
Programming Research Group

SEVEN MORE MYTHS

OF FORMAL METHODS

Jonathan P. Bowen

Michael G. Hinchey

PRG-TR-7-94

�

Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD



Seven More Myths of Formal Methods�

Jonathan P. Boweny

Michael G. Hincheyz

Abstract

For whatever reason, formal methods remain one of the more contentious

techniques in industrial software engineering. Despite some improvement in

the uptake of formal methods, it is still the case that the vast majority of

potential users of formal methods fail to become actual users. A paper by

Hall in 1990 [29] examined a number of `myths' concerning formal methods,

assumed by some to be valid. This paper considers a few more beliefs held

by many and presents some counter examples.

Mathematicians �rst used the sign
p
�1, without in the least

knowing what it could mean, because it shortened work and led

to correct results. People naturally tried to �nd out why this

happened and what
p
�1, really meant. After two hundred years

they succeeded.

Mathematician's Delight (1943) by W. W. Sawyer

�Further copies of this Technical Report may be obtained from the Librarian,

Oxford University Computing Laboratory, Programming Research Group, Wolfson

Building, Parks Road, Oxford OX1 3QD, England (Telephone: +44-865-273837,

Email: library@comlab.ox.ac.uk).
yOxford University Computing Laboratory, Programming Research Group.

Email: Jonathan.Bowen@comlab.ox.ac.uk
zUniversity of Cambridge Computer Laboratory, New Museums Site, Pembroke

Street, Cambridge CB2 3QG, UK. Email: Mike.Hinchey@cl.cam.ac.uk



1 Introduction

Formal Methods continue to grow in popularity; growing numbers of dele-

gates at conferences such as FME and ZUM are indicative of this. Perhaps

more interesting in this respect is the increasing number of papers devoted

to formal methods and more formal approaches that surface at conferences

with which one would not normally associate formal methods.

Unfortunately, as interest in formal methods increases, the number of

misconceptions regarding formal methods continues to grow in tandem.

While formal methods have been employed, to some extent, for over a quar-

ter of a century, there are still very few people who understand exactly what

formal methods are, and how they are applied in practice. Many people

completely misunderstand what constitutes a formal method, and how for-

mal methods have been successfully employed in the development of complex

systems. Of great concern is the fact that we must place many professional

system developers into that latter category.

2 Hall's Original Seven Myths

In a seminal article [29], Hall highlights seven popular misconceptions, or

`myths' as he calls them, of formal methods, and attempts to dispel these

by means of an example. Regretfully, four years later, these and other

misconceptions still abound.

Formal methods are unfortunately the subject of extreme hyperbole or

deep criticism in many of the `popular press' science journals. We should

point out, that we believe the former to be more detrimental in the long

run. From the claims that the authors of such articles make, it is quite clear

that they have little or no understanding of what formal methods are, nor

how they have been applied in industry.

For example, an article in The Independent on Sunday of 13th October

1991 focused on fears for the reliability of the software running the Sizewell-

B Nuclear Reactor. This was one of the more objective articles run by

the popular press, and proposed `back�tting' the Sizewell-B software with

formal methods as has been done at Darlington [44]; indeed work on this has

now started [2]. An article published at the same time in New Scientist also

advocated the use of formal methods in the Sizewell system. This, however,

was a primary example of the over-enthusiasm of so-called `experts'. It

suggested that the Sizewell system could only be reliable if formal methods

were employed in its development and that formal methods would eliminate

all bugs and guarantee the safety of the system.

Even technical journals are not exempt; Barwise [3] reports on the con-

1



troversy of proofs of correctness arising in fora such as Communications of

the ACM. He adds his own `two cents worth', as he puts it, and concludes

that mathematical proofs of computer systems are of limited applicability

because of the gulf between the model derived and reality. Barwise sees

this `vision' as the main contribution of his paper. But, no formal methods

specialist would ever claim that a system was absolutely correct, but rather

that it was correct with respect to its speci�cation. Such misunderstandings

of formal methods are quite typical amongst their fervent critics.

Indeed even basic terms such as `formal speci�cation' are likely to be

confused [13]. A search of the abbreviation CSP on an on-line acronym

database gave the answers Commercial Subroutine Package, CompuCom

Speed Protocol and Control Switching Point, but not the name Communi-

cating Sequential Processes which would spring to the minds of many in the

formal methods community.1 Besides ambiguity in the basic terminology,

the formal notations themselves can of course be confusing to practitioners

not trained in their use and in general it is easier to ignore them than to

investigate them further [15].

Myths that formal methods can guarantee perfect software and eliminate

the need for testing (Myth 1 in Hall's paper) are not only ludicrous, but can

have serious rami�cations in system development if na��ve users of formal

methods take them seriously.

Claims that formal methods are all about proving programs correct

(Myth 2 in Hall's paper) and are only useful in safety-critical systems (Myth

3), while untrue, are not quite so detrimental, and a number of successful ap-

plications in non safety-critical domains have helped to clarify these points

(see [33] for examples).

The derivation of a number of simple formal speci�cations of quite com-

plex problems, and the successful development of a number of formal meth-

ods projects under budget have served to dispel the myths that the appli-

cation of formal methods requires highly trained mathematicians (Myth 4)

and increases development costs (Myth 5).

The successful participation of end-users and other non-specialists in

system development with formal methods has ruled out the myth that formal

methods are unacceptable to users (Myth 6), while the successful application

of formal methods to a number of large-scale complex systems, many of

which have received much media attention, should put an end to beliefs

that formal methods are not used on real large-scale systems (Myth 7).

Many non-formalists seem to believe that formal methods are merely

an academic exercise, a form of mental masturbation for academics that

1A search for VDM did reveal the term Vienna Development Method, but also Virtual

DOS Machine and Virtual Device Meta�le which may or may not be desirable bedfellows!

2



has no relation to real-world problems. Highly publicized accounts of the

application of formal methods to a number of well-known systems, such

as Sizewell-B [2], CICS [34], the Darlington Nuclear Facility [44] and Air-

bus [45], have helped to bring the industrial application of formal methods

to a wider audience.

3 Seven More Myths

Many of Hall's myths were, and to a certain extent still are, propagated

by the media, and are myths held by the public and the computer science

community at large, rather than by specialist system developers.

It is our concern, however, that many other myths are still being propa-

gated, and more alarmingly, are receiving a certain degree of tacit acceptance

from the system development community. We hope to dispel many of those

myths here, by reference to a number of real-life industrial applications of

various formal methods which have proven to be generally successful. Many

of the examples cited here are discussed in greater detail in [33]. We include

a signi�cant bibliography of references in this paper to allow readers to fol-

low up on any of the large number of topics covered in outline here if they

so wish.

Myth 1. Formal Methods delay the development process.

A number of formal methods projects have run notoriously over schedule.

The assumption that this is inherent in the nature of formal methods is a

rather irrational deduction. Certainly these projects were not delayed due

to the lack of ability of the formal methods specialists, but rather a lack

of experience in determining how long development should take. That is to

say, the projects were not necessarily delayed, but development time was

severely underestimated.

Project cost estimation is a major headache for any development team.

If one follows the old adage, \estimate the cost and then double it", one

is still likely to underestimate. Determining project development time is

equally di�cult (in fact, the two are inevitably intertwined). A number of

models have been developed to cover cost and development time estimation.

Perhaps the most famous is Boehm's COCOMO model [4], which weights

various factors according to the historical results of system development

within the organization.

Here we have the crux of the problem. Any successful model of cost and

development-time estimation must be based on historical information and

details such as levels of experience, familiarity with the problem, etc. Even

3



with traditional development methods, such information might not be avail-

able. Using formal development techniques historical information is likely

to be even more scarce, as we have not yet applied formal methods to a

su�cient number of projects on which to base trends and observations. Sur-

veys of formal development [18, 19] and a highlighting of successes, failures,

hindrances, etc., will eventually provide us with the levels of information we

require.

Many of the much publicized formal methods projects are in very spe-

cialized domains, and domains that are unlikely to be addressed on a very

regular basis. As such, such data is of limited use; comparisons with more

conventional developments [23, 30] and applications in more process control-

like domains [17, 20, 46] are likely to provide more useful data.

In addition, working in such unfamiliar domains would naturally be ex-

pected to greatly increase the development time (if one follows a model �a

la COCOMO) as would working with methods that were (then) still pretty

much in their infancy, with little or no tool support.

We draw the reader's attention to some very successful formal methods

projects whereby the use of such methods reduced development time sig-

ni�cantly. We include here the 12 month saving on the development of the

Inmos T800 oating-point unit chip, and the application of Z and B to IBM's

CICS system [34]. Both of these projects were independently audited and

these claims to reduced lead-times over conventional development methods

were con�rmed.

Myth 2. Formal Methods are not supported by tools.

The next level of usage is to apply formal methods to the development

process (e.g., VDM), using a set of rules or a design calculus that allows

stepwise re�nement of the operations and data structures in the speci�cation

to an e�ciently executable program. At the most rigorous level, the whole

process of proof may be mechanized (e.g., using B [1] or RAISE tools [48]).

Hand proofs or design inevitably lead to human errors occurring for all but

the simplest systems.

Just as in the late '70s and early '80s, when CASE (Computer-Aided

Software Engineering) and CASP (Computer-Aided Structured Program-

ming) tools were seen as a means of increasing programmer productivity

and reducing programming `bugs', tool support is now seen as a means of

increasing productivity and accuracy in formal development.

Most of the projects discussed in [33], for example, place great emphasis

on tool support. This is by no means coincidental, but rather follows a

trend, which it is expected will eventually result in integrated workbenches

to support formal speci�cation, just as CASE workbenches support system

development using more traditional structured methods [19].

4



A number of formal methods incorporate tool support as part of the

method itself. In this category we naturally include speci�cation languages

with executable subsets (such as OBJ [25]), and formal methods that in-

corporate theorem provers as a key component|e.g., Larch (with LP, the

Larch Prover) [28], HOL [26], PVS [43] and Nqthm [16].

A number of basic tools are now widely available, many of them in the

public domain. For example, for support using the Z notation, ZTC is

a PC-based type-checking system freely available electronically via anony-

mous FTP for non-commercial purposes, and the commercialized fuzz type-
checker also runs under Unix. More integrated packages that support type-

setting and integrity checking of speci�cations include Logica Cambridge's

Formaliser, running under Microsoft Windows, Imperial Software Technol-

ogy's Zola, which also incorporates a tactical proof system, and CADiZ, a

suite of tools for Z from York Software Engineering, which has recently been

extended to support re�nement to Ada code. FDR from Formal Systems

Europe is a model-checker and re�nement-checker for CSP. ProofPower, a

tool available from ICL on which considerable development e�ort has been

expended, uses Higher-Order Logic to support speci�cation and veri�cation

in Z.

Perhaps motivated by the ProofPower approach, much attention has

focused recently on tailoring various `generic' theorem provers for use with

model-based speci�cation languages such as Z. An implementation in OBJ

[40] seems to be too slow, but particular successes have been reported with

HOL [11] and EVES [51].

We expect that in the future more emphasis will be placed on IFD-

SEs (Integrated Formal Development Support Environments), which will

support most stages of formal development, from initial functional speci�-

cations, through design speci�cations and re�nement and will also provide

support for speci�cation animation, proof of properties and proofs of correct-

ness. Such toolkits will be integrated in that, like IPSEs (Integrated Pro-

gramming Support Environments), they will support version control and

con�guration management, and facilitate more harmonious developments

by addressing all of the development process activities, and development by

larger teams. Such IFDSEs do not as yet exist, but a number of toolkits

certainly represent steps in the right direction.

IFAD's VDM-SL Toolbox is a set of tools which supports formal devel-

opment in draft standard VDM-SL. VDM-SL speci�cations are entered in

ASCII; as one might expect, standard type-checkers and static semantics

checkers are supported. An interpreter supports all of the executable con-

structs of VDM-SL allowing a form of animation and speci�cation `testing';

the executed speci�cations may be debugged using an integrated debugger,

5



and testing information is automatically generated. Finally, a pretty-printer

uses the ASCII input to generate VDM-SL speci�cations in LaTEX format.

The B-Toolkit from B-Core (UK) Ltd., is a set of integrated tools which

augments Abrial's B-Method for formal software development by addressing

industrial needs in the development process. Many believe B and the B-

Method to be representative of the next generation of formal methods; if

this is true, then the B-Toolkit, and other similar such toolkits, will certainly

form the basis of future IFDSEs.

Myth 3. Formal Methods mean forsaking traditional engineering design

methods.

One of the major criticisms of formal methods is that they are not so much

`methods' as formal systems. While they provide support for a formal nota-

tion, or formal speci�cation language, and some form of deductive apparatus,

or proof system, they fail to support many of the methodological aspects of

the more traditional structured development methods.

In the context of an engineering discipline, a method describes the way

in which a process is to be conducted. In the context of system engineering,

a method is de�ned to consist of: (1) an underlying model of development,

(2) a language, or languages, (3) de�ned, ordered steps, and (4) guidance for

applying these in a coherent manner. (This de�nition is modi�ed from [37].)

Clearly many so-called formal methods do not address all of these issues.

While they support some of the design principles of more traditional meth-

ods, such as top-down design and stepwise re�nement, there is very little

emphasis on an underlying model that encompasses each of the stages of

the system development life cycle, nor any guidance as to how development

should proceed.

Structured development methods, using a model of development such

as Boehm's `spiral' model [5], on the other hand, generally support all

stages of the system life cycle from requirements elicitation through to post-

implementation maintenance. Their underlying models, in general, recog-

nize the iterative nature of system development, and that system develop-

ment is not a straightforward process as exempli�ed in, for example, Royce's

`waterfall' model [50]. Yet, in many senses, many formal development meth-

ods assume that speci�cation is followed by design and implementation in

strict sequence. This is an unrealistic view of software development, and

every developer of complex systems has experienced the need to revisit both

system requirements and the system speci�cation at much later stages in

development.

While Hall [29] disputes the myths that a high degree of mathematical

ability is required to be comfortable with formal methods, and that formal

6



methods are unacceptable to users, more traditional design methods do in-

deed excel at requirements elicitation and interaction with system procurers.

They o�er notations that can be understood by non-specialists and which

can be o�ered as the basis for a contract.

Such methods are of course severely limited in that they o�er no means

of reasoning about the validity of a speci�cation, or whether certain re-

quirements are mutually exclusive. The former is often only discovered

post-implementation; the latter, during implementation. Formal methods,

of course, enable the possibility of reasoning about requirements, their com-

pleteness, and their interactions.

Indeed, instead of formal methods replacing traditional engineering de-

sign methods, a major area for current and future research is the integra-

tion of structured and formal methods. Such an integration leads to a `true'

method of development that fully supports the software life cycle, while ad-

mitting the use of more formal techniques at the speci�cation and design

phases, supporting re�nement to executable code, and proof of properties.

The result is that e�ectively two views of the system are presented, allowing

di�erent developers to concentrate on those particular aspects that are of

interest to them.

It has been suggested that an approach like this allows a structured

design to be used as a basis for insights into the construction of a formal

speci�cation. This is clearly quite a contentious issue. A number of peo-

ple have cited this as a disadvantage of the technique and something that

should not be encouraged. The view is that such an approach severely re-

stricts levels of abstraction and goes against many of the principles of formal

speci�cation techniques. On the other hand, there is a very valid argument

that a method like this is often easier for those unskilled in the techniques

of formal speci�cation to follow, and can aid in the management of size and

complexity, and provide a means of structuring speci�cations [52].

Approaches to method integration vary from running both structured

and formal methods in parallel, to formally specifying transformations from

the notations of structured methods to formal speci�cation languages. Much

success has been reported using the former technique [22, 39]. The problem

is however that as the two development methods are being addressed by

di�erent personnel, the likelihood that the bene�ts of the approach will be

highlighted is low. In many cases, the two development teams do not ade-

quately interact. In fact, one project currently being undertaken for British

Aerospace [23] involves a development using BAe's traditional development

methods and formal methods in parallel. The two development teams are

not permitted to communicate, and the formal approach will be subject to

the same standards reviews, which are certi�ed to ISO 9000. The aim of

7



the dual development technique in this project is to investigate how formal

methods might �t better into current development practices.

More integrated approaches include the translation of SSADM into Z,

as part of the SAZ project [47], the integration of Yourdon and Z in a more

formalized manner [53], and the integration of various structured notations

with VDM [38] and CSP [49]. These all augur much potential, but unlike

the parallel approach have yet to be applied to realistic systems.

Myth 4. Formal Methods only apply to software.

Formal methods can equally well be applied to hardware design as to soft-

ware development [35]. Indeed, this is one of the motivations of the HOL

theorem prover which was used to verify parts of the Viper microprocessor.

Other theorem proving systems which have been applied to the veri�cation

of hardware include the Boyer-Moore, Esterel, HOL, Nuprl, 2OBJ, Occam

transformation system and Veritas proof tools. Model checking is also im-

portant in the checking of hardware designs if the state space is su�ciently

small to make this feasible. However techniques such as Binary Decision

Diagrams (BDDs) allow impressively large numbers of states to be handled.

Perhaps the most convincing and complete hardware veri�cation exercise

is the FM9001 microprocessor produced by Computational Logic Inc. in the

US, and which has been veri�ed down to a gate level netlist representation

using the Boyer-Moore theorem prover. Two examples of real industrial use

are provided by Inmos. The T800 Transputer oating-point unit has been

veri�ed by starting with a formalized Z speci�cation of the IEEE oating-

point standard, and using the Occam Transformation System to transform a

high level program to the low level microcode by means of proven algebraic

laws. More recently, parts of the new T9000 Transputer pipeline architecture

have been formalized using CSP and checked for correctness. [35] contains

a number of invited papers written by experts in the �eld and covers the

applications outlined here in more detail.

A more recent approach to the development of hardware is hardware

compilation. This allows a high-level program to be compiled directly into

a netlist of simple components such as gates and latches together with there

interconnections. The technology of Field Programmable Gate Arrays (FP-

GAs) allows this process to be undertaken entirely as a software process

if required (which is particularly useful for rapid-prototyping) since these

devices allow the circuit to be con�gured according to the contents of a

static RAM within the chip. It is possible to prove the compilation process

itself correct [32]. In this case the hardware compiled each time need not be

separately proven correct, thus reducing the proof burden considerably. For

instance, a microprocessor could be compiled into hardware by describing

8



the microprocessor as a interpreter written in a high-level language. Ad-

ditions and changes to the instruction set could easily be made by editing

the interpreter and recompiling the hardware with no additional proof of

correctness required.

In the future, such an approach could allow the possibility of provably

correct combined hardware/software co-design. A uni�ed proof framework

would facilitate the exploration of design trade-o�s and interactions between

hardware and software in a formal manner.

Myth 5. Formal Methods are not required.

We have all heard the argument that formal methods are not required. This

is a mistruth; while there are occasions where formal methods are in a sense

`over-kill', there are situations where they are very desirable. In fact, the

use of formal methods is recommended in any system where the issue of

correctness is of concern.

This clearly applies to safety-critical and security-critical systems, but

equally to systems which are not classi�ed in these terms, but where one

needs, or wishes, to ensure that the system operates correctly. (See for

example [42] which presents the formal speci�cation of an algorithm to de-

termine the result in a single transferable voting system.) There are occa-

sions however where formal methods are not only desirable, but positively

required. A number of standards bodies have not only used formal speci�-

cation languages in making their own standards unambiguous [57], but have

mandated or strongly recommended the use of formal methods in certain

classes of applications [6, 14].

The International Electrotechnical Commission speci�cally mentions a

number of formal methods (CCS, CSP, HOL, LOTOS, OBJ, VDM, Z) and

temporal logic in the development of safety-critical systems. The European

Space Agency suggests that VDM or Z, augmented with natural language

descriptions, should be used for specifying the requirements of safety-critical

systems. It also advocates proof of correctness, a review process, and the

use of formal proof in advance of testing.

The UK Ministry of Defence (MoD) draft Interim Defence Standards

00-55 and 00-56 mandate the extensive use of formal methods. Standard

00-55 sets forth guidelines and requirements; the requirements include the

use of a formal notation in the speci�cation of safety-critical components,

and an analysis of such components for consistency and completeness. All

safety-critical software must also be validated and veri�ed; this includes

formal proof and rigorous (but informal) correctness proofs, as well as more

conventional static and dynamic analysis. Standard 00-56 deals with the

classi�cation and hazard analysis of the software and electronic components

of defence equipment, and also mandates the use of formal methods.

9



The Atomic Energy Control Board (AECB) in Canada has commis-

sioned a proposed standard for software for computers in the safety systems

of nuclear power stations in conjunction with David Parnas at McMaster

University. Ontario-Hydro have developed a number of standards and proce-

dures within the framework set by AECB and further procedures are under

development. Standards and procedures developed by Canadian licensees

mandate the use of formal methods, and together with 00-55 are still some

of the few to go so far at the moment.

Whether or not one believes that formal methods are necessary in system

development, one cannot deny that they are indeed required in certain classes

of applications, and are likely to be required in an increasing number of cases

in the future [6].

Myth 6. Formal Methods are not supported.

Formal methods have been under development since the mid-1960s. But it

is in the last decade that signi�cant developments have evolved, and over the

last few years interest in formal methods has grown phenomenally. Along

with `object-orientation' and a few other keywords, it has quickly become

one of the great `buzz-words' in the computer industry.

Long gone are the days when lone researchers worked on developing ap-

propriate notations and calculi. The development of the more popular formal

methods owes much to the contributions of a great number of people, not

just their originators. In many cases, researchers and practitioners extended

the languages to support their particular needs, adding useful (though some-

times unsound) operators and data structures, and extending the languages

with module structures and object-oriented concepts.

There is a certain degree of `trade-o�' between the expressiveness of

a language and the levels of abstraction that it supports [56]. Making a

language more expressive does indeed facilitate briefer and more elegant

speci�cations, but can make reasoning more di�cult.

LOTOS was standardized in 1989, and draft ISO standards for both Z

and VDM have been proposed [6]. These standards set forth a number of

sound constructs and their associated formal semantics, making it easier to

read other people's speci�cations (assuming, that is, that the relevant users

will conform to these standards).

Obviously, a standard is pointless if it does not reect the opinions of

active users, and the developments that have evolved in formal methods.

There are now a number of outlets for practitioners to discuss draft stan-

dards, and to seek advice and solutions to problems and di�culties from

other practitioners. Chief among these outlets are various (especially elec-

tronic) distribution lists, such as:

10



� The Z FORUM

(contact zforum-request@comlab.ox.ac.uk)

� The recently established VDM FORUM

(contact vdm-forum-request@mailbase.ac.uk)

� A larch-interest group

(contact larch-interest-request@src.dec.com)

� An OBJ FORUM

(contact objforum-request@comlab.ox.ac.uk)

Z FORUM has spawned comp.specification.z, a gatewayed electronic

newsgroup which is read regularly by in excess of 45,000 people worldwide. A

newsgroup devoted to speci�cation in general, comp.specification, regu-

larly generates discussions on formal methods, as well as the more traditional

structured methods, object-oriented design, etc., as does the newsgroup

comp.software-eng. Electronically accessible anonymous FTP archives for

Z (including an on-line and regularly revised comprehensive bibliography [7])

and other formal methods exist on the global Internet computer network.

The global World Wide Web (WWW) electronic hypertext system, which

is rapidly becoming very popular also provides support for formal methods.

A useful starting point is the following WWW page which provides pointers

to other electronic archives concerned with formal methods throughout the

world, including substantial publicly accessible tools such as HOL and PVS

for downloading on the network:

http://www.comlab.ox.ac.uk/archive/formal-methods.html

A plethora of formal methods books are now available, and most rep-

utable computer science publishers carry a title on the Z notation, or on

discrete mathematics looking suspiciously like Z. The proceedings of various

symposia and workshops o�er invaluable reading on current developments

in formal methods. The proceedings of FME (and its predecessor, the VDM

symposium) are available in the Springer-Verlag Lecture Notes in Computer

Science series (e.g., [58]), while the proceedings of the Re�nement Workshops

organized by BCS FACS and the last �ve Z User Meetings now organized

by the Z User Group have been published in the Springer-Verlag Workshops

in Computing series (e.g., [12]). Both of these series contain the proceedings

of many other interesting colloquia, workshops and conferences on formal

methods.

Formal methods are not quite so popular in the US, although they are

gaining momentum there. While papers on formal methods are becoming

well-established at a number of US conferences, there is as yet no regular

11



conference in the US devoted to formal methods. Perhaps the forthcoming

Workshop on Industrial-strength Formal speci�cation Techniques (WIFT)

represents a step in that direction.

Again the main journals and publications devoted to formal methods

are based in Europe, and the UK speci�cally. These include Formal Aspects

of Computing, Formal Methods in System Design and the FACS Europe

newsletter run jointly by FME and the BCS FACS special interest group,

amongst others. The Computer Journal, Software Engineering Journal and

Information and Software Technology regularly publish articles on, or related

to, formal methods, and have run or plan a number of special issues on the

subject.

In the US, as far as the authors are aware, there are no journals de-

voted speci�cally to formal methods, although some of the highly respected

journals, such as IEEE Transactions on Software Engineering and the Jour-

nal of the ACM, and the popular periodicals such as IEEE Computer, IEEE

Software and the Communications of the ACM regularly publish relevant ar-

ticles. IEEE TSE, Computer and Software ran very successful coordinated

special issues on formal methods in 1990. More recently, in January 1994

an IEEE Software special issue on safety-critical systems also devoted a not

inconsiderable amount of attention to formal methods [36], as has a newly

launched journal in this area entitled High Integrity Systems.

Formal methods (in particular Z, VDM, CSP and CCS) are taught in

most UK undergraduate computer science courses. Although still quite un-

common in the US, an NSF-sponsored workshop aims to establish a curricu-

lum for teaching formal methods in US undergraduate programmes. One

would hope that this will help to establish formal methods as a regular

component of US university curricula.

A number of industrially-based courses are also available, and in general

can be tailored to the client organization's needs. Popular Z courses are

run by Logica Cambridge Limited, Praxis, Formal Systems (Europe) Ltd.,

as well as by the Oxford University Computing Laboratory. In fact, as

much as 70% of all industrially-based formal methods courses focus on the

Z notation. Formal Systems (Europe) Ltd. also run a CSP course and a CSP

with Z course, both of which have been given in the US as well as the UK.

IFAD in Denmark run an industrially-based formal methods course using

VDM and VDM++.

Once upon a time, as all good stories start, formal development might

have been a lone activity, a lone struggle, but certainly one can no longer

argue that formal methods are not supported!

Myth 7. Formal Methods people always use Formal Methods.

There is widespread belief that the proponents of formal methods apply

12



formal methods in all aspects of system development. This could not be

further from the truth. Even the most fervent supporters of formal methods

must recognize that there are certain aspects of system development for

which formal methods are just not as good as other approaches.

In user-interface (UI) design, for example, it is very di�cult to formal-

ize exactly the requirements of the human-computer interaction. In many

cases, the user interface is to be con�gurable, and various colour combina-

tions will highlight certain conditions (red denoting an undesirable situation,

etc.). The great di�culty is, however, in determining how the user inter-

face should `look-and-feel'. Certain functionality might be more conducive

to particular interfaces, but other requirements might preclude that. It is

very di�cult to reason about user interfaces; the appropriateness of a UI is

a very subjective matter, and not really amenable to formal investigation.

Although there have been a number of (somewhat successful) approaches

to the formal speci�cation of UIs [21], in general it is accepted that UI

conformance testing lies in the domain of informal reasoning.

There are many other areas where, although possible, formalization is

just not practical from a resource, time, or �nancial aspect. Most successful

formal methods projects involve the application of formal methods to crit-

ical portions of system development. Only rarely are formal methods, and

formal methods alone, applied to all aspects of system development. Even

within the CICS project [34], which is often cited as a major application

of formal methods (and resulted in IBM and OUCL being jointly awarded

a UK Queen's Award for Technological Achievement in 1992), only about

a tenth of the entire system was actually subjected to formal techniques

(although this still involved 100,000s of lines of code and 1000s of pages

of speci�cations). With appropriate apologies to Einstein for the following

maxim:

System development should be as formal as possible, but not more

formal.

What is perhaps surprising is that many tools to support formal devel-

opment have not been developed using formal techniques. Formal methods

have indeed been applied to the development of a number of support tools

for conventional development methods, such as the SSADM CASE tool de-

scribed by Hall [29]. They have also been used as part of the (re)development

process in a reverse engineering and analysis tool-set for COBOL at Lloyd's

Register [9]. (Both of these projects made use of Z.) In addition, they have

been successfully employed in de�ning reusable software architectures [24],

where the use of Z greatly simpli�ed the decomposition of function into

components, and the protocols of interaction between components.

13



To the best of our knowledge, however, with the exception of the VDM-

SL Toolkit, formal methods have often not been used extensively in the de-

velopment of the formal methods support tools described in Myth 2 (above).

HOL is addressing this issue by the addition of a formally developed proof

checker which simply con�rms that proof script generated by HOL using the

small number of basic axioms2 does indeed apply them correctly.

4 Conclusion

The question arises as to how the technology transfer process from formal

methods research to practice can be facilitated [55]. More real links between

industry and academia are required; and well publicized demonstrations of

successful uses of formal methods are needed to disseminate the bene�ts

of their use. [33] aims to play its part in this by providing a collection

of descriptions of the use of formal methods at an industrially useful scale

written by the experts involved.

More research is of course required to develop the use of formal meth-

ods. For example, the European ESPRIT Basic Research project ProCoS

on \Provably Correct Systems" is investigating the theoretical underpinning

and techniques to allowing the formal development of systems from require-

ments through speci�cation, program and hardware in a uni�ed framework

[10]. In addition, an associated ProCoS-WG Working Group of 24 indus-

trial and academic partners has been set up for the next three years as an

integral part of the project's plans [8]. Meetings of the project and Working

Group are held jointly to allow a free ow of ideas and comments in both di-

rections. It is hoped that a more industrially oriented collaborative project

on the application of some of the ideas developed on ProCoS will result in

due course.

As usual, it should be stressed that formal methods are not a panacea,

but one approach amongst many that can help to improve system reliability.

However, to quote Prof. Bev Littlewood, Centre for SoftwareReliability, City

University, London, on a programme broadcast on 19 October 1993 by BBC

Radio 4, it should be noted that:

\. . . if you want to build systems with ultra-high reliability which

provide very complex functionality and you want a guarantee that

they are going to work with this very high reliability . . .

2Five in the case of HOL, which must be taken on trust as being `obviously' correct.

14



. . . you can't do it!"

Acknowledgements

The authors would like to thank Anthony Hall for the inspiration of his

original paper on the Seven Myths of Formal Methods [29] which made this

paper possible.

Jonathan Bowen is funded by the UK Engineering and Physical Sciences

Research Council (EPSRC) on grant no. GR/J15186.

Mike Hinchey is currently with University of Cambridge Computer Lab-

oratory, and is a faculty member of the Real-Time Computing Laboratory,

Department of Computer and Information Science, New Jersey Institute of

Technology, USA.

References

[1] Abrial, J.-R.: Assigning Meanings to Programs. Prentice Hall Interna-

tional Series in Computer Science, to appear.

[2] Anderson, S. & Bruns, G.: The Formalization and Analysis of a Com-

munication Protocol. In [33].

[3] Barwise, J.: Mathematical Proofs of Computer System Correctness.

Notices of the American Mathematical Society, 36(7):844{851, Septem-

ber 1989.

[4] Boehm, B.W.: Software Engineering Economics, Prentice Hall, 1981.

[5] Boehm, B.W.: A Spiral Model of Software Development and Mainte-

nance. IEEE Computer, 21(5):61{72, May 1988.

[6] Bowen, J.P.: Formal Methods in Safety-Critical Standards. In Proc.

1993 Software Engineering Standards Symposium (SESS'93), Brighton,

UK, IEEE Computer Society Press, 1993, pp 168{177.

[7] Bowen, J.P.: Select Z Bibliography. In [12], pp 359{396.

[8] Bowen, J.P. et al.: A ProCoS II Project Description: ESPRIT Basic

Research project 7071, Bulletin of the European Association for Theo-

retical Computer Science (EATCS), 50:128{137, June 1993.

[9] Bowen, J.P., Breuer, P.T. & Lano, K.C. Formal Speci�cations in Soft-

ware Maintenance: From code to Z++ and back again. Information and

Software Technology, 35(11/12):679{690, November/December 1993.

15



[10] Bowen, J.P., Fr�anzle, M., Olderog, E-R. & Ravn, A.P.: Developing Cor-

rect Systems. In Proc. Fifth Euromicro Workshop on Real-Time Sys-

tems, Oulu, Finland, 22{24 June 1993. IEEE Computer Society Press,

pp 176{187.

[11] Bowen, J.P. & Gordon, M.J.C.: Z and HOL. In [12], pp 141{167.

[12] Bowen, J.P. & Hall, J.A., editors: Z User Workshop, Cambridge 1994.

Springer-Verlag, Workshops in Computing, 1994.

[13] Bowen, J.P. & Stavridou, V.: The Industrial Take-up of Formal Meth-

ods in Safety-Critical and Other Areas: A Perspective. In [58], pp 183{

195.

[14] Bowen, J.P. & Stavridou, V.: Safety-Critical Systems, Formal Methods

and Standards. Software Engineering Journal, 8(4):189{209, July 1993.

[15] Bowen, J.P. & Stavridou, V.: Formal Methods: Epideictic or Apodeic-

tic? Software Engineering Journal, 9(1):2, January 1994.

[16] Boyer, R.S. &Moore, J.S.: A Computational Logic Handbook. Academic

Press, 1988.

[17] Coombes, A.C., Fitzgerald, J.S., McDermid, J.A., Saeed, A. & Spencer,

L.: Formal Speci�cation of an Aerospace System: The Attitude Moni-

tor. In [33].

[18] Craigen, D., Gerhart, S. & Ralston, T.: An International Survey of

Industrial Applications of Formal Methods. NIST GCR 93/626, 1993.

[19] Craigen, D., Gerhart, S. & Ralston, T.: Applications of Formal Meth-

ods: Observations and Trends. In [33].

[20] Dehbonei, B. & Mejia, F.: Formal Development of Safety-Critical Soft-

ware Systems in Railways. In [33].

[21] Dix, A.: Formal Methods for Interactive Systems. Academic Press,

Computers and People Series, 1991.

[22] Draper, C.: Practical Experiences of Z and SSADM. In Bowen, J.P.

& Nicholls, J.E., editors: Z User Workshop, London 1992, Springer-

Verlag, Workshops in Computing, 1993, pp 240{254.

[23] Fitzgerald, J.S., Larsen, P.G., Brookes, T. & Magillian, P.: Developing

a Security-Critical System using Formal and Conventional Methods.

In [33].

16



[24] Garlan, D. & Delisle, N.: Formal Development of a Software Architec-

ture for a Family of Instrumentation Systems. In [33].

[25] Goguen, J.A. & Winkler, T.: Introducing OBJ3. Technical Report SRI-

CSL-88-9, August 1988.

[26] Gordon, M.J.C. & Melham, T.F., editors: Introduction to HOL: A the-

orem proving environment for higher order logic. Cambridge University

Press, 1993.

[27] Guaspari, D., Seager, M. & Stillerman, M.: Specifying the Kernel of a

Secure Distributed Operating System. In [33].

[28] Guttag, J.V. & Horning, J.J: Larch: Languages and Tools for Formal

Speci�cation, Springer-Verlag, Texts and Monographs in Computer Sci-

ence, 1993.

[29] Hall, J.A.: Seven Myths of Formal Methods. IEEE Software, 7(5):11{

19, September 1990.

[30] Hamillton, V. & Quinn, K.F.: A Case Study in the Use of Z within a

Safety-Critical Software System. In [33].

[31] Haughton, H. & Lano, K.: Formal Development of Safety-Critical Med-

ical Systems. In [33].

[32] He Jifeng, Page, I. & Bowen, J.P.: Towards a Provably Correct Hard-

ware Implementation of Occam. In Milne, G.J. & Pierre, L., editors:

Correct Hardware Design and Veri�cation Methods, Springer-Verlag,

LNCS 683, 1993, pp 214{225.

[33] Hinchey, M.G. & Bowen, J.P., editors: Applications of Formal Methods.

Prentice Hall International Series in Computer Science, to appear 1995.

[34] Hoare, J.: Formal Development of CICS with B. In [33].

[35] Hoare, C.A.R. & Gordon, M.J.C., editors: Mechanized Reasoning and

Hardware Design. Prentice Hall International Series in Computer Sci-

ence, 1992.

[36] Knight, J. & Littlewood, B., editors: Special issue on Safety-Critical

Systems. IEEE Software, January 1994.

[37] Kronl�of, K., editor: Method Integration: Concepts and Case Studies.

John Wiley & Sons, Series in Software Based Systems, 1993.

17



[38] Plat, N., Larsen, P.G. & Toetenel, H.: Formal Transformations: Using

SA and VDM as Di�erent Views in Software Development. Submitted

for publication.

[39] Leveson, N.G.: Software Safety in Embedded Computer Systems. Com-

munications of the ACM, 34(2):34{46, February 1991.

[40] Martin, A.: Encoding W : A Logic for Z in 2OBJ. In [58], pp 462{481.

[41] Mataga, P. & Zave, P.: Multiparadigm Speci�cation of an AT&T

Switching System. In [33].

[42] Mukherjee, P. & Wichmann, B.A.: Formal Speci�cation of the STV

Algorithm. In [33].

[43] Owre, S., Rushby, J.M. and Shankar, N.: PVS: A Prototype Veri�ca-

tion System. In Kapur, D., editor: Automated Deduction { CADE-11,

Springer-Verlag, LNAI 607, 1992, pp 748{752.

[44] Parnas, D.L.: Using Mathematical Descriptions in the Inspection of

Safety-Critical Software. In [33].

[45] Peleska, J., Hamer, U. & Hoercher, H.-M.: The Airbus A330/340 Cabin

Communication System { A Z Application. In [33].

[46] Plat, N., Durr, E.H. & de Boer, M.: CombiCom: Tracking and Tracing

Rail Tra�c using VDM++. In [33].

[47] Polack, F. & Mander, K.C.: Software Quality Assurance using the SAZ

Method. In [12], pp 230{249.

[48] The RAISE Language Group: The RAISE Speci�cation Language.

Prentice Hall, BCS Practitioner Series, 1992.

[49] Randell, G.P.: Data Flow Diagrams and CSP. DRA Memorandum

4520, Malvern, UK, February 1992.

[50] Royce, W.W.: Managing the Development of Large Software Systems.

In Proc. WESTCON'70, August 1970, reprinted in Proc. 9th Interna-

tional Conference on Software Engineering, IEEE Press, 1987.

[51] Saaltink, M.: Z and Eves. In Nicholls, J.E., editor: Z User Workshop,

York 1991, Springer-Verlag, Workshops in Computing, 1992, pp 233{

242.

18



[52] Semmens, L.T., France, R.B. & Docker, T.W.G.: Integrating Struc-

tured Analysis and Formal Speci�cation Techniques. The Computer

Journal, 36(6):600{610, December 1992.

[53] Semmens, L.T. & Allen, P.M.: Using Yourdon and Z. In Nicholls, J.E.,

editor: Z User Workshop, Oxford 1990, Springer-Verlag, Workshops in

Computing, 1991, pp 228{253.

[54] Srivas, M., Miller, S. & Rushby, J.: Formal Veri�cation of AAMP5: A

Case Study in the Veri�cation of a Commercial Microprocessor. In [33].

[55] Weber-Wul�, D.: Selling Formal Methods to Industry. In [58], pp 671{

678.

[56] Wing, J.M: A Speci�er's Introduction to Formal Methods. IEEE Com-

puter, 23(9):8{24, September 1990.

[57] Woodcock, J.C.P., Gardiner, P.H.B. & Hulance, J.R.: The Formal

Speci�cation in Z of Defence Standard 00-56. In [12], pp 9{28.

[58] Woodcock, J.C.P. & Larsen, P.G., editors: FME'93: Industrial-

Strength Formal Methods. Springer-Verlag, LNCS 670, 1993.

[59] Young, W.D.: Verifying a Simple Real-Time System with Nqthm.

In [33].

19


