextended language. The translation closely mim-
ics the way generics are emulated by programmers: it
erases all type parameters, maps type variables to their
bounds, and inserts casts where needed. Some sub-
tleties of the translation are caused by the handling of
overriding.

GJ increases expressiveness and safety: code utiliz-
ing generic libraries is no longer buried under a plethora
of casts, and the corresponding casts inserted by the
translation are guaranteed to not fail.

GJ is designed to be fully backwards compatible with
the current Java language, which simplifies the tran-
sition from non-generic to generic programming. In
particular, one can retrofit existing library classes with
generic interfaces without changing their code.

An implementation of GJ has been written in GJ,
and is freely available on the web.

1 Introduction

Generic types are so important that even a language
that lacks them may be designed to simulate them.
Some object-oriented languages are designed to support
subtypes directly, and to support generics by the idiom
of replacing variable types by the top of the type hier-
archy. For instance, a collection with elements of any
type is represented by a collection with elements of type
Object.

To appear in the 13th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’98),
Vancouver, BC, Canada, October, 1998.

This approach is exemplified by the Java program-
ming language[GLS96]. Generics are represented by
this idiom throughout the standard Java libraries, in-
cluding vectors, hash tables, and enumerations. As the
Java Development Kit (JDK) has evolved, generics have
played an increasing role. JDK 1.1 introduced an ob-
server pattern that depends on generics, as do the col-
lection classes introduced in JDK 1.2. Oberon also relies
on the generic idiom, and dynamically typed languages
such as Smalltalk [GR83] use this idiom implicitly.

Nonetheless, generics may merit direct support. De-
signing a language with direct support for subtyping
and generics is straightforward. Examples include Mod-
ula 3, Ada 95, Eiffel, and Sather. Adding generics to
an existing language is almost routine. We proposed
adding generics to the Java programming language in
Pizza [OW97], and we know of four other proposals
[AFM97, MBL97, TT98, CS98]. Clemens Szyperski
proposed adding generics to Oberon [RS97]. Strongtalk
[BG93] layers a type system with generic types on top
of Smalltalk.

The generic legacy problem However, few propos-
als tackle the generic legacy problem: when direct sup-
port for generics is added to a language that supports
them via the generic idiom, what happens to legacy
code that exploits this idiom?

Pizza is backward compatible with the Java pro-
gramming language, in that every legal program of the
latter is also legal in the former. However, this compat-
ibility is of little help when it comes to generics. For
example, JDK 1.2 contains an extensive library of col-
lection classes based on the generic idiom. It is straight-
forward to rewrite this library to use generics directly,
replacing the legacy type Collection by the parametric
type Collection<A>. However, in Pizza these two types
are incompatible, so one must rewrite all legacy code,
or write adaptor code to convert between legacy and
parametric types. Code bloat may result from refer-

ences to both the legacy and parametric versions of
the library. Note the problem is not merely with the
size of legacy libraries (which may be small), but with
managing the upgrade from the legacy types to para-
metric types (which can be a major headache if refer-
ences to legacy types are dispersed over a large body
of code). If legacy libraries or code are available only
in binary rather than source, then these problems are
compounded.

GJ Here we propose GJ, a superset of the Java pro-
gramming language that provides direct support for
generics. GJ compiles into Java virtual machine (JVM)
byte codes, and can be executed on any Java compli-
ant browser. In these respects GJ is like Pizza, but GJ
differs in that it also tackles the generic legacy problem.

GJ contains a novel language feature, raw types, to
capture the correspondence between generic and legacy
types, and a retrofitting mechanism to allow generic
types to be imposed on legacy code. A parametric type
Collection<A> may be passed wherever the correspond-
ing raw type Collection is expected. The raw type and
parametric type have the same representation, so no
adaptor code is required. Further, retrofitting allows
one to attribute the existing collection class library with
parametric types, so one only requires one version of the
library; an added plus is that new code will run in any
JDK 1.2 compliant browser against the built-in collec-
tion class library. Raw types and retrofitting apply even
if libraries or code are available only as binary class files,
and no source is available. Combined, these techniques
greatly ease the task of upgrading from legacy code to
generics.

The semantics of GJ is given by a translation back
into the Java programming language. The translation
erases type parameters, replaces type variables by their
bounding type (typically Object), adds casts, and in-
serts bridge methods so that overriding works properly.
The resulting program is pretty much what you would
write in the unextended language using the generic id-
iom. In pathological cases, the translation requires
bridge methods that can only be encoded directly in
JVM byte codes. Thus GJ extends the expressive power
of the Java programming language, while remaining
compatible with the JVM.

GJ comes with a cast-iron guarantee: no cast in-
serted by the compiler will ever fail. (Caveat: this guar-
antee is void if the compiler generates an ‘unchecked’
warning, which may occur if legacy and parametric code
is mixed without benefit of retrofitting.) Furthermore,
since GJ compiles into the JVM, all safety and security
properties of the Java platform are preserved. (Reassur-
ance: this second guarantee holds even in the presence
of unchecked warnings.)

Security One may contrast two styles of implement-
ing generics, homogeneous and heterogeneous. The ho-
mogeneous style, exemplified by the generic idiom, re-
places occurrences of the type parameter by the type
Object. The heterogeneous style, exemplified by C++
and Ada, makes one copy of the class for each instantia-
tion of the the type parameter. The GJ and Pizza com-
pilers implement the homogeneous translation, while
Agesen, Freund, and Mitchell [AFM97] propose having
the class loader implement the heterogeneous transla-
tion. Other proposals utilize a mixture of homogeneous
and heterogeneous techniques [CS98].

As observed by Agesen, Freund, and Mitchell,
the heterogeneous translation provides tighter security
guarantees than the homogeneous. For example, un-
der the homogeneous translation a method expecting
a collection of secure channels may be passed a collec-
tion of any kind of object, perhaps leading to a security
breach. To minimize this problem, GJ always inserts
bridge methods when subclassing a generic class, so the
user may ensure security simply by declaring suitable
specialized subclasses.

The homogeneous translation also enjoys some ad-
vantages over the heterogeneous. Surprisingly, with the
security model of the Java virtual machine, the hetero-
geneous translation makes it impossible to form some
sensible type instantiations. (This problem is entirely
obvious, but only in retrospect.) GJ and other lan-
guages based on the homogeneous translation do not
suffer from this difficulty.

Type inference While type systems for subtyping
and for generics are well understood, how to combine
the two remains a topic for active research. In particu-
lar, it can be difficult to infer instantiations for the type
arguments to generic methods.

GJ uses a novel algorithm for this purpose, which
combines two desirable (and at first blush contradic-
tory) properties: it is local, in that the type of an ex-
pression depends only on the types of its subexpres-
sions, and not on the context in which it occurs; and it
works for empty, in that inference produces best types
even for values like the empty list that have many pos-
sible types. Further, the inference algorithm supports
subsumption, in that if an expression has a type, then
it may be regarded as having any supertype of that
type.

In contrast, the algorithm used in Pizza is non-local
and does not support subsumption (although it does
work for empty), while the algorithm used in Strongtalk
[BG93] does not work for empty (although it is local and
supports subsumption), and algorithms for constraint-
based type inference [AW93, EST95] are non-local (al-
though they work for empty and support subsumption).

Pizza uses a variant of the Hindley-Milner algorithm
[Mil78], which we regard as non-local since the type of
a term may depend on its context through unification.

Raw types and retrofitting Raw types serve two
purposes in GJ: they support interfacing with legacy
code, and they support writing code in those few sit-
uations (like the definition of an equality method)
where it is necessary to downcast from an unparam-
eterized type (like Object) to a parameterized type (like
LinkedList<A>), and one cannot determine the value
of the type parameter. The type rules for raw types
are carefully crafted so that the compiler can guaran-
tee the absence of type errors in methods like equal-
ity. However, when interfacing to legacy code, compile-
time checking is not always possible, and in this case,
an ‘unchecked’ warning may be issued. The prolifera-
tion of ‘unchecked’ warnings can be avoided by using
retrofitting to add information about type parameters
to legacy code.

Related work GJ is based closely on the handling
of parametric types in Pizza [OW97]. The Pizza com-
piler (itself written in Pizza) has been freely available
on the web since 1996. GJ differs from Pizza in pro-
viding greater support for backward compatibility, no-
tably in allowing new code to work with old libraries.
GJ also uses a simpler type system. In Pizza the type
of an expression may depend on the type expected by
its context, whereas in GJ the type of an expression is
determined solely by the type of its constituents.

GJ maintains no run-time information about type
parameters. The same design decision is made in Pizza
and in a proposal to add parametric types to Oberon
[RS97]. There are a number of other proposals for
adding parameterized types to the Java programming
language, all based on carrying type information at run-
time [AFM97, MBL97, CS98]. Run-time types may be
less efficient to implement than erasure [OR98], and
may be harder to interface with legacy code; on the
other hand, it is arguably more expressive to main-
tain run-time type information, and more consistent
with the rest of the design of the Java programming
language, which maintains run-time type information
about classes and arrays. For this reason, GJ has been
designed to be compatible with an extension that main-
tains type information at run-time.

In particular, Cartwright and Steele have developed
the NextGen design in tandem with GJ [CS98]. Just
as the Java programming language is a subset of GJ, so
GJ is a subset of NextGen. A more detailed comparison
with NextGen appears in the conclusion.

Virtual types have been suggested as an alternative
to parametric types [Tho97, Tor98]. A comparison of

the relative strengths of parametric and virtual types
appears elsewhere [BOW98]. It may be possible to
merge virtual and parametric types [BOW98, TT98],
but it is not clear whether the benefits of the merger
outweigh the increase in complexity.

Status An implementation of GJ is freely available on
the web [GJ98a]. The GJ compiler is derived from the
Pizza compiler and, like it, can also be used as a stand-
alone compiler for the Java programming language. The
compiler is about 20,000 lines of GJ.

This paper concentrates on the design issues under-
lying GJ. Companion papers provide a tutorial intro-
duction [GJ98b] and a precise specification [GJ98c].

Outline The remainder of this paper is structured as
follows. Section 2 introduces the basic features of GJ,
using a running example based on collections and linked
lists. Section 3 details the translation from GJ into the
Java programming language and JVM byte code. Sec-
tion 4 explains why an invariant subtyping rule is used
for parameterized types. Section 5 describes the type
inference algorithm. Section 6 discusses how generics
relate to the Java platform’s security model. Section 7
details restrictions imposed on the source language by
the lack of run-time type information. Section 8 intro-
duces raw types. Section 9 describes retrofitting. Sec-
tion 10 shows how generics are exploited in the imple-
mentation the GJ compiler itself. Section 11 concludes.

2 Generics in GJ

Figure 1 shows a simplified part of the Java collection
class library expressed in GJ. There are interfaces for
collections and iterators, and a linked list class. The col-
lection interface provides a method to add an element
to a collection (add), and a method to return an iterator
for the collection (iterator). In turn, the iterator inter-
face provides a method to determine if the iteration is
done (hasNext), and (if it is not) a method to return
the next element and advance the iterator (next). The
linked list class implements the collections interface. It
contains a nested class for list nodes (Node), and an
anonymous class for the list iterator.

The interfaces and class take a type parameter A,
written in angle brackets, representing the element type.
The nested class Node has A as an implicit parameter
inherited from the scope, the full name of the class be-
ing LinkedList<A>.Node. The scope of a type parameter
is the entire class, excluding static members and static
initializers. This is required since different instances of a
class may have different type parameters, but access the
same static members. Parameters are irrelevant when
using a class name to access a static member, and must

interface Collection<A> {
public void add (A x);
public Iterator<A> iterator ();

}
interface Iterator<A> {

public A next ();
public boolean hasNext ();

}
class NoSuchElementException extends RuntimeException {}
class LinkedList<A> implements Collection<A> {

protected class Node {
A elt;
Node next = null;
Node (A elt) { this.elt = elt; }

}
protected Node head = null, tail = null;

public LinkedList () {}
public void add (A elt) {

if (head == null) {
head = new Node(elt); tail = head;

} else {
tail.next = new Node(elt); tail = tail.next;

}
}
public Iterator<A> iterator () {

return new Iterator<A> () {
protected Node ptr = head;
public boolean hasNext () { return ptr != null; }
public A next () {

if (ptr != null) {
A elt = ptr.elt; ptr = ptr.next; return elt;

} else {
throw new NoSuchElementException ();

}
}

};
}

}
class Test {

public static void main (String[] args) {
LinkedList<String> ys = new LinkedList<String>();
ys.add(”zero”); ys.add(”one”);
String y = ys.iterator().next();

}
}

Figure 1: Collection classes in GJ

interface Comparable<A> {
public int compareTo (A that);

}
class Byte implements Comparable<Byte> {

private byte value;
public Byte (byte value) { this.value = value; }
public byte byteValue () { return value; }
public int compareTo (Byte that) {

return this.value – that.value;
}

}
class Collections {

public static <A implements Comparable<A>>
A max (Collection<A> xs) {
Iterator<A> xi = xs.iterator();
A w = xi.next();
while (xi.hasNext()) {

A x = xi.next();
if (w.compareTo(x) < 0) w = x;

}
return w;

}
}

Figure 2: Generic methods and bounds

be omitted. In general, nested classes may have type
parameters, and (if not static) also inherit type param-
eters from any surrounding class.

Angle brackets were chosen for type parameters since
they are familiar to C++ users, and each of the other
form of brackets may lead to confusion. If round brack-
ets are used, it is difficult to distinguish type and value
parameters. If square brackets are used, it is difficult
to distinguish type parameters and array dimensions.
If curly brackets are used, it is difficult to distinguish
type parameters from class bodies.

Phrases like LinkedList<LinkedList<String>> pose a
problem to the parser, since >> is treated as a single
lexeme. (Similarly for >>>.) In C++, users are re-
quired to add extra spaces to avoid this problem. In
GJ, the grammar has been modified so that no spaces
are required.

The example in Figure 2 shows another part of the
collection class library of JDK 1.2 expressed in GJ.
There is an interface Comparable<A> for objects that
can be compared to other objects of type A. Class Byte
implements this interface with itself as the type param-
eter, hence, bytes can be compared with themselves.

The last class in Figure 2 defines a static method
max that returns the maximum element of a non-empty

collection. This method demonstrates two features: it
is a generic method, and also has a bounded type pa-
rameter. The method is generic because it applies to
a variety of types. To declare a generic method, the
quantified type variables are written in angle brackets
preceding the method signature and body. The type is
automatically instantiated at point of use. For instance,
if ys has type Collection<Byte> we may write

Byte x = Collections.max(ys);

and the parameter A of max is inferred to be Byte.
The type parameter A is bounded because it varies
not over all types, but only over types that are com-
parable to themselves. For instance, the parameter
may be instantiated to Byte because Byte implements
Comparable<Byte>.

Any type parameter (to an interface, class, or generic
method) may be bounded. A bound is indicated by fol-
lowing the parameter with the keyword implements
and an interface or extends and a class. The bound-
ing interface or class may itself be parameterized, and
may include type variables appearing elsewhere in the
parameter section. Recursion or mutual recursion be-
tween parameters is allowed — that is, GJ supports
F-bounded polymorphism [CCHOM89]. Omitting a
bound is equivalent to using the bound Object.

3 Translating GJ

To translate from GJ to the Java programming lan-
guage, one replaces each type by its erasure. The era-
sure of a parametric type is obtained by deleting the
parameter (so LinkedList<A> erases to LinkedList), the
erasure of a non-parametric type is the type itself (so
String erases to String) and the erasure of a type param-
eter is the erasure of its bound (so A in Collections.max
erases to Comparable).

Translating the GJ code for collection classes in Fig-
ures 1 and 2 yields the code in Figures 3 and 4. The
translated code is identical to the original collection
class code written using the generic idiom. This prop-
erty is essential – it means that a GJ program compiled
against the parameterized collection library will run on
a browser that contains the original collection library.

The translation of a method erases all argument
types and the return type, and inserts type casts where
required. A cast is inserted in a method call when the
result type of the method is a type parameter, or in a
field access when the type of the field is a type param-
eter. For example, compare Test.main in Figure 1 with
its translation in Figure 3, where a cast is inserted into
the call of next.

The translation inserts bridge methods to ensure
overriding works correctly. A bridge is required when-

interface Collection {
public void add (Object x);
public Iterator iterator ();

}
interface Iterator {

public Object next ();
public boolean hasNext ();

}
class NoSuchElementException extends RuntimeException {}
class LinkedList implements Collection {

protected class Node {
Object elt;
Node next = null;
Node (Object elt) { this.elt = elt; }

}
protected Node head = null, tail = null;

public LinkedList () {}
public void add (Object elt) {

if (head == null) {
head = new Node(elt); tail = head;

} else {
tail.next = new Node(elt); tail = tail.next;

}
}
public Iterator iterator () {

return new Iterator () {
protected Node ptr = head;
public boolean hasNext () { return ptr != null; }
public Object next () {

if (ptr != null) {
Object elt = ptr.elt; ptr = ptr.next; return elt;

} else {
throw new NoSuchElementException ();

}
}

};
}

}
class Test {

public static void main (String[] args) {
LinkedList ys = new LinkedList();
ys.add(”zero”); ys.add(”one”);
String y = (String)ys.iterator().next();

}
}

Figure 3: Translation of collection classes

interface Comparable {
public int compareTo (Object that);

}
class Byte implements Comparable {

private byte value;
public Byte (byte value) { this.value = value; }
public byte byteValue () { return value; }
public int compareTo (Byte that) {

return this.value – that.value;
}
public int compareTo (Object that) {

return this.compareTo((Byte)that);
}

}
class Collections {

public static Comparable max (Collection xs) {
Iterator xi = xs.iterator();
Comparable w = (Comparable)xi.next();
while (xi.hasNext()) {

Comparable x = (Comparable)xi.next();
if (w.compareTo(x) < 0) w = x;

}
return w;

}
}

Figure 4: Translation of generic methods and bounds

ever a subclass (non-trivially) instantiates a type vari-
able in a superclass. For example, erasure of compareTo
in Comparable yields a method that takes an Object,
while erasure of compareTo in Byte yields a method
that takes a Byte. Since overriding occurs only when
method signatures match exactly, a bridge method for
compareTo is introduced into the translation of Byte
that takes an Object and casts it to a Byte. Overloading
allows the bridge and the original method to share the
same name.

Again, the translation from GJ yields code identi-
cal to the original collection class library in JDK 1.2,
including the bridge methods.

3.1 A bridge too far

A problematic case of bridging may arise if a type pa-
rameter appears in the result but not the arguments of
an overridden method.

Here is a class that implements the Iterator interface
in Figure 1.

class Interval implements Iterator<Integer> {
private int i, n;

public Interval (int l, int u) { i = l; n = u; }
public boolean hasNext () { return (i <= n); }
public Integer next () { return new Integer(i++); }

}

Here the next method of the class returns an Integer, to
match the instantiation of the type parameter.

The translation yields the following. As one would
expect, a bridge must be added to the Interval class.

interface Iterator {
public boolean hasNext ();
public Object next ();

}
class Interval implements Iterator {

private int i, n;

public Interval (int l, int u) { i = l; n = u; }
public boolean hasNext () { return (i <= n); }
public Integer next/∗1∗/ () {

return new Integer(i++);
}
// bridge
public Object next/∗2∗/ () {

return next/∗1∗/();
}

}

Unfortunately, this is not legal Java source code, as the
two versions of next cannot be distinguished because
they have identical arguments. The code above distin-
guishes our intention by suffixing the declarations and
calls with /∗1∗/ and /∗2∗/ as appropriate.

Fortunately, the two versions of next can be distin-
guished in the JVM, which identifies methods using a
signature that includes the result type. This situation
represents the one place where GJ must be defined by
translation directly into JVM byte code.

GJ also permits covariant overriding: an overriding
method may have a result type that is a subtype of the
method it overrides (whereas it must match exactly in
the unextended Java programming language). Here is
an example.

class C implements Cloneable {
public C copy () { return (C)this.clone(); }

}
class D extends C implements Cloneable {

public D copy () { return (D)this.clone(); }
}

Translation introduces a bridge method into the second
class.

class D extends C implements Cloneable {
public D copy/∗1∗/ () { return (D)this.clone(); }
// bridge
public C copy/∗2∗/ () { return this.copy/∗1∗/(); }

}
This is implemented using the same technique as above.

4 Subtyping

For purposes of type comparison, subtyping is invari-
ant for parameterized types. For instance, even though
the class String is a subtype of Object, the param-
eterized type LinkedList<String> is not a subtype of
LinkedList<Object>. In comparison, arrays use covari-
ant subtyping, so the array type String[] is a subtype
of Object[].

Invariant subtyping ensures that the type constraints
enforced by GJ are not violated. Consider the following
code.

class Loophole {
public static String loophole (Byte y) {

LinkedList<String> xs =
new LinkedList<String>();

LinkedList<Object> ys =
xs; // compile–time error

ys.add(y);
return xs.iterator().next();

}
}

This code is illegal, because otherwise it would violate
the type constraints by returning a byte when a string
is expected. Both the method call (which adds a byte,
which is itself an object, to a list of objects) and the
return (which extracts a string from a list of strings) are
unobjectionable, so it must be the assignment (which
aliases a list of string to a list of objects) that is at
fault.

It is instructive to compare the above to analogous
code for arrays.

class Loophole {
public static String loophole (Byte y) {

String[] xs = new String[1];
Object[] ys = xs;
ys[0] = y; // run–time error
return xs[0];

}
}

Now the code is legal, but raises an array store excep-
tion. Observe that the type safety of covariant subtyp-
ing depends upon the fact that an array carries its type
at run-time, making the store check possible. This ap-
proach is not viable for parameterized types, since type
parameters are not available at run-time.

class ListFactory {
public <A> LinkedList<A> empty () {

return new LinkedList<A>();
}
public <A> LinkedList<A> singleton (A x) {

LinkedList<A> xs = new LinkedList<A>();
xs.add(x);
return xs;

}
public <A> LinkedList<A> doublet (A x, A y) {

LinkedList<A> xs = new LinkedList<A>();
xs.add(x); xs.add(y);
return xs;

}
}
class Test {

static ListFactory f = new ListFactory();

public static void main (String[] args) {
LinkedList<Number> zs =

f.doublet(new Integer(1), new Float(1.0));
LinkedList<String> ys = f.singleton(null);
LinkedList<Byte> xs = f.empty();
LinkedList<Object> err =

f.doublet(”abc”, new Integer(1));
// compile–time error

}
}

Figure 5: Example of inference

It should be noted that explicitly declared subtyp-
ing is not a problem. For instance, it is fine to pass
a LinkedList<String> when a Collection<String> is ex-
pected.

5 Type Parameter Inference

GJ includes a novel type parameter inference algorithm
that permits one to elide type parameters to polymor-
phic method calls. Such type parameters can safely be
omitted since they are erased by the translation anyway,
and therefore cannot carry any operational meaning.

Type parameters are inferred for a parametric
method call by choosing the smallest type parameter
that yields a valid call. As an example, consider the
the code in Figure 5, which defines factory methods for
lists with zero, one, and two elements.

In the example above, the call to doublet with an
integer and a float as arguments infers that the type
parameter A is Number. If there is no unique smallest
type, inference fails, as in the call to doublet with a
string and an integer (which have both Comparable and

class Cell<A> {
public A value;
public Cell (A v) { value = v; }
public static <A> Cell<A> make (A x) {

return new Cell(x);
}

}
class Pair<B,C> {

public B fst;
public C snd;
public Pair (B x, C y) { fst = x; snd = y; }
public static <D> Pair<D,D> duplicate (D x) {

return new Pair<D,D>(x,x);
}

}
class Loophole {

public static String loophole (Byte y) {
Pair<Cell<String>,Cell<Byte>> p =

Pair.duplicate(Cell.make(null));
// compile–time error

p.snd.value = y; return p.fst.value;
}
public static String permitted (String x) {

Pair<Cell<String>,Cell<String>> p =
Pair.duplicate(Cell.make((String)null));

p.fst.value = x; return p.snd.value;
}

}
Figure 6: Illegal situation for inference.

Serializable as common supertypes).
This rule needs to be generalized to the cases where

there are no argument types involving an inferred vari-
able or where some argument is null. To support in-
ference in these cases, the type inferencer may bind a
type variable to the special ‘bottom’ type ∗, the type
of null. The type ∗ is a subtype of every reference type.
This type is used only by the type inference algorithm,
and cannot appear in type declarations in GJ programs.
Further, any type containing ∗ is regarded as a subtype
of any type that results from replacing ∗ with any other
reference type. (This is the one exception to the rule of
invariant subtyping.) Thus, LinkedList<∗> is a subtype
of LinkedList<String>, and Pair<Byte,∗> is a subtype of
Pair<Byte,Byte>.

For instance, in the second and third calls of method
main above, the type parameter is inferred to be ∗. The
assignments are valid since LinkedList<∗> is a subtype
of both LinkedList<Byte> and LinkedList<String>.

An additional linearity restriction is required: a type
parameter cannot be instantiated to ∗ if it appears more

interface I {}
interface J {}
interface K extends I {}
interface L extends I, J {}

class X {
static <A> A choose(A x, A y) {

return (x.hash() < y.hash())?x:y;
}
static void test (K k, L l) {

I i = choose(k, l); // ok
}

}

Figure 7: Near-ambiguous situation for inference

than once in the result type. To see why this is neces-
sary, consider the code in Figure 6. The call to duplicate
in loophole is illegal, because the smallest choice for D
is ∗, but D appears twice in the result type of duplicate.
On the other hand, the call to duplicate in permitted is
ok, because the cast ensures the smallest choice for D
is String. But without the cast, the smallest choice is ∗
and the call would be illegal. Without the restriction,
loophole would circumvent the type system, making it
possible to treat a string as a byte.

General covariance may lead to an unsound type sys-
tem, so we have to argue carefully that our type system
with its restricted form of covariance remains sound.
The argument goes as follows: since one cannot declare
variables of type T<...∗...>, all one can do with a value
of that type is assign or pass it once to a variable or
parameter of some other type. There are now three
possibilities, depending on the variable’s type:

• The variable’s type is an unparameterized super-
type of T. In this case the assignment is clearly
sound.

• The variable’s type is T<...U...> with some refer-
ence type U in the position of ∗. Now, the only
value that populates type ∗ is null, which is also
a value of every reference type U. Furthermore,
any method in type T<...∗...> with an argument
V<...∗...> that contains the bottom type would have
to be parametric in this type, so that it could
equally well be applied to V<...U...>. Hence, any
value of type T<...∗...> will also be a value of type
T<...U...>, and the assignment is sound.

• The variable’s type is a type variable, A. Then code
that accesses the variable works for any type A
may be instantiated to, so the code itself cannot

give rise to type errors. Furthermore, if the vari-
able appears in a method, by the linearity restric-
tion, the method’s formal result type will contain at
most one occurrence of A, so the actual type of the
method application is again of the form T’<...∗...>.

Our type parameter inference scheme is similar to
Pierce and Turner’s local type inference [PT98]. Pierce
and Turner only consider covariant type constructors,
which is a sensible assumption for the predominantly
functional languages they are dealing with. For GJ,
with its exclusive use of invariant type constructors, our
special treatment of ∗ is essential to make type infer-
ence work. Experience has so far shown that it works
very well indeed. For instance, in the whole GJ com-
piler (consisting of about 20,000 lines of heavily generic
code), there was not a single instance where type infer-
ence had to be helped by an explicit parameterization
or type cast.

It is instructive to compare GJ’s local type infer-
ence with the constraint-based inference of the Hindley-
Milner system [Mil78] or its extensions to subtyping
[AW93, EST95]. In essence, a type T<...∗...> in our
system would correspond to a type T<...A...> in the
Hindley-Milner system, where A is a fresh type variable
that is used nowhere else. If a type had more than one
occurrence of ∗, each occurrence would be replaced by
a different type variable. Then our use of subtyping for
types containing ∗ corresponds to instantiations of type
variables in the Hindley-Milner system. The linearity
condition makes sure that ∗ types are not duplicated
when types for method calls are inferred, so that each
∗ type can be mapped back to a fresh type variable in
the method’s result type. Finally, the restriction that
∗ types cannot be declared by the user roughly cor-
responds to the variable polymorphism restriction for
Hindley-Milner [Wri95], which ensures that values con-
taining mutable references cannot be polymorphic.

Note that any inference algorithm is subject to prob-
lems with ambiguity. Consider the code in Figure 7.
Here the type inferencer can determine that the formal
parameter A corresponds to the actual parameter I in
the call of choose in the marked line. However, say
that the definition of K is later changed, so that K also
extends J.

interface K extends I, J {}

Now the call to choose becomes ambiguous. Thus even
though the programmer has taken care to preserve the
supertypes and structure of interface K, code using it
breaks due to the change. This is an undesirable prop-
erty from a software engineering perspective. However,
the Java programming language already suffers from a
similar problem with regard to overloading, so adding
type inference does not introduce any new holes. We

believe the convenience of inference outweighs this at-
tendant infelicity.

6 Security Implications

Since the homogeneous translation erases type informa-
tion, it opens a potential security hole at run-time. The
hole can be filled, but to do that one needs to be aware
of it. Consider the following example, which is due to
Agesen, Freund, and Mitchell [AFM97]:

class SecureChannel extends Channel {
public String read ();

}
class C {

public LinkedList<SecureChannel> cs;
...

}

Since LinkedList<SecureChannel> gets erased to just
LinkedList, it is possible for an attacker to add a non-
secure channel to the list, which might be used as a way
to leak information from a secure system. If the attacker
was itself written in GJ, this would be prevented by the
generic type system. But the attacker could be written
not in GJ but in the Java programming language or
the JVM byte code language, in which case neither the
compiler nor the run-time system would detect a type
system violation.

To address this problem, a programmer needs to pre-
vent the information about the type parameter from be-
ing lost by erasure. If the class in questions does not
export any parameterized fields this can be achieved by
declaring a specialized type SecureChannelList, which
extends type LinkedList<SecureChannel>. The special-
ization inherits all fields and methods from its super-
type, and its constructor simply forwards to the analo-
gous constructor in the supertype:

class SecureChannelList
extends LinkedList<SecureChannel> {

SecureChannelList () { super(); }
}
class C {

SecureChannelList cs;
...

}

Unlike LinkedList<SecureChannel>, SecureChannelList
gets translated to itself, so no type information is lost.
Furthermore, GJ’s translation scheme for bridge meth-
ods ensures that argument types are properly checked
at run-time. Here is the translation of class SecureChan-
nelList:

public static Object[] newInstance (Object[] a, int n) {
return (Object[])Array.newInstance(a.getClass().getComponentType(), n);

}
Figure 8: Creating a new instance of an array

class SecureChannelList extends LinkedList {
SecureChannelList () { super(); }
public void add (Object x) {

super.add((SecureChannel)x);
}

}

Note the inserted bridge method for LinkedList.add
which checks at run-time that the passed channel is
secure. The same scheme cannot be applied to pub-
lic fields of parameterized types, since access to those
fields is not encapsulated by bridge methods.

Type specialization is a general method for main-
taining type parameter information which would other-
wise be lost by erasure. Since the heterogeneous trans-
lation effectively applies type specialization everywhere,
it looks like a better fit from a security perspective. This
is also argued by Agesen et al. [AFM97].

Perhaps surprisingly, the heterogeneous translation
nevertheless fits poorly with the security model of the
Java virtual machine. The problem, first reported in
[OR98], lies in the package based visibility model for
types, which can interfere with automatic type special-
ization.

The JVM security model supports only two kinds of
visibility for top-level classes: package-wide and pub-
lic visibility. It is not possible to refer to a class out-
side a package unless the class is declared public. The
JVM specification [LY96] requires the virtual machine
to throw an IllegalAccessError if a class refers to
any class that is in another package and is not public.

Sometimes these rules make it impossible to find a
package where a heterogeneous type instantiation can
be placed. Consider an instantiation p.C<q.D> of a pa-
rameterized class C defined in package p, applied to
a parameter class D defined in a different package q.
There are two possibilities: either class D must be pub-
lic (in which case we can place the instantiation in pack-
age p), or else the body of class C must refer only to
public classes (in which case we can place the instantia-
tion in package q). If neither of these cases apply (that
is, D is private in its package and C refers to private
classes in its package), then there is no package in which
one can place the instantiation p.C<q.D>, hence the het-
erogeneous translation must fail. An illegal access error
would be raised no matter in which package p.C<q.D> is
placed. Since class accesses are checked when identifiers

are resolved at run-time, the error would occur irrespec-
tive of whether classes are specialized at compile-time
or run-time.

This problem makes it difficult to use packages ef-
fectively in the presence of the heterogenous transla-
tion. Further, even if one could change the JVM se-
curity model, it is not clear what change could fix this
problem. The problem does not arise for the homoge-
nous translation.

7 Restrictions

GJ’s translation by type erasure requires some language
restrictions which would not be necessary if a transla-
tion maintained types at run-time. The restrictions af-
fect object and array creation, and casts and instance
tests.

7.1 Object and array creation

A new expression where the type is a type variable
is illegal. Thus, new A() is illegal, when A is a type
variable. Such expressions cannot be executed because
type parameters are not available at run-time. This is
no great loss, since such generic creation is of limited
value. Rather than create an object of variable type,
one should pass in an object with a suitable method for
creating new objects (commonly called a factory ob-
ject).

A new expression where the type is an array over
a type variable generates an unchecked warning. Thus,
new A[n] is unchecked when A is a type variable. Such
expressions cannot be executed with the usual seman-
tics, since type parameters are not available at run-time.
Rather than create arrays of variable type, it is rec-
ommended that one should use the Vector or ArrayList
classes from the collection library, or pass in an array
of the same type to be used as a model at run-time (a
poor man’s factory object).

To facilitate the latter, the following method is pro-
vided by the gj.lang.reflect.Array class.

public static <A> A[] newInstance (A[] a, int n)

A call returns a new array with the same run-time type
as a, with length n and each location initialized to null.
This method allows an array to act as a factory for

more arrays of the same type. The erasure of the above
method can be implemented in terms of existing reflec-
tion primitives as shown in Figure 8. But the types in
the figure are not parametric, so the typed version is
added to the GJ library. It can be implemented using
the retrofitting feature discussed in Section 9.

For some purposes, such as defining Vector itself, it is
necessary to create new arrays of variable type. This is
why such expressions are unchecked rather than illegal.
In this case the translation replaces the type variable
by its bound, as usual. Thus, new A[n] translates to
new Object[n], when A is a type variable bounded by
Object.

Creating a new array of variable type must generate
an unchecked warning to indicate that the type sound-
ness constraints normally enforced by GJ may be vio-
lated. Consider the following code.

class BadArray {
public static <A> A[] singleton (A x) {

return new A[]{ x }; // unchecked warning
}
public static void main (String[] args) {

String[] a = singleton(”zero”);
// run–time exception

}
}

This code passes the compiler, but an unchecked warn-
ing is issued for the expression new A[]{ x }. In this
case, the creation expression does indeed violate GJ’s
type constraints, as when called with A bound to String
it creates an array with run-time type Object[] rather
than String[]. Here is the translation of the above code.

class BadArray {
public static Object[] singleton (Object x) {

return new Object[]{ x };
}
public static void main (String[] args) {

String[] a = (String[])singleton(”zero”);
// run–time exception

}
}

It is important to recognize that the run-time type sys-
tem of the JVM remains secure, as the last line in the
translated code fails at run-time.

It is always safe to create a new array of variable type
if one takes care to ensure the array does not escape the
scope of the type variable. The method above is unsafe
because the new array escapes the scope of the type
variable A attached to the singleton method.

As an example of sensible use of arrays, consider
the vector class given in Figure 9 (simplified from the
collection library).

class Vector<A> {
public final int MIN CAPACITY = 4;
protected int n;
protected A[] a;
public Vector () {

n = 0;
a = new A[MIN CAPACITY];

}
public void add (A x) {

if (n == a.length) {
A[] b = new A[2∗n];
for (int i = 0; i < n; i++) b[i] = a[i];
a = b;

}
a[n++] = x;

}
public A get (int i) {

if (0 <= i && i < n) return a[i];
else throw new IndexOutOfBoundsException();

}
public void set (int i, A x) {

if (0 <= i && i < n) a[i] = x;
else throw new IndexOutOfBoundsException();

}
public int size () { return n; }
public A[] asArray (A[] b) {

if (b.length < n) b = Array.newInstance(b,n);
for (int i = 0; i < n; i++) b[i] = a[i];
for (int i = n; i < b.length; i++) b[i] = null;
return b;

}
}

Figure 9: Vector class

The array a of type A[] always has run-time type
Object[], but never leaves the scope of the class. The
method asArray returns an array that leaves the scope
of the class, but this array is either the argument array
b (if b is large enough) or is an array with the same run-
time type as b (created by newInstance). As usual, the
code is translated by replacing A everywhere by Object,
including replacing A[] by Object[].

7.2 Casts and instance tests

Since type parameters are not available at run-time, not
all casts and instance tests on parameterized types are
permitted. It is legal to include parameters in a cast
or instance test if the parameters are determined by a
combination of information known at compile-time and
determinable at run-time.

class Convert {
public static <A> Collection<A>

up (LinkedList<A> xs) {
return (Collection<A>)xs;

}
public static <A> LinkedList<A>

down (Collection<A> xs) {
if (xs instanceof LinkedList<A>)

return (LinkedList<A>)xs;
else

throw new ConvertException();
}

}

In method up, the cast could be omitted, but is included
for clarity. In method down, run-time information can
be used to check whether the collection is a linked list;
if it is a linked list, then the compile-time constraints
ensure that the type parameters match.

Parameterized types cannot be used in casts or in-
stance tests when there is no way to verify the param-
eter. The following is illegal.

class BadConvert {
public static Object up (LinkedList<String> xs) {

return (Object)xs;
}
public static LinkedList<String> down (Object o) {

if (o instanceof LinkedList<String>)
// compile–time error

return (LinkedList<String>)o;
// compile–time error

else throw new ConvertException();
}

}

Here the marked lines indicate compile-time errors.
There are two possible workarounds for this problem.
One is to use type specialization, as in Section 6, creat-
ing a new class that extends LinkedList<String>.

class LinkedListString extends LinkedList<String> {...}

The other is to create a wrapper class, with a field of
type LinkedList<String>.

class LinkedListStringWrapper {
LinkedList<String> contents;

}

In either case, the resulting class has no type parame-
ters, and may always be used as the target of a cast.

8 Raw types

It is occasionally necessary to refer to a parameterized
type stripped of its parameters, which we call a raw
type. Raw types maintain consistency with legacy code:

class LinkedList<A> implements Collection<A> {
...
public boolean equals (Object that) {

if (!that instanceof LinkedList) return false;
Iterator<A> xi = this.iterator();
Iterator yi = ((LinkedList)that).iterator();
while (xi.hasNext() && yi.hasNext()) {

A x = xi.next();
Object y = yi.next();
if (!(x == null ? y == null : x.equals(y)))

return false;
}
return !xi.hasNext() && !yi.hasNext();

}
}

Figure 10: Equality using raw types

for instance, new code may refer to the parameterized
type Collection<A> while legacy code will refer to the
raw type Collection. Raw types are also useful in cast
and instance tests, where there may not be adequate
information at run-time to check the full parameterized
type.

Figure 10 defines an extension to the linked list class
of Section 2 to define equality. One might expect the
object passed to equals to have the type LinkedList<A>,
but a cast to that type cannot be checked, since type
parameters are not available at run-time. However, it
is possible to check a cast to the raw type LinkedList.
Roughly speaking, the raw type LinkedList corresponds
to the type LinkedList for some indeterminate value
of B. In this way, it resembles the existential types used
in Pizza. But while Pizza’s existential types are useful
for writing methods such as equality, they are no help
at all for interfacing with legacy code, which raw types
do with ease.

In the above, the method call iterator() with receiver
this of type List<A> returns a value of type Iterator<A>,
while the same method with receiver (List)that of raw
type List returns a value of raw type Iterator. Simi-
larly, the method call next() with receiver xi of type
Iterator<A> returns a value of type A, while the same
method with receiver yi of type Iterator returns a value
of type Object.

In general, the signature of a member of an object
of raw type is the erasure of the signature of the same
member for an object of parameterized type. Further, a
value of parameterized type is assignable to a variable
of the corresponding raw type. A value of raw type
may also be assigned to a variable of any corresponding
parameterized type, but such an assignment generates

an unchecked warning.
Some method calls to objects of raw type must also

generate unchecked warnings, to indicate that the type
soundness constraints normally enforced by GJ may be
violated. Consider the following code.

class Loophole {
public static String loophole (Byte y) {

LinkedList<String> xs =
new LinkedList<String>();

LinkedList ys = xs;
ys.add(y); // unchecked warning
return xs.iterator().next();

}
}

This code passes the compiler, but an unchecked warn-
ing is issued for the call to the add method. In this
case, the call does indeed violate GJ’s type constraints,
as it adds a byte y to the list of strings xs. Here is the
translation of the above code.

class Loophole {
public static String loophole (Byte y) {

LinkedList xs = new LinkedList();
LinkedList ys = xs;
ys.add(y);
return (String)xs.iterator().next();

// run–time exception
}

}
The run-time type system of the JVM remains secure,
as the last line in the translated code fails at run-time.

The rules for generating unchecked warnings for raw
types are:

• A method call to a raw type generates an
unchecked warning if the erasure changes the ar-
gument types.

• A field assignment to a raw type generates an
unchecked warning if erasure changes the field type.

No unchecked warning is required for a method call
when only the result type changes, for reading from a
field, or for a constructor call on a raw type. For ex-
ample, in the equality test for linked lists given above,
none of the raw method calls is unchecked, since they
all have empty argument lists, so erasure leaves the type
unchanged. But in the loophole method, the call to add
is unchecked, since erasure changes the argument type
from A to Object.

The unchecked method calls and field accesses may
be needed to interface with legacy code, which is why
they are not illegal. For example, one could com-
pile the GJ versions of Collection<A>, Interface<A>,
LinkedList<A> and Comparator<A> with the unparam-
eterized version of Collections. The test code will com-
pile, but generate a unchecked warning for the method

calls to compare or compareTo, though in this case the
calls happen to be sound.

The rule used by GJ to generate unchecked warnings
is conservative. In practice, when interfacing legacy
code to new GJ code, many calls may be labelled as
unchecked that are nevertheless sound. Proliferation
of unchecked warnings can be avoided by updating the
legacy code, or by using the retrofitting technique dis-
cussed in the next section.

9 Retrofitting

To support independent compilation, the GJ compiler
must store extra type information at compile-time. For-
tunately, the JVM class file format supports adding ex-
tra attributes. Information about parameterized types
is stored in a ‘Signature’ attribute, which is read and
written by the GJ compiler, but ignored by the JVM at
load-time.

GJ is designed so that new code will run with old
libraries. For instance, new code may refer to a param-
eterized linked list type, but run with old code (source
or binary) that implements an unparameterized linked
list type using the generic idiom.

To make this work smoothly, the GJ compiler has a
retrofitting mode that can be used to add ‘Signature’ at-
tributes to existing code. Type information is specified
in a source file that contains only type information for
fields and methods. For instance, say one has a class file
for the unparameterized version of LinkedList, but one
wishes to use it as if it has parameterized types. This
can be done using the following retrofitting file.

class LinkedList<A> implements Collection<A> {
public LinkedList ();
public void add (A elt);
public Iterator<A> iterator ();

}
The GJ compiler takes the above file as source, and
looks up the unparameterized class file along a speci-
fied classpath. It then outputs the new class file, in-
cluding an appropriate ‘Signature’ attribute, in a direc-
tory specified by the user. (In the current GJ compiler,
these are specified using the flags –retrofit path and –d
directory). At compile-time, the classpath must specify
the retrofitted class file. At run-time, the classpath may
specify either the retrofitted or the legacy class file. In
particular, new code can compile against the retrofitted
linked list class file, then run in a browser containing
the legacy linked list library.

The entire collection class library available in
JDK 1.2 has been retrofitted in this way. All of the pub-
lic methods in the JDK 1.2 collection classes — without
a single exception — can be given sensible parameter-
ized type signatures in GJ. Only the type signatures

were rewritten, the legacy code did not even need to
be recompiled. Since signatures are more than an or-
der of magnitude more compact than code, this saves
considerable effort.

In most cases, one would anticipate eventually
rewriting the source library with parameterized types.
The advantage of the compatibility offered by GJ is that
one may schedule this rewriting at a convenient time —
it is not necessary to rewrite all legacy code before new
code can exploit parametric types.

We anticipate that most rewriting of code will be
straightforward, consisting of adding type parameters
and replacing some occurrences of Object by suitable
type variables. However, not all code may be so easy to
upgrade.

For instance, in the collection class library the imple-
mentation of finite maps includes code that may return
either the key or value of a map entry. This is well-
typed using the generic idiom with class Map, because
both the key and value have type Object. But it is
not well-typed using parameterized types with the class
Map<K,V>, where the key has type K and the value has
type V. So this portion of the code must be restruc-
tured to update the source to GJ, providing separate
code to process keys and values. This need to restruc-
ture a (usually small) portion of the code shows why
the flexibility of interfacing with legacy code offered by
GJ is so helpful.

10 Implementation

GJ has been implemented and is publicly available from
a number of web sites [GJ98a]. The GJ compiler is origi-
nally derived from the Pizza compiler, but has been sub-
stantially redesigned. It is itself written in GJ. Generic
types and methods were essential in its implementation.
For instance, the compiler makes heavy use of generic
container types, such as linked lists, dictionaries, and
iterators.

Besides these uses, the compiler also relies on generic
methods for its central tree traversal routines, which are
implemented using the visitor pattern [GHJV94]. The
Pizza and GJ compilers are both structured as a series
of passes over an abstract syntax tree. The Pizza com-
piler made extensive use of algebraic data types and
pattern matching, which are supported in Pizza but
not in the Java programming language. The syntax
tree in the Pizza compiler is represented as an algebraic
data type with a case for each of Pizza’s syntactic con-
structs. Each pass consists of a recursive method with a
case statement that pattern matches against all relevant
cases in the tree type. It is thus possible to decouple the
traversal algorithms from the tree definition itself. This
makes sense since we would expect the language proces-

sors (implemented by traversal passes) to change more
frequently than the language they process (represented
by the tree itself).

In GJ, algebraic types and pattern matching are
not available. Instead, the visitor pattern is applied
to achieve an analogous program decomposition. Fig-
ure 11 gives an overview. There is an abstract class Tree
with subclasses for each of GJ’s syntactic constructs.
In total, there are 38 such subclasses, although only
one is shown. The base class and each subclass define
a method visit, which takes a visitor object and ap-
plies a method in the visitor which corresponds to the
subclass being defined. All such visitor methods use
the overloaded name case; they are distinguished by
the subclass of Tree which they take as first argument.
The abstract visitor class contains a case method for
each of the tree subclasses. Concrete subclasses override
those case methods that can possibly be encountered
during traversal.

To make this standard idiom widely applicable, the
visitor class is generic, with two type parameters. The R
parameter stands for the result type of the case meth-
ods in a concrete visitor. The A parameter stands for
the type of an additional argument which those methods
take. For instance, Figure 11 shows a fragment of the
tree attribution visitor. Each case method in that visi-
tor takes an environment (of type Env<AttrContext>) as
additional parameter and each method returns a type
(of type Type). Other visitor passes in the compiler
would use different argument and result types. Missing
result types or argument types get instantiated to class
Void. Multiple results or arguments are expressed using
tuple types such as Pair.

Since visit in class Tree needs to be able to apply dif-
ferent parameterized instantiations of the visitor class,
it needs to be polymorphic itself. Consequently, its type
in Tree is:

<R,A> R visit (Visitor<R,A> v, A arg)

With this technique, the application of the visitor pat-
tern in the compiler is quite natural. If one tried instead
to apply the pattern in this form in a language without
generics using the generic idiom, the abundance of re-
quired type casts would make the concept considerably
harder to use. It is also worth noting that the use of
polymorphic methods was essential to achieve a generic
typing of visitors; parameterized types alone are not
enough.

11 Conclusions

We have presented GJ, an extension of the Java pro-
gramming language with generic types and methods.

abstract class Tree {
public <R,A> R visit (Visitor<R,A> v, A arg) {

return v. case(this, arg);
}
static class Return extends Tree {

public Tree expr;
public Return(Tree expr) { this.expr = expr; }
public <R,A> R visit (Visitor<R,A> v, A arg) {

return v. case(this, arg);
}

}
static abstract class Visitor<R,A> {

public R case(Tree that, A arg) {
throw new InternalError(

”unexpected: ” + that);
}
public R case(Return that, A arg) {

return case((Tree)that, arg);
}
public R case(Throw that, A arg) {

return case((Tree)that, arg);
}
// other cases ...

}
}
public class Attr

extends Tree.Visitor<Type,Env<AttrContext>> {
...
public Type case(Return tree,

Env<AttrContext> env) {
Type owntype;
// code for attribution of return statements ...
return owntype;

}
// other attribution cases ...

}
Figure 11: Visitors in the GJ compiler

GJ is implemented by translating back to the unex-
tended language, repeating the idiom used by program-
mers to simulate generics. For this reason, it is easy to
interface GJ with legacy code, and it is straightforward
to use reflection on GJ programs.

The design of Pizza is strongly constrained by the
criterion of backward compatibility with the Java pro-
gramming language. The design of GJ is further con-
strained by the criterion of smooth interfacing with
legacy code, and of forward compatibility with a lan-
guage design (such as NextGen [CS98]) that maintains
information about type parameters at run-time. (In-
deed, one referee characterized this paper as ‘polymor-
phism with one hand tied behind your back’.) Remark-
ably, even though the constraints on GJ are tighter than
those on Pizza, it’s design is arguably simpler. GJ’s in-
ference algorithm is simpler than Pizza’s, and GJ’s use
of raw types is simpler and more powerful than Pizza’s
use of existential types.

There are two main alternatives to the design pur-
sued in GJ.

The first is to use the heterogenous translation. As
we saw in Section 6, this alternative either makes it
difficult to use packages effectively, or requires change
to the security model of the JVM.

The second is to pass type information at run-time,
as explored in the NextGen design of Cartwright and
Steele [CS98]. GJ’s forward compatibility makes it pos-
sible to arrange for NextGen to be a superset of GJ:
every legal GJ program is also a legal NextGen pro-
gram with an identical meaning. (The one exception is
that NextGen, unlike GJ, changes some properties of a
program under reflection.)

Both GJ and NextGen have advantages. NextGen is
more expressive than GJ, in that none of the restrictions
discussed in Section 7 need be imposed on NextGen. In
particular, NextGen can implement new A[n] by al-
locating a new array with the correct run-time type
information, avoiding the severe restrictions placed on
this construct in GJ. And NextGen can implement an
instance test or cast to a parameterized type such as
LinkedList<String> without the workarounds required by
GJ. Arguably, the use of run-time types in NextGen is
a better fit with the Java programming language, which
maintains run-time type information about the class of
an object and the type of elements in an array.

On the other hand, GJ has a considerably simpler
design that NextGen. And since GJ maintains no type
information at run-time, it may be more efficient than
NextGen, although measurement is required to deter-
mine if this difference is significant.

More importantly, GJ achieves greater compatibility
than NextGen with legacy code. Not only is GJ back-
ward compatible with the Java programming language

and forward compatible with NextGen, but GJ also has
backward and forward compatibility with legacy code.
It has backward compatibility, in that legacy code us-
ing the generic idiom may call new parameterized li-
braries, and in that newly created objects of parame-
terized type may be passed to legacy code that uses the
generic idiom. And it has forward compatibility, in that
new parameterized code may call legacy libraries that
use the generic idiom, and in that objects created by
legacy code using the generic idiom may be passed to
new code that expects objects of parameterized type.
Roughly speaking, GJ achieves backward compatibility
through raw types, and forward compatibility through
retrofitting.

In contrast, NextGen has only backward compati-
bility. New code cannot use legacy libraries, and ob-
jects created by legacy code can be passed to new code
only via adaptor methods that convert legacy objects
(with no run-time type information) into NextGen ob-
jects (with run-time type information specified for each
type parameter). The combination of forward and back-
ward compatibility in GJ makes it considerably easier
to manage the process of upgrading from legacy to pa-
rameterized code, and we believe that this is the chief
advantage of GJ over NextGen.

Acknowledgements

Thanks to Enno Runne and Matthias Zenger, for their
input on implementation and security aspects, and to
Joshua Bloch, Corky Cartwright, and Guy Steele, for
their support and many productive discussions. Thanks
also to the members of the Java-genericity and Pizza-
users mailing lists, for valuable criticism and continued
feedback. Finally, thanks to the anonymous referees for
their cogent comments.

References

[AFM97] Ole Agesen, Stephen Freund, and John C.
Mitchell. Adding parameterized types to Java. Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages and Applications, pages 215-230, 1997.

[AW93] Alexander Aiken and Edward L. Wimmers. Type
inclusion constraints and type inference. Functional
Programming Languages and Computer Architecture,
pages 31–41, ACM, 1993.

[BG93] Gilad Bracha and David Griswold. Strongtalk:
Typechecking Smalltalk in a production environment.
In Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications, pages 215-230,
1993.

[BOW98] Kim B. Bruce, Martin Odersky, and Philip
Wadler. A statically safe alternative to virtual types.

European Conference on Object-Oriented Program-
ming, July 1998. (An earlier version was presented
at 5th Workshop on Foundations of Object-Oriented
Languages, January 1998.)

[CCHOM89] Peter Canning, William Cook,
Walter Hill, Walter Olthoff, and John C. Mitchell. F-
bounded polymorphism for object-oriented program-
ming. Functional Programming Languages and Com-
puter Architecture, pages 273–280, ACM, 1989.

[CS98] Corky Cartwright and Guy Steele. Compatible
genericity with run-time types for the Java pro-
gramming language. Conference on Object-Oriented
Programming, Systems, Languages and Applications,
1998.

[EST95] Jonathan Eifrig, Scott Smith, and Valery Trifonov.
Sound polymorphic type inference for objects. Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages and Applications, pages 169–184, 1995.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1994.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Lan-
guage and Its Implementation. Addison-Wesley, 1983.

[GJ98a] Martin Odersky. The GJ compiler. Available from
www.cis.unisa.edu.au/˜pizza/gj
wwwipd.ira.uka.de/˜pizza/gj
www.math.luc.edu/pizza/gj
www.cs.bell–labs.com/˜wadler/pizza/gj

[GJ98b] Gilad Bracha, Martin Odersky, David Stoutamire,
and Philip Wadler. GJ: the Java programming lan-
guage with type parameters. Manuscript, 1998. Avail-
able at the GJ web site.

[GJ98c] Gilad Bracha, Martin Odersky, David Stoutamire,
and Philip Wadler. GJ Specification. Manuscript,
1998. Available at the GJ web site.

[GLS96] James Gosling, Bill Joy, and Guy Steele. The Java
language specification. Java Series, Sun Microsystems,
ISBN 0-201-63451-1, 1996.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual
Machine specification. Java Series, Sun Microsystems,
ISBN 0-201-63452-X, 1996.

[Mil78] Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System Sci-
ences, 17:348–375, 1978.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara
Liskov. Parameterized types for Java. Symposium on
Principles of Programming Languages, pages 132–145,
ACM, 1997.

[OR98] Martin Odersky and Enno Runne. Measuring the
cost of parameterized types in Java. Research Report
CIS-98-004, Advanced Computing Research Centre,
University of South Australia, January 1998.

[OW97] Martin Odersky and Philip Wadler. Pizza into
Java: Translating theory into practice. Symposium on
Principles of Programming Languages, pages 146–159,
ACM, 1997.

[PT98] Benjamin C. Pierce and David N. Turner. Local
Type Inference. Symposium on Principles of Program-
ming Languages, pages 252–265, ACM, 1998.

[RS97] Paul Roe and Clemens Szyperski. Lightweight Para-
metric Polymorphism for Oberon. Proceedings Joint
Modular Languages Conference, Johannes Kepler Uni-
versity Linz Schloß Hagenberg Austria, March, 1997
http://www.fit.qut.edu.au/˜szypersk/Gardens/

[Tho97] Kresten Krab Thorup. Genericity in Java with vir-
tual types. European Conference on Object-Oriented
Programming, pages 444–471, LNCS 1241, Springer-
Verlag, 1997.

[Tor98] Mads Togersen. Virtual types are statically safe.
5th Workshop on Foundations of Object-Oriented Lan-
guages, January 1998.

[TT98] Kresten Krab Thorup and Mads Togersen. Struc-
tural virtual types. Informal session on types for Java,
5th Workshop on Foundations of Object-Oriented Lan-
guages, January 1998.

[Wri95] A. Wright, Simple imperative polymorphism, Lisp
and Symbolic Computation, 8:343–355, 1995.

