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The artificial evolution of computer
code
Wolfgang Banzhaf, University of
Dortmund, Germany

Over the past decade, the artificial evolu-
tion of computer code has become a rapidly

spreading technology with many ramifica-
tions. Originally conceived as a means to
enforce computer intelligence, it has now
spread to all areas of machine learning and
is starting to conquer pattern-recognition
applications such as data mining and the
human–computer interface.

In the long run, genetic programming1,2

and its kin will revolutionize program de-
velopment. Present methods are not mature
enough for deployment as automatic pro-
gramming systems. Nevertheless, GP has
already made inroads into automatic pro-
gramming and will continue to do so in the
foreseeable future. Likewise, the applica-
tion of evolution in machine-learning prob-
lems is one of the potentials we’ll exploit
over the coming decade. 

In the beginning
Alan Turing was perhaps the first to

express this vision in his seminal essay
“Computing Machinery and Intelligence.”3

Besides proposing the Turing test, he ven-
tured into unknown territory by proposing
computing machines with constituting ran-
dom elements. He then suggested that a
computing machine could manipulate itself
just as well as any other data. Self-modify-
ing code—something generations of com-
puter scientists were later taught to avoid—
thus became an interesting possibility. By
observing the results of behavior—of exe-
cuting programs—the code could improve
itself, perhaps when working on external
data.

Turing hit on the learning problem when
he noticed the combinatorial multitude of
environments that require a machine to
acquire approximately correct behavior
rather than starting out with such behavior.
Naturally, he concluded that we should
enact a procession of learning stages during
which a machine could “grow” in knowl-
edge. He termed this a child machine, which
would learn more or less quickly (depending
on its construction) by following its own
developmental process. Turing anticipated
that a systematic process would produce the
child machine, but he did not rule out a ran-
dom element in its construction and indeed
pointed to the natural evolutionary process
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Genetic programming

A wide range of core concepts in AI—and in computer science in general—can be traced to
computational metaphors inspired by a rich variety of phenomena in the natural world. One of
the best examples is neural networks, whose core ideas are based on the functioning of systems
of neurons in the brain. This issue’s Trends and Controversies concerns genetic programming
(GP), whose inspiration comes from computational analogs to Darwinian evolution. 

GP is part of a more general field known as evolutionary computation. Evolutionary com-
putation is based on the idea that basic concepts of biological reproduction and evolution can
serve as a metaphor on which computer-based, goal-directed problem solving can be based.
The general idea is that a computer program can maintain a population of artifacts represented
using some suitable computer-based data structures. Elements of that population can then
mate, mutate, or otherwise reproduce and evolve, directed by a fitness measure that assesses
the quality of the population with respect to the goal of the task at hand. 

For example, an element of a population might correspond to an arbitrary placement of eight
queens on a chessboard, and the fitness function might count the number of queens that are not
attacked by any other queens. Given an appropriate set of genetic operators by which an initial
population of queen placements can spawn new collections of queen placements, a suitably de-
signed system could solve the classic eight-queens problem. GP’s uniqueness comes from the
fact that it manipulates populations of structured programs—in contrast to much of the work in
evolutionary computation in which population elements are represented using flat strings over
some alphabet.

The concepts of Darwinian evolution explain the vast diversity of biological organisms in
terms of reproductive and evolutionary processes. This issue’s essays show that when we map
these concepts onto computers, we get analogously complex and diverse computational arti-
facts. Wolfgang Banzhaf’s lead-off essay surveys the area, both from a historical perspective
and a practical standpoint, advancing the view of GP as a form of automatic programming.
John Koza, the progenitor of modern GP, develops this theme in more detail, elaborating on
the automatic-programming perspective of GP and cataloging some of the notable successes
this area has already achieved. The essays by Conor Ryan and Lee Spector then discuss two
very different areas—software reengineering and quantum computing—where these suc-
cesses are now occurring. Finally, Christian Jacob concludes with an essay that ties GP back
to its origins, asking whether it can in turn provide insights for developmental biology.

The essays show that underlying the Darwinian metaphors of evolutionary computation is 
a powerful technology that, when given sufficient computational resources, can yield results
that compete with those of the best domain experts. To me, the key insight in evolutionary
computation is that computer technology makes it possible to simulate the progress of time—
the movement through consecutive generations of populations—on a time scale very different
than that found in biology. Rather than waiting years for the effects of reproduction and evolu-
tion to materialize, we can create thousands of generations in a matter of hours on a computer.
This insight is all the more notable given Moore’s Law and the continuing geometric increases
in computer speed, leaving me all the more intrigued about what this technology might yet
produce. These essays do a nice job of surveying where we are and where we might find our-
selves in the not-too-distant future.
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as a kind of search process that could (theo-
retically, if only nonefficiently) guide the
search for a faster learning machine.

Later, but still early on in the history
of computing, R.M. Friedberg invented a
system, called Herman, designed to learn
through random variations.4,5 He defined a
virtual assembler language space within
which these variations took place. He
tested the variations against a given task,
and the system preferred instructions that,
in a given location in the program, showed
better performance over less performing
instructions. Herman and its variants
showed limited success in adapting to the
prescribed task. Besides certain deficits in
the variation-selection loop, the most limit-
ing factor was computer time. Evaluating
programs one after the other to measure
their performance was very slow.

Moving into artificial evolution
Today, we are in a much better position

because many evolutionary algorithms for
optimization have emerged. Mostly driven
by applications in problems that were diffi-
cult to approach using traditional means,
artificial evolution is now routinely applied
to combinatorial optimization problems of
all varieties. The key insight was to center
the algorithm around the variation-selec-
tion loop (see Figure 1). Sticking to this
loop, we can contradict all probability
arguments, such as, “There is only one in
10100 solutions that is of acceptable qual-
ity.” By continuously varying the programs,
we can set into motion a stream of improve-
ments that will hopefully converge on a
solution of satisfying quality. We now know
that the so-called Bremermann limit, which
states that there is a limit to the amount of
information processing at approximately 2 ×
1047 bits per second per gram that a machine
can use to solve a problem,6 is not relevant if
we enact the variation selection loop.

The difference between combinatorial
optimization problems and programming is
not so much the brittleness of programs as the
mere size of the search space. Brittleness or

feasibility constraints are also a major
problem in constraint-optimization
problems, where evolutionary
algorithms first learn to handle them.
The techniques have been subsequently
transferred to the realm of
programming, where they can similarly
be employed. However, having to
search in a space that has routinely
10100,000 rather than 10100 search points
is rather demanding. So, for a long time,
researchers believed that generating
computer code through artificial evolu-
tion would not work because of the
search space’s size. The only good news
that comes in the realm of programming
is that there are also many more satisfy-
ing solutions. 

As every programmer knows, there
are a large variety of programs that
fulfill a given task—a few simple ones
but many more complicated ones. This
is a key insight that helps explain why
artificial evolution of computer code works.
Above  the complexity threshold, where a
program starts to work, the ratio of accept-
able to nonacceptable solutions doesn’t
change very much, but to reach this thresh-
old, the evolutionary search process must be
able to vary the complexity of programs.
This is the case in all serious attempts to
evolve programs, and it is one of the hall-
marks of the approach.

Perhaps the most radical approach to the
artificial evolution of computer code is to
make binary machine code the object of evo-
lution.7 The evolutionary algorithm thus
treats the binary numbers representing a pro-
gram’s machine code instructions as data,
which the evolutionary operators of mutation
and crossover then manipulate. Figure 2
shows an example of programs and their
manipulation. Mutation randomly varies a
program’s instruction by flipping bits, and
crossover generates variants by mixing two
programs—for example, by taking the first
half of program 2 and appending the second
half of program 1. To avoid hitting unfeasi-
ble programs, the system runs a sanity check

that filters all op-codes and register–memory
addresses or constant values to avoid a sys-
tem crash. If the system also performs this
sanity check with the initial population of
programs, it can guarantee it won’t crash the
computer on which it runs. The main advan-
tage of a machine code GP system is its
speed and memory efficiency. In a way, such
a system speaks the computer’s native lan-
guage. As such, it guarantees the fastest real-
ization possible.

Let’s consider a few numbers: A present-
day CPU can execute approximately 109

instructions per second. Without any struc-
tural precautions, GP might generate pro-
grams of a length between 10 and 200 in-
structions. A good maximum size for
evolving programs is therefore 500 instruc-
tions. With this size, the system can evaluate
2 × 106 programs per second. This would
make a population of about 1,000 programs
for 2,000 generations or a population of
20,000 programs for 100 generations. In
reality, the numbers are not this large due 
to the population’s administration overhead,
plus some display and supervision func-
tions. Still, the amount of computational
power is stunning.

Applications of automatic induction of
machine code with GP range from generating
small subroutines (to be decompiled into
assembler or C code for export into other
program environments), to real-time prob-
lems (for example, robot control or sound
discrimination), to offline applications such
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Figure 1. The variation-selection loop of a typical evolutionary algorithm.

Artwork courtesy of Genetic Programming, Inc.



as time-series analysis or data-mining tasks.
All applications approached by neural net-
works are obvious candidates for a GP attack,
as are more symbolic problems, such as logic
circuits and the like. Even rule-based sys-
tems, such as automatic theorem proofing,
are candidate targets for GP techniques.

Besides the raw speed of certain GP sys-
tems, researchers are actively exploring ways
to modularize programs to gain nonlinear
speedups resulting from reusing certain parts
of the programs and improving the evolution
of structures. Automatically defined func-
tions, introduced by John Koza in the mid
1990s, are the most widespread technique in
modularization. Modularization, however,
will continue to be a focus of research in the
coming years, and researchers expect new
methods will turn up better structures to be
subjected to evolution.

The 21st century—leaving
medieval times?

We always seem to simultaneously cre-
ate inventions at various places. Different
researchers in the 1980s mulled over ideas
for the evolution of computer code, notably
S.F. Smith in 1980 and N. Cramer in 1985.
With Koza’s contributions, however, the
field really took off in the 1990s.

Why do we believe GP will revolutionize
computing? First, the stage is set: numerous
computers are idle and ready to take up 
productive computation. We estimate the
amount of computer power available to be in
the petaflop range. The situation is similar to
the middle ages, when Europe was flooded
with paper.8 In the 14th century, paper mills
started to turn out large volumes of paper and
prices continued to fall; the shortage was

suddenly not the material for writing (as it
had been for centuries past), but the number
of scribes knowledgeable enough to make
use of the resource both for copying and
producing new texts. As pressure grew to
invent a faster method for copying texts, the
invention of the printing press by Johannes
Gutenberg was bound to happen. The new
technology subsequently spread through
Europe like a bushfire, quickly putting the
paper resource under pressure again.

Today, we seem to be in the medieval
days of handcrafted coding of computers.
A programmer must specify, write, and test
every program. The flood of CPU cycles
and tasks to be moved onto computers is so
large that education cannot keep up with
the demand.

However, as I’ve argued, the means are
there through automatic program writing.
Evolving and testing multiple variants of
programs will make both an automatic and
fault-tolerant production of programs pos-
sible. This is the second precondition for a
successful revolution.

As the third precondition—the commer-
cial drive for automating programming—is
visibly present, artificial evolution of com-
puter code seems also commercially viable.
Certainly, GP will not remain the only way
to generate programs. We’re already apply-
ing simulated annealing and other heuristic
search methods to problems in learning com-
puter programs. But with its thirst for CPU
power, GP will continue to thrive as more
and more computers become available in 
the coming years. Perhaps we stand witness
to one of the major culture revolutions, rival-
ing the invention of the printing press 400
years ago.
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Human-competitive machine
intelligence by means of genetic
programming
John R. Koza, Stanford University

The central challenge and common goal
of AI and machine learning is to get a com-
puter to solve a problem without explicitly
programming it. This challenge envisions
an automatic system whose input is a high-
level statement of a problem’s requirements
and whose output is a satisfactory solution
to the given problem. To be useful, the sys-
tem must routinely achieve this goal at lev-
els that equal or exceed the human level of
performance.

Genetic programming has achieved this
goal. It starts with a high-level statement of 
a problem’s requirements and produces a
computer program that solves the problem.
It has produced results that are competitive
with human-produced results (25 currently
known) in areas such as control, design, clas-
sification, pattern recognition, game playing,
and algorithm design. Six of these automati-
cally created results are improvements to
previously published, human-created scien-
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Figure 2. The operations of mutation and crossover applied to two machine code programs shown as integer numbers.
Each number represents a single instruction. A frame of header and footer instructions (not shown here) is added to
allow program execution.
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tific results. Seven of them infringe on previ-
ously issued patents, one improves on a pre-
viously issued patent, and nine duplicate the
functionality of previously patented inven-
tions in a novel way (for more information
on GP, see the “Related work” sidebar).

How GP works
Recognizing that the solution to a wide

variety of problems can easily be recast as a
search for a computer program, GP conducts
its search in the space of computer programs.
It operates by progressively breeding a popu-
lation of computer programs over a series of
generations using the Darwinian principles
of evolution and natural selection. It extends
the genetic algorithm1 to the arena of com-
puter programs.2

A run of GP starts with a primordial ooze
of thousands of randomly created computer
programs. It evaluates pairs of programs
from the population to determine which
one is better for solving the problem at
hand. It then probabilistically selects pro-
grams from the population based on this
partial order and modifies the programs
using crossover (sexual recombination),
mutation, and architecture-altering opera-
tions. The architecture-altering operations
automatically add and delete subroutines,
subroutine parameters, iterations, loops,
recursions, and memory in a manner pat-
terned after gene duplication and gene
deletion in nature. These operations auto-
matically arrange the program’s elements
into a hierarchy.

GP as automatic programming
GP has all the following attributes of

what might be called automatic program-
ming (or automatic program induction or
automatic program synthesis). It 

• starts with “what needs to be done”;
• tells us “how to do it”;
• produces a computer program;
• automatically determines the number of

steps in the program;
• supports code reuse (subroutines);
• supports parameterized code reuse;
• supports code reuse in the form of itera-

tions, loops, and recursions;
• supports reuse of the results of execut-

ing code in the form of memory and
internal storage;

• automatically determines the use of
subroutines, iterations, loops, recur-
sions, and memory;

• automatically determines the hierarchi-
cal arrangement of subroutines, itera-
tions, loops, recursions, and memory;

• supports a wide range of useful pro-
gramming constructs;

• is well-defined;
• is problem-independent;
• applies to a wide variety of problems;
• is scalable; and
• produces human-competitive results.

The last of these attributes is especially
important because it reminds us that the
ultimate goal of AI and machine learning is
to produce useful results—not to make

steady progress toward solving toy prob-
lems. The human-competitive results that
GP produces include the automatic synthe-
sis of the PID controller topology Albert
Callender and Allan Stevenson patented in
1939 and the PID-D2 topology controller
Harry Jones patented in 1942. The results
also include the automatic creation of 

• filter circuits that infringe on patents
issued to George Campbell, Otto Zobel,
and Wilhelm Cauer between 1917 and
1935;

• amplifiers and 12 other circuits infring-
ing on Sidney Darlington’s 1953 patent
for emitter-follower sections;

• a sorting network that is better than 
one in the 1962 O’Connor and Nelson
patent on sorting networks;

• a crossover filter circuit infringing on
Otto Zobel’s 1925 patent;

• a quantum computing algorithm for the
Deutsch–Jozsa “early promise” prob-
lem, the Grover’s database search prob-
lem, and the depth-2 or query problem
that are better than previously published
algorithms;3

• a cellular-automata rule for the majority
classification problem that is better than
the Gacs–Kurdyumov–Levin rule and
all other known human-written rules;4

• a soccer-playing program that ranked
in the middle of the field of 34 human-
written programs in the Robo Cup 1998
competition;5

• an algorithm for the transmembrane

Related work
The 1992 book Genetic Programming: On the Programming of

Computers by Means of Natural Selection1 and accompanying video-
tape2 demonstrate the breadth of genetic programming by success-
fully applying it, in a uniform and consistent manner, to a wide vari-
ety of problems taken from AI and machine-learning literature of the
late 1980s and early 1990s. The 1994 book Genetic Programming II:
Automatic Discovery of Reusable Programs focuses on the automatic
discovery and creation of reusable and parameterized subroutines
and argues that code reuse is essential for solving nontrivial prob-
lems in a scalable fashion.3,4 Genetic Programming III: Darwinian
Invention and Problem Solving contains numerous examples of
human-competitive results and describes the Genetic Programming
Problem Solver.5,6

Over 1,500 papers have been published on GP. You can find addi-
tional information in edited collections of papers such as the Advances
in Genetic Programming series of books from the MIT Press,7 in the
proceedings of the annual Genetic Programming Conference (currently
combined into the Genetic and Evolutionary Computation Conference)
and the annual Euro-GP conference, in the Genetic Programming and
Evolvable Machines journal, and at Web sites such as www.genetic-
programming.org.
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segment identification problem for pro-
teins that is better than previously pub-
lished algorithms;

• motifs that detect protein families that
are equal to or better than previously
known human-discovered motifs; and 

• amplifier, computational, voltage refer-
ence, Nand, digital-to-analog, and ana-
log-to-digital circuits that duplicate the
functionality of previously patented
circuits in novel ways.

The rapidly decreasing cost of computing
power and the amenability of GP to nearly
100%-efficient parallelization should let 
GP continue to deliver human-competitive
results on increasingly difficult problems.
Because evolutionary search is not chan-
neled down preordained paths, I anticipate
that researchers will routinely use GP to
produce new and useful inventions.

Performance evaluation
GP delivers its results with a high A/I

ratiothat is, there is a great deal of “artifi-
cial” compared to the amount of “intelli-
gence” provided by the human user. Specifi-
cally, a GP run is launched after the human
user performs several preparatory steps.
These clearly defined preparatory steps pro-
vide a bright line that distinguishes between
what the human user provides and what GP
delivers. These steps involve specifying the
ingredients (functions and terminals) of the
to-be-created programs, a fitness measure
that decides if one program is better than
another in satisfying the problem’s high-
level objectives, administrative parameters,
and termination criteria. A crisp evaluation
of GP’s performance is possible because the
GP algorithm is problem-independent, has
no hidden steps, and has no backdoors for
embedding (consciously or unconsciously)
additional problem-specific knowledge.

Comparison to other approaches
GP differs from all other approaches to

AI and machine learning in many impor-
tant ways. First, it differs in its representa-
tion. GP overtly conducts its search for a
solution to the given problem in program
space. Second, it doesn’t require an explicit
knowledge base, and third, it doesn’t use
the inference methods of formal logic.
Fourth, it does not conduct its search by
transforming a single point in the search
space into another single point but, instead,
transforms a set (population) of points into

another set of points. Fifth, GP does not
rely exclusively on greedy hill climbing to
conduct its search; instead, it allocates a
certain number of trials, in a principled
way, to choices that are known to be infe-
rior. The population-based search and
avoidance of hill climbing lets innovative
exploration occur, while simultaneously
exploiting immediately gratifying paths.
Lastly, GP conducts its search probabilisti-
cally. Probability permits the search to
avoid becoming trapped on points that are
locally, but not globally, optimal and to
make innovative leaps.

As John Holland said in l997:

Genetic programming is automatic program-
ming. For the first time since the idea of auto-
matic programming was first discussed in the
late ’40s and early ’50s, we have a set of non-
trivial, non-tailored, computer-generated pro-
grams that satisfy Samuel’s exhortation: ‘Tell
the computer what to do, not how to do it.’
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Genetic programming tools have
the answers
Conor Ryan, University of Limerick,
Ireland

There has long been some confusion
over what kinds of tasks genetic program-
ming can handle. Those unsure, or even
suspicious of GP capabilities have often
been known to ask, “Can GP evolve a word
processor?” The answer is, of course, no.
Another answer, however, could be, “No,
but why would anyone want to do such a
thing?” A better question might be whether
GP could help design a word processor.
The answer is yes.

GP as a tool, not a replacement
GP is not intended to be a fully automatic

programming system that can generate elabo-
rate code for all manner of exotic applica-
tions, with merely a gentle prod or vague
description from a human. GP is an excellent
problem solver, a superb function approxi-
mater, and an effective tool for writing func-
tions to solve specific tasks. However, despite
all these areas in which it excels, it still doesn’t
replace programmers; rather, it helps them. 
A human still must specify the fitness func-
tion and identify the problem to which GP
should be applied.

This essay is concerned with using GP as
an automatic software-reengineering tool—
in particular, the problem of transforming
serial code into functionally equivalent par-
allel code. If you asked, “Can GP convert a
program into parallel?” I would probably
say it can’t. However, if your question were
more GP-friendly—“How can GP help con-
vert a program into parallel form?”—then
my answer would be for you to read on.

Software maintenance
Parallel computing is becoming an in-

creasingly important paradigm as hardware
—such as Beowulf systems—have made
powerful computational resources available
to those with even the most humble budgets.
However, to effectively use parallel hard-
ware, the quality of your software is of ut-
most importance. Poorly designed, commu-
nication-intensive programs can even run
more slowly on parallel machines than their
serial counterparts. Furthermore, there are
currently many institutions that run intensive
applications on serial machines and, despite
being the kind of user who stands to benefit
most from parallel architectures, these insti-
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tutions face the expensive task of rewriting
the code from scratch. This essay is based 
on experience I gained while working on
SCARE, a GP-based automatic paralleliza-
tion system.

Software maintenance consumes a signif-
icant portion of the time, effort, and expense
of many data-processing departments. Up to
70% of total expenditure is directed toward
this activity. These tasks vary from meeting
users’ changing needs and desires to im-
proving a program’s control structure (for
example, removing GOTOs to make subse-
quent modifications easier). Other reengi-
neering tasks include the ubiquitous Y2K
problem and the Euro-conversion, which
involves adapting software to display mone-
tary values in both local currency and the
new European currency.

Those involved in software maintenance
first face the task of understanding the code.
This task is difficult because those involved
in the initial writing of that code are usually
long gone, and sparse or nonexistent docu-
mentation further complicates the task.
Given the scarcity of available information,
it is not surprising that a major part of the
effort in reengineering—up to 50% of the
project costs—is spent trying to understand
the code.

The difficulty and level of concern—
which often bordered on panic with the
recent portents of doom accompanying the
new millennium—have caused many to look
for a third party to reengineer their code. The
scale of their problems is evidenced by the
existence of reengineering companies whose
sole service was to provideY2K solutions.
The most successful reengineering compa-
nies have developed tools that automate, or
at least semiautomated, the reengineering
process. In general, the greater the level of
automation, the greater the success rate and,
thus, the less testing required.

It is reasonable to believe that automated
software-reengineering tools will be in-
creasingly important to the software indus-
try as a whole. As the shortage of trained
computer personnel increases, fewer pro-
grammers will be concerned with code
comprehension. GP is potentially useful in
this task because it requires no understand-
ing of the code and can fully automate both
reengineering and testing.

Applying GP
The traditional way we would expect

programmers to apply GP to the task would

be to identify the part of the program that
needs modification or rewriting. They then
would use it to evolve a program function
to replace its original function. It is possi-
ble to use the original code as a fitness
function for the evolved code, because we
always need to preserve the functionality of
any reengineered code. However, many
mainstream programmers are somewhat
skeptical or even suspicious of code pro-
duced by an apparently random method
such as GP. Even vast amounts of regres-
sion testing are sometimes not enough to
convince customers that there is no lurking
pathological problem. Another problem is

that GP usually insists on executing the
code many times to evaluate its fitness. If
the reengineered code is particularly time
consuming, this might not be possible.

Programmers can execute certain reengi-
neering tasks by carrying out standard trans-
formations on the original code—for exam-
ple, transforming two-digit dates to four
digits, removing sections of code that are
clones, and so forth. These tasks can only
be automated if there are rules that govern
which transformations can legally be applied
and, if order-dependent, the order in which
they should occur. If there are no clear rules
to help order the application of the transfor-
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mations, finding the order can be quite a
difficult task.

This task, although extremely difficult
even for humans with an intimate knowledge
of the code, is extremely suitable for GP. Pro-
grammers have evolved sequences of these
transformations, rather than actual code, with
considerable success. GP is particularly suit-
able for generating parallel code, because it
eagerly embraces the maze of transforma-
tions required for reengineering. Further-
more, the often lateral approach required for
parallel program design, although a foreign
way of thinking for many programmers, is
tailor made for GP’s bottom-up approach.

Like other systems that evolve sequences
of transformations, such as John Koza’s
electrical circuits and Frederic Gruau’s
neural nets, we can look at Paragen as em-
bryonic. That is, it starts with a serial pro-
gram, and progressive application of the
transformations modify it until eventually
the system produces a parallel version of
the program. It is only after this embryonic
stage that an individual (that is, a potential
solution) is tested.

All the transformations GP users employ
are the standard parallel type and syntax
with one caveat—the area of the program
that a transformation affects does not con-
tain any data dependencies. If a transfor-
mation violates that condition while being
applied, it might change the semantics,
and any transformation that runs this risk
reduces an individual’s fitness.

When calculating an individual’s fitness,
the fitness function examines all the trans-
formations to test if they have caused any
dependency clashes. A rough measure of
the program’s speed produced by an indi-
vidual is also calculated, which is simply
the number of time steps it takes to run
the program. We can only assume a rough
measure because it is very difficult, if not
impossible, to exactly measure a program’s
speed. However, one major advantage of a
system such as this is that we can subse-
quently examine the transformations em-
ployed and prove that they maintain the
correctness of the program.

GP is suitable for a task such as this be-
cause when we attempt to understand the
logic of a program and then convert that
logic to an equivalent parallel form, the
complexity grows enormously as the pro-
gram increases in size. However, as GP
applies its transformations without any
understanding of the logic of the program it

is modifying, it scales far more graciously
than many other methods.

Moreover, while human programmers
might have the advantage of being able to
take a more holistic view of a program,
GP is not only able to spot and exploit
any patterns in the code but can also take
advantage of its bottom-up approach. It
can move statements around, swap the
location of loops, and even join prev-
iously transformed loops together in ways
that human programmers are unlikely to
think of. The system can concentrate
solely on the program’s layout, because it
doesn’t need to solve the functionality
problem. That is, a human programmer
has already implemented the logic re-
quired to carry out the task with which
the code is concerned.

Due to the arbitrary way in which GP
cuts and divides the code and, in particular,
the loops, we can’t guarantee the readabil-
ity of the modified code. In general, though,
people are no more concerned about this
than they are about being able to interpret
the object code files from a compiler, so
this is not a problem. There might be cases,
however, where the code’s end user will
want to be able to read it—for example, if
the programmer wants to add some extra,
hardware-specific optimizations to the
code. If this is strictly necessary, we can
direct the loop transformations to insert
comments wherever the system modifies a
loop, thus providing an automatically doc-
umented piece of code.

Transformation-based GP differs from
traditional GP in that it assumes the exis-
tence of some sort of embryonic structure
that it can progressively modify into a more
acceptable state. In some instances, such as
in the work of Koza and Gruau, the embryo
contains little if any functionality. However,
there is no reason why the embryo can’t be
a fully functioning program, or possibly
even a reasonably satisfactory solution gen-
erated by hand, and then passed to GP for
further optimization.

All of this is a further pointer to the poten-
tial of GP to be looked at by mainstream
programmers as yet another tool at their dis-
posal. GP does not claim to replace program-
mers nor is it restricted to certain problem
domains that are conducive to its success.
We can use GP for virtually any reengineer-
ing task; it is simply a matter of correctly
isolating the part of the code that is most
likely to benefit from its application.

The evolution of arbitrary
computational processes
Lee Spector, Hampshire College

We can view genetic programming as
the use of genetic algorithms to evolve
computational processes in the form of
computer programs. GAs solve problems
by manipulating populations of potential
solutions that are interpreted in different
ways depending on the application, while
GP usually treats the individuals in the
population as explicit computer programs
written in a subset or variant of a conven-
tional programming language. GP main-
tains the GA’s overall algorithm: the search
process proceeds by iteratively evaluating
the fitness of the individuals in the popula-
tion and by applying genetic operators such
as crossover and mutation to the higher-
fitness individuals so as to explore other
promising areas of the search space. In
GAs more generally the fitness evaluation
step can take many forms, while in GP an
individual is evaluated for fitness at least in
part by executing the program and assess-
ing the quality of its outputs. 

GP techniques have proven valuable for
the evolution of structures other than com-
puter programs (for example, neural net-
works and analog electrical circuits), but
the emphasis on individuals as literal com-
puter programs is one of GP’s central defin-
ing features.

Computational universality
The computational power of the set of

elements from which GP can construct pro-
grams—the function set and terminal set in
the terminology of the field or the primor-
dial ooze in less formal parlance—deter-
mines the range of computational processes
that GP can potentially evolve. In the most
frequently cited examples, this range is quite
narrow. For example, in standard symbolic
regression problems, in which the goal is to
evolve a program that fits a provided set of
numerical data, the evolving programs draw
their components from an ooze that contains
numerical functions but no mechanisms for
conditional or iterative execution. In many
other frequently cited problems, researchers
make only a small set of domain-specific
functions available, providing nothing
approaching computational universality.

However, early work in the field showed
how we can generalize the potential compu-
tational structures by including conditionals,
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implicit iteration (in which the entire evolved
program is executed repeatedly), and expli-
cit iteration (with time-out bounds and other
mechanisms to prevent infinite looping).1 In
1994, Astro Teller showed that we could
achieve Turing completeness by adding a
potentially unbounded indexed memory; we
could then, in principle, evolve any Turing-
computable function.2

A different dimension along which we
can generalize programs concerns not the
absolute computational power of the repre-
sentations but rather the ease with which
commonly employed programming para-
digms can be expressed. Most human pro-
grammers are not content to program with
machine code, even though it is Turing com-
plete. Key items in human programmers’
toolkits are mechanisms that let them eas-
ily create reusable subroutines, specialized
control structures, and data structures.

Recent work in GP has shown how all of
these elements can be brought under evolu-
tionary control. Automatically defined func-
tions let evolving programs define subrou-
tines and call them from within the main
program or from within other ADFs. Archi-
tecture altering operations let the evolution-
ary process dynamically explore different
program architectures (where architecture
means the number of subroutines and para-
meters for each subroutine) as evolution
proceeds.3 Automatically defined macros
let evolving programs define new iterative
and conditional control structures in a man-
ner analogous to ADFs.4 Other work shows
how GP can use rich type systems5 and how
the GP process can implement new data
structures during evolution.6 Further
research has explored recursion as an alter-
native to iteration and various ways in which
other elements of the functional program-
ming paradigm can be brought under evo-
lutionary control.

With all of these enhancements, it would
seem that the computational world is GP’s
oyster and that arbitrary computational
processes should be well within its reach.
However, there are two problems with this
optimistic assessment:

• Just because we can construct a desired
program out of the provided raw materi-
als does not mean that the evolutionary
process will produce it. Adding unnec-
essary computational power or flexibil-
ity generally increases the search-space
size, thus also increasing the work that

we must do to find the desired program.
On the other hand, it is often difficult to
determine the minimum required power
or flexibility.

• Recent results from physics and the the-
ory of computation show that Turing
completeness, as traditionally defined,
does not capture the full range of physi-
cally possible computational processes.
In particular, quantum computers can
perform certain computations with
lower computational complexity than
they can be performed on a Turing
machine or on any other classical com-
puter. For full complexity-theoretic uni-
versality, we must let the evolving pro-
grams perform quantum computations.

Although the first problem is fundamen-
tal and the subject of much current research,
it is beyond the scope of this essay. The
second problem has recently been tackled,
and I outline its solution here.

Evolving quantum programs
Quantum computers are devices that use

the dynamics of atomic-scale objects to
store and manipulate information. Only a
few small-scale quantum computers have
been built so far, and there is debate about
when, if ever, large-scale quantum comput-
ers will become a reality. Quantum comput-
ing is nonetheless the subject of widespread
interest and active research. The primary
reason for this interest is that quantum com-
puters, if built, will be able to compute cer-
tain functions more efficiently than is possi-
ble on any classical computer. For example,
Peter Shor’s quantum factoring algorithm
finds the prime factors of a number in poly-
nomial time, but the best known classical
factoring algorithms require exponential
time. Lov Grover provided another impor-
tant example, showing how a quantum

computer can find an item in an unsorted
list of n items in O steps, while classi-
cal algorithms require O(n) steps. An earlier
Trends & Controversies provided a brief
introduction to the core ideas of quantum
computing,7 and Julian Brown has written
a more complete, book-length introduction
that is accessible to general readers.8

Because practical quantum computer
hardware is not yet available, we must test
the fitness of evolving quantum algorithms
using a quantum computer simulator that
runs on conventional computer hardware.
My research group at Hampshire College,
consisting of myself and physicists Her-
bert J. Bernstein and Howard Barnum, has
developed a quantum computer simulator
specifically for this purpose. Classical sim-
ulation of a quantum computer necessarily
entails an exponential slowdown, so we
must be content to simulate relatively small
systems—but even with small systems much
can be accomplished.

Our simulator, QGAME (quantum gate
and measurement emulator), represents
quantum algorithms using the quantum
gate array formalism. In this formalism,
computations are performed at the quan-
tum bit (qubit) level, so they are similar in
some ways to Boolean logic networks. A
major difference, however, is that the state
of the quantum system at any given time
can be a superposition of all possible states
of the corresponding Boolean system. For
each classical state, we store a complex-
valued probability amplitude, which we
can use to determine the probability that
we will find the system to be in the given
classical state if we measure it. (In accor-
dance with quantum mechanics, squaring
the absolute value of the amplitude deter-
mines the probability.) Quantum gates are
implemented as matrices that multiply the
vector of probability amplitudes for the
entire quantum system.9,10

QGAME also permits a program to mea-
sure the value of a qubit and branch to dif-
ferent code segments depending on the
measurement result. Such measurements
necessarily collapse the superposition of
the measured qubit. QGAME always fol-
lows both branches, collapsing the super-
positions appropriately in each branch and
keeping track of the probabilities that the
computer would reach each subsequent
string of gates.

We can diagram QGAME programs in a
manner analogous to classical logic circuits,

n( )

With all of these
enhancements, it would
seem that the computational
world is GP’s oyster and
that arbitrary computational
processes should be well
within its reach. 



as Figure 3 shows. Such diagrams can be
deceptive, however; unlike classical logic
gate arrays, in quantum gate arrays, the val-
ues traveling on different wires may be entan-
gled with one another so that measurement of
one can change the value of another. Textu-
ally, QGAME programs are represented as

sequences of gate descriptions and structur-
ing primitives, as Figure 4 shows.

To apply GP to the evolution of quantum
programs, we provide QGAME elements as
the raw materials and use QGAME as the
execution engine for fitness evaluation. The
program shown in Figures 3 and 4 is a sim-

plified version of a program our GP system
produced in this way. This program solves
the OR problem of determining whether
the black-box one-input Boolean function f
answers “1” for the “0” input, the “1” in-
put, or both. It does this using only one call
to f and with a probability of error of only
1/10, which is impossible using only classi-
cal computation. (Classical probabilistic
computation can achieve an error probabil-
ity no lower than 1/6.) This result, that
quantum computing is capable of solving
the OR problem with only one call to f and
an error probability of only 1/10, was first
discovered with the aid of GP (using an
earlier version of our system).

Evolving arbitrary computational
processes

With the addition of quantum computing
primitives and quantum simulation for fit-
ness assessment, GP is, in principle, capable
of evolving any physically implementable
computational process. It has already “redis-
covered” several better-than-classical quan-
tum algorithms and made a couple of new
discoveries about the nature of quantum
computing. The full range of physically
computable functions is now within the
scope of GP, which is beginning to find
interesting new programs that humans had
not previously discovered.

But, as mentioned earlier, computational
power is a double-edged sword. Even within
classical domains, we are often risking long
periods of evolutionary drift and stagnation
if too much computational power is provided
—for example, in the form of unnecessary
memory capacity or control structures. Quan-
tum computation provides power even be-
yond that of a Turing machine, and the dan-
gers are therefore even greater. The task re-
mains to sufficiently understand the evolu-
tionary dynamics of GP so we can avoid get-
ting lost in the enormous search space of pos-
sible quantum computations.

The practical strategy that most GP 
practitioners follow is to use our intuitions
to make reasonable guesses about the
demands of the problems we are attacking
and to provide little more than the required
computational power. For example, many
researchers limit the arithmetic functions in
the function set for symbolic regression
problems to those that they think might be
needed, and few would include iteration
structures, conditionals, or dynamic struc-
turing mechanisms such as ADFs or ADMs
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Figure 3. The gate array diagram for an evolved quantum program for the OR problem of determining whether f, a
black-box Boolean function, answers “1” (and thereby performs a “not” on qubit 0) for the “0” input, the “1” input,
or both. H is a Hadamard gate, U2 and Uq are single-qubit rotations (the parameters of which are shown in Figure 4),
and Swap is a 2-qubit gate that swaps the values of its two input qubits. M is a measurement gate; if measurement
yields a value of 1, then the upper branch will be executed, otherwise the lower branch will be executed. More details
on the implementation of the gates are available in the cited references.9,10

Figure 4. Textual listing of the evolved quantum program in Figure 1.

;; start in the state |00>

;; apply a Hadamard gate to qubit 1

(HADAMARD 1) 

;; apply a U2 rotation to qubit 0, with parameters:

;;  PHI=-pi THETA=9.103027 PSI=pi/7 ALPHA=0

(U2 0 ,(- pi) 9.103027 ,(/ pi 7) 0)

;; call f with qubit 1 as input and qubit 0 as output

(F 1 0) 

;; measure qubit 0, collapsing the superposition

(MEASURE 0) 

;; this is the branch for qubit 0 measured as “1”

;; swap qubits 0 and 1

(SWAP 1 0) 

;; this marks the end of the “1” branch

(END)

;; this is the branch for qubit 0 measured as “1”

;; apply a U-THETA rotation to qubit 1 with THETA=pi/4

(U-THETA 1 ,(/ pi 4))

;; end of evolved algorithm

;; read result from qubit 1
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unless they have good reason to believe
that they would be well utilized. Similarly,
we often limit the number and type of
quantum gates that can be included in
evolving quantum programs, and we have
begun to work on hybrid classical and
quantum algorithms with limited quantum
components.

This tension between universality and
constraint, between the potential to produce
any arbitrary computational process and the
need to limit the evolutionary search space
to one that we can explore in a reasonable
amount of time, is a critical issue for GP’s
future. Any advances that reduce the need
for human intuition in resolving this tension
will significantly increase GP’s applicabil-
ity, particularly in application areas (such as
quantum computing) for which the repre-
sentational and computational power
requirements are not immediately obvious.
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The art of genetic programming
Christian Jacob, University of Calgary,
Canada

During the past 10 years, there has been
a revolution in the understanding of natural
development processes—the processes
whereby a simple, undifferentiated egg
turns into a complex adult organism—also
known as epigenesis. Only 15 years ago,
this process was identified as “one of the
major problem areas of biology along with
how the brain works.”1 This progress in
reproduction and development results, to a
large extent, from applying the ideas and
techniques of genetics. Genes carry the
instructions (the “developmental
programs,” in computer science terms) for
making an organism. The Human Genome
Project and related projects are currently
providing key information for understand-
ing development and evolution. Soon, we
will know the complete contents of what is
actually written on selected natural
genomes (for example, the yeast, the fruit
fly Drosophila, the frog Xenopus, and the
human genome).

Unfortunately, being able to identify
only words, sentences, and paragraphs
without knowing the semantics and sen-
tence structure does not put us in an
advanced position to increase our under-
standing of developmental processes.
Therefore, getting to know the syntax is a
major step toward improving our knowl-
edge of genome programs.

Evolution and development 
What mechanisms in nature produced the

developmental programs that convert an
egg into an adult organism? It is evolution
that “on an enormously longer time scale,
[has] converted simple single-celled ances-
tors into the existing array of multicellular

animals and plants.”1 Consequently, in both
developmental and evolutionary processes,
a single cell—nature’s primary building
block—converts into a complex 3D struc-
ture, an organism with many highly differ-
entiated cells. Although the final results of
developmental and evolutionary processes
are similar, their working mechanisms seem
to be entirely different. Natural selection
shapes rules, which in turn drive develop-
ment. Therefore, there is an intricate con-
nection between evolution and development
in nature—an interplay that has not yet
been sufficiently integrated into evolution-
ary algorithms and, especially, into genetic
programming.

Since the 1950s, evolutionary algorithms
have been implementing a wide range of
different aspects of natural evolution, from
evolution on a species level down to the
level of genes. In particular, it has always
been one of the primary features of genetic
algorithms (GAs) to glean key mechanisms
from genomes, their way of representing
information (encoded by a discrete alpha-
bet), their techniques to mutate and recom-
bine information, and the selection proce-
dures under which they have to adjust for
better survival strategies. Could GP, as
an extension of GAs, help accomplish a
better understanding of gene–gene interac-
tions, genotype–phenotype mappings, and
epigenesis?

GP might lead us to more sophisticated
models of gene–gene interactions, interac-
tions among cells, pattern and structure
formation in 2D and 3D, and, hence, de-
centralized control mechanisms that lead 
to self-organization and evolution of com-
plexity.

GP and development
Let us compare the way in which nature

builds its organisms and how engineers and
computer scientists build their products.
Nature uses a developmental approach—
instead of assembling separate parts, it
grows its organisms. We use a composi-
tional approach: we assemble premanu-
factured parts into a working machine; we
do not use developmental procedures. In
essence, we do not (yet) know how to grow
a complex device like a computer. Starting
from a blueprint, we use an instruction
manual to perform the assembling.

Within the last decade, a few approaches,
combining concepts of evolution and epige-
nesis, have appeared in evolutionary com-



putation, most of them closely related to
GP. One of the first was Frederic Gruau’s
GP system to evolve modular neural net-
work architectures.2 The novelty of this
approach lies in the application of growth
programs, instead of using parametrized
blueprints to specify neural network archi-
tectures. Starting from an initial embryonic
network, the structure is elaborated in a
step-by-step manner, following an evolv-
able set of instructions for subdivision,
reconnection, or modularization of the net-
work, for example.

John Koza and his coworkers apply a
similar embryonic technique to evolve ana-
log electrical circuits.3 It is also possible to
use Lindenmayer systems to encode pat-
tern formation and growth processes in
branching structures to simulate the evolu-
tion and coevolution of plant ecosystems.4,5

Again, the key point is the evolution of
growth programs (for example, dynamic,
morphogenetic rules instead of a static
blueprint approach). In the context of self-
replicating systems, much research has
been performed over the last 50 years.6 In
one of the latest applications, using cellular
automata, James Reggia, Jason Lohn, and
Hui-Hsien Chou demonstrate the evolvabil-
ity of simple but arbitrary structures that
replicate from nonreplicating components.7

Here, too, locally interacting rules implic-
itly describe emergent pattern formation of
the overall system.

From a holistic point of view, complex
patterns can emerge in dynamic systems
without any specific global instructions
regulating the development of particular
parts. This alternative approach toward an
emergence of complex structural and com-
putational patterns is represented by the
notion of self-organization, an active re-
search area today.8,9 Agent-based, massive,
parallel, and decentralized systems might
provide an appropriate level of abstraction,
where local interaction rules determine
agent behavior, from which the overall
system behavior emerges.10 In conjunction
with GP used to evolve agent-behavior
programs, these “swarm intelligence” sys-
tems have the potential to enhance our
understanding of developmental processes
and their evolution. This proposed Swarm
GP approach would also lead us toward
alternative ways of modeling biological
systems, from the level of complex ecosys-
tems, individuals, and cells, down to the
level of genomes.

The “programming” of development

Returning to the gene level, we must
clarify key questions in developmental biol-
ogy to justify simulation models of epigene-
sis. Can we interpret genes as a set of in-
structions? Do genes actually correspond to
programs? As the developmental biologist
Enrico Coen pointed out in his recent book
The Art of Genes, the notion of pure instruc-
tions, encoded on a genome, does not work
for genes.11 For epigenetic processes in
nature, the maker (the developmental pro-
cess) and the made (the organism) are inter-
dependent. While genes are building on the
activities of other genes, in the course of the
development, the changing frames of refer-
ence become particularly important. There-

fore, developing an organism is a process of
elaboration and refinement, a highly inter-
woven process with intricate feedback
loops and no clear separation between the
plan (program) and its execution.

What does that mean for GP? It means
that if we intend to design GP-based mod-
els that incorporate developmental pro-
cesses, we must rethink our notion that a
program and its execution are separate. The
self-reproducing cellular-automata systems
incorporate key characteristics that follow
the picture of the maker and the made as
interconnected. CA cells change their
states in response to the states of other,
neighboring cells. That is, cells act as pro-
grams. On the other hand, cells also pro-
vide the environment for other cells. So,
there is a constant interplay between the
maker (the CA rules) and the made (the
structure developing on the CA grid).

If we succeed in a raising these notions to 
a higher abstraction level, where cells are
not fixed in size, shape, and location, where
agents that implement any developing units
replace cells, and where we can have more
than local interactions, we might have the
right computational tools to design complex,
developing systems using evolution.

Still a lot to learn from nature

Growing designs for complex machines,
like today’s computers, will dramatically
change the way of interacting and program-
ming these “evo-computers.” Evolvable
hardware systems already set the pace in
this direction.12 GP in conjunction with the
applied principles of the “art of genes” in
natural systems are key ingredients toward
building exciting new computational tools,
both in software and in hardware. It is time
to get them growing and evolving.

References
1. J.M. Smith, Shaping Life—Genes, Embryos

and Evolution, Weidenfeld & Nicolson,
London, 1998.

2. F. Gruau, and D. Whitley, “Adding Learning
to the Cellular Development of Neural Net-
works: Evolution and the Baldwin Effect,”
Evolutionary Computation, Vol. 1, No. 3,
1993, pp. 213–233.

3. J.R. Koza et al., Genetic Programming III:
Darwinian Invention and Problem Solving,
Morgan Kaufmann, San Francisco, 1999.

4. C. Jacob, “Evolving Evolution Programs:
Genetic Programming and L-Systems,”
Genetic Programming 1996: First Ann.
Conf., MIT Press, Cambridge, Mass.1996.

5. C. Jacob, Illustrating Evolutionary Compu-
tation with Mathematica, Morgan Kauf-
mann, San Francisco, 2000.

6. M. Sipper, “Fifty Years of Research on Self-
Replication: An Overview,” Artificial Life,
Vol. 4, No. 3 1998, pp. 237–257.

7. J.A. Reggia et al., “Self-Replicating Struc-
tures: Evolution, Emergence, and Computa-
tion,” Artificial Life, Vol. 4, No. 3, 1998, pp.
283–302.

8. P. Bak, How Nature Works—The Science of
Self-Organized Criticality, Springer Verlag,
New York, 1996.

9. J.H. Holland, Emergence: From Chaos to
Order, Addison-Wesley, Reading, Mass.,
1998.

10. E.M. Bonabeau et al., From Natural to Arti-
ficial Swarm Intelligence, Oxford Univ.
Press, Oxford, 1999.

11. E. Coen, The Art of Genes—How Organ-
isms Make Themselves, Oxford Univ. Press,
Oxford, 1999.

12. M. Sipper and E.M.A. Ronald, “A New
Species of Hardware,” IEEE Spectrum, Mar.
2000, pp. 59–64.

84 IEEE INTELLIGENT SYSTEMS

If we intend to design 
GP-based models that

incorporate developmental
processes, we must rethink
our notion that a program

and its execution are separate.


