Aspects in Aspect)

Motivation

*Aspect Oriented Programming: a brief introduction to terminology
Installation

*Experimentation

*Aspect) — some details

*Aspect) — things you should know about but we dont have time to
cover in detail

*Aspect]) — profiling problem

Motivation

© MAZIL ANDEZSON WINW.ANDERTOONS.COM

I liked the motivational ones better. I like your attitude, Harris.”

“Ability is what you're capable of doing.
Motivation determines what you do.
Attitude determines how well you do it.” Lou Holtz

November 2017 CSC7336: Aspect) (J P Gibson)

Motivation

Even well designed systems have aspects
that cut across a large number of the
components

For example, consider Apache Tomcat,

where certain aspects of functionality are:

*XML parsing
*URL pattern matching

*Logging
*Session Management

Question: which of these are well
localised?

November 2017 CSC7336: Aspect) (J P Gibson)

Apache

SOFTWARE FOUNDATION

Motivation

XML parsing

Logging

[[(Il][

—r

URL pa

Session Management: different types

:

[e

ttern matching

L

I["tt[(![ll

*Application Session

*Server Session
eStandard Session
Managers

November 2017

So the code for each session stage should be
well localised?

CSC7336: Aspect) (J P Gibson)

Motivation

code is distributed through

lots of different classes

Session Expiration

—_

i

..= il

1
!

il

_m

—

“mr_ | il _:_.__ ___f i

_m? _

m_:m

—— ’

pr——y

-t ————

—
.

b

____E i
o

sk

__ ~m___;_ ,_‘
i _m_ i

T ——— et

il

a__r_.__ EE __

___ ___: _&

ServerSession

i .r. w

1

| ?___r __ | |

ll :E

iy
il by
A .“

—_—
s

“
i
H
_
i

,-——————
e

i

I

_?
m _

; _mm__;.__g__a
bl ;__

CSC7336: Aspect) (J P Gibson)

November 2017

Motivation

Session Expiration: a better design?

e
———veslihe—— — R A
aecsiemet s = = —=nt e
] == [
—_——== A = . ==
—— ————e
] 4 ===
LRs sometnge— ¢ — -~ R —
== — .
e v I ———————— '
S - b pr—r b
eE——— —— aScaeme EM:‘ e s
: r—1 " — e
LN, e | == ==l h:.
p————— I N
1 p—— et — P
] (= ————N
—————— —— i ————— "
¥ — e e S .. s —commmpr
— — 3
e -— — ———
e _— - C—— — e
f— — b e
— A P
o o — Sessionli StandardMan: StandardSessionManager
P = ol eb 0 LA nterceptor ager
—_—- e st et s
e —— bt [e e ? e
= -— |l e —— —mian — e e -— -
== e B, at b EE [— — = — e e — e
- . i ——atins bR ——— p— 1 ———%
a—— e - W = == gmassa B —_ = S -
=yl = e —— % b ———— . ==
| rp—— —— . — e A —— R S — w e —— FnPhadi e
Faupuiy P - Sames e — —_ -
== = — el =" — mm— ——— ——— Sertr—mege cee—m———
—— Ppyeetit aias T e = =y — e
=T — —— = e —— 3 r— P .
—— ko - - e = B = L —— Ty
= A SO —— _— =
et [——p P e] - e == L s e " =t spra——eams cppletnt
— —— —— — = —_ = e
==t o et ———— Em——-— Ll e mmmmae E o s - ——— e ———
e s 2 = —— - —— —— = —
- Sy o piet— = O —— Y —— — —Eppeee — — -
2 —_= _ e —— . =
o —ampmeeel S — ey —— e y— e -
—— X — - g ——— 5 ————
— e O S S ————— Somstap p— D——
e < = - . QR Tp——
= et — —— - e ittt “r—-———- B e — N
P ————9 = ————— - —
" ___% ey - ——————— A rare—r—
hp ——— — Sow— — —ae— o —— = e T s e
= — : f — N = p—— " = I
— N e ——e? Foseevemnt T e _—
e —— PN ey . .
. — == ——— e —— E———
| memaas F—— — — =
oot~ ™ ———— — -
= == — - ‘ -
— N = — E——
—_— A e —_—
ServerSession T DR 3 —— —
B — e ——=_
a3y amtn e . |~ -
! == ServerSessionManager == =
=t =3 o— e ==
= O ———
= —_— == Tas m— -
= = == —— L S ——— [—
== P e F——— - e a——
Y = e M — T [gy Mt cotines
——— e enst —— = -
- e PUNSESI ————_ i esgrerased —— et —— ———
— == - —_—— — — —
= - — o e RV S o S SoersaTe - e, e
- — — N == % === =
— ramama- & . e e —— _—. —
——— . —— = menseomman
= - — ———— e - — s
[—— . R —_——— 2 o a——
e . = s imm s N . b ————
Ghtpaet—— SRS T —— R N S =
== == Ry e e p—— e —
enaaw o Sy _— | — S——r—a
P [o—— e T—

Unfortunately, if we do this we will have to compromise by redistributing previously
localised code.
November 2017 CSC7336: Aspect) (J P Gibson)

Motivation

Separation of Concerns
is a time-honoured principle of Software design

D. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Comm. ACM 15, 12 (December 1972), 1053-1058.

Design principles for decomposition:
sInformation-hiding modules
s|dentify design decisions that are likely to change.
*|solate these in separate modules (separation of concerns)

Motivation

Cross-Cutting Concerns

In the motivation,

XML parsing and URL pattern matching fit the class hierarchy,
e Logging and Session Management do not.

A cross-cutting concern is one that needs to be addressed in more

than one of the modules in the hierarchical structure of the
software.

Cross-cutting concerns are also called aspects.

What is an aspect depends on the chosen decomposition!

Motivation

Problems with Cross-Cutting Concerns

Cross-cutting concerns pose problems for standard,
e.g. 00, programming techniques:

*hard and error-prone to introduce in an existing system
*hard to change afterwards
*hard to understand/explain to newcomers

Cross-cutting implementation of cross-cutting concerns
does not provide separation of concerns.

Motivation

Solutions
Possible treatment of cross-cutting concerns:

Refactor them away.
Change the module hierarchy so that the aspect becomes
modular, often through application of adequate design patterns.

But:

 often performance penalties through indirection
 often leaves some cross-cutting boiler-plate

e can't hope to capture all aspects

Aspect Oriented Programming: a brief introduction

A programming methodology is called Aspect-Oriented if it

provides possibilities to cleanly separate concerns that would
otherwise be cross-cutting.

There are various Aspect-Oriented methods. They differ in the
kinds of aspects they can address and in the ways aspects and their
relation to the chosen hierarchical decomposition are expressed.

Aspect Oriented Programming: a brief introduction

Don’t Forget That Good Design Helps Avoid Cross Cutting: so only use
Aspects if they are really needed, and not just because the design is bad!

Example of Good Design — The Law of Demeter:

An object should only call methods on this, instance variables,
method arguments.

no this.getWife().getMother().getMaidenName() chains.

Prevents dependency on too many other classes.

The "Law of Demeter" provides a classic solution, see:
Lieberherr, Karl. J. and Holland, I.

Assuring good style for object-oriented programs
|IEEE Software, September 1989, pp 38-48

Aspect Oriented Programming: a brief introduction

Join Points

Analyse commonly occurring aspects.
Cross-cutting implementations can often be formulated in terms like:

*Before . . . is called, always check for . . .
*Ifany of . .. throws an exception, . . .
* Everytime . . . gets changed, notify . . .

Implementations of aspects are attached to certain points in the
Implementation, eg:

*method calls

econstructor calls

«field access (read/write)

*Exceptions

These correspond to point in the dynamic execution of the program.
Such points are called join points

Aspect Oriented Programming: a brief introduction

Code Example: Figure Editor (from http://eclipse.org/aspectj/doc/released/progguide/)

Display FgureBement
Figure +581XY()
< < factory > » 1 v +araw
+makePoint()
+makeline()
Foint Line
=¥ int -p1: Point
-y int -p2: Foint

November 2017 CSC7336: Aspect) (J P Gibson)

14

Aspect Oriented Programming: a brief introduction

Code Example: Figure Editor

class Line implements FigureElement {
private Point pl, p2;
Point getP1() { return pi; }
Point getP2() { return p2; }
void setP1(Point pl) { this.pl = pi; }

void_setP2(Point p2) { this.p2 = p2;
void| moveBy (fint dx, int dy) { p dx,dy); p2
}

class Point implements FigureElement {

private int x = 0, y = 0;
int getX() { return x; }
int getY() { return y; }
void setX(int x) { this.x = x; }

void _setY(int y) { this.y = y; }
void| moveBy(fint dx, int dy) { x += dx; y += dy; }

A join point is a point in the control flow of a program

November 2017 CSC7336: Aspect) (J P Gibson)

. moveBy (

dx,dy);

15

https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Computer_program

Aspect Oriented Programming: a brief introduction

Code Example: Figure Editor — join points for moveBy

In aspect-oriented programming a set of join points is called a pointcut

noveBy

For example, all calls and returns from moveBy methods

November 2017 CSC7336: Aspect) (J P Gibson)

16

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Pointcut

Aspect Oriented Programming: a brief introduction

A pointcut designates a set of join points for any program execution.
At execution, any join point may or may not be selected by a pointcut.
Examples:

«all calls to public methods of the Point class

severy execution of a constructor with one int argument
severy write access to a public field

Membership of a join point may be determined at runtime

November 2017 CSC7336: Aspect) (J P Gibson) 17

Aspect Oriented Programming: a brief introduction

Advice

Advice is code that should be inserted before, after or even
instead of existing code at some set of join points.

"Mainstream' AOP:

*Designate sets of join points using some specification
language for pointcuts.

e Declare advice to be executed before/after/instead of the
calls/method executions/field accesses etc. selected by the
pointcut.

Aspect Oriented Programming: a brief introduction

Example
Display updating in the Figure Editor:

After every change in a FigureElement's state, update the
display..

AOP implementation:
spointcut to select every state-changing method in

FigureElement classes.
o after'-advice which calls display update code.

Question: which design pattern could you use (instead of AOP)?

November 2017 CSC7336: Aspect) (J P Gibson)

19

Aspect Oriented Programming: a brief introduction
Weaving:

A program called an aspect weaver is used to weave the advice
code into the main program code.

Often, but not always, join point membership in a pointcut can
be decided statically.
=> no need to insert code at every possible join point.

Modern systems:
esome do weaving and compilation in one step
esome can do weaving at runtime (e.g. on Java byte-code)

November 2017 CSC7336: Aspect) (J P Gibson) 20

Aspect Oriented Programming: a brief introduction

Aspect)

Extensions of the Java language for
e pointcuts
e attaching advice
e static cross-cutting

Originally developed at Xerox PARC
First versions in Spring of 2000
Hosted by eclipse.org since December 2002

Installation

Download the Eclipse AIDT plugin from
http://eclipse.org/ajdt/downloads/

S eclipse

GETTING STARTED

/ PROJECTS /

MEMBERS

PROJECTS MORE~

AJDT / DOWNLOADS

AJOT
About This Project
Team

Plans

Users
Getting Started
Downleads
Bugs
FAQ
Demos
New Features

Newsgroup

Developers
Contributing
s
Mailing list
Work tasks

November 2017

Downloads

Please make sure you pick a version of AJDT which matches the version of Eclipse you are using.

All downloads are providec under the terms and conditions of the Eclipse Foundation Software User Agreement
unless otherwise specified.

There are no 'official' releases for Eclipse 4.5 and 4.6 but the most recent dev builds are available for these eclipse
versions - see below!

AJDT 2.2 release builds for Eclipse 4.4, 4.3,4.2,3.8,and 3.7

AJOT for Eclipse 4.3 with JOT weaving

What is DT weaving?

2.2.3 Release Date: July 2,2013

Aspect] Version in 2.2.3: 173

Eclipse 4.3 Update Site URL: http://download.eclipse.org/tools/ajdt/43/update

AJDT for Eclipse 4.3 Zip file: ajdt 2.2.3 for_eclipse_4.3.zip

To install from a zip file, download the zip and point your p2 installer to that file. Then proceed as if it were a
normal update site. Do not unzip the update site into the dropins directory.

A)DT for Eclipse 4.2, 3.8, and 3.7 with /DT weaving

What is JDT weaving?

2.2.3 Release Date: July 2, 2013

Aspect] Version in 2.2.3: 123

Aspect] Version in 2.2.2: 172

Eclipse 3.8 and 4.2 Update
Site URL:

Eclipse 3.7 Update Site URL: http://download.eclipse.org/tools/ajdt/37/update
AJDT for Eclipse 4.2 and 3.8

http://download.eclipse.org/tools/ajdt/42 /update

ajdt 2.2.3 for eclipse 4.2.zip

Zip file:

A-JDT for Eclipse 4.2 and 3.8 ajdt_2.2.2 for eclipse_4.2.21p
Zip file:

AJDT for Eclipse 4.2and 3.8 __ - 2
Zip file: ajdt_2.2.1_for_eclipse_4.2.zip
AIDT for Eclipse4.2and38 .. _ __ . = -

CSC7336: Aspect) (J P Gibson)

Development
builds for
Eclipse 3.5

* AJDT 2.1.1 dev builds
for Eclipse 3.5 (no

longer under active
development)

22

http://eclipse.org/ajdt/downloads/

Installation

If Aspect] is already there then you should not need to add it (but
may néed to update it)
\

® 0 \ About Eclipse
Eclipse IDE for Java De\)@ers

Version: Neon.1a Release (4§ 1)

Build id: 20161007-1200

(c) Copyright Eclipse contributor&{d others 2000, 2016. All rights reserved. Eclipse and the Eclipse logo are trademarks of
the Eclipse Foundation, Inc., https:/NWwww.eclipse.org/. The Eclipse logo cannot be altered without Eclipse's permission.
Eclipse logos are provided for use unNr the Eclipse logo and trademark guidelines, https://www.eclipse.org/logotm/. Oracle
and Java are trademarks or registered t™demarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

This product includes software developed by o& open source projects including the Apache Software Foundation, nttps://
www.apache.org/.

ZSESdCO0OOOWIV-IEeE IS

@ Installation Details ﬁ

November 2017 CSC7336: Aspect) (J P Gibson)

23

Installation

Try Out The HelloWorld Example Demo:

http://www.eclipse.org/ajdt/demos/

ajdt demos

& Java - HelloWorld.java - Eclipse SDK

Fll= Edt Souwrce Refactor Navigate Search Project Run Window Help
M-S - 0-Q- BEHG- SdP - [(IB 5 (& 3ava |
[& Package Explerer 52 RSN D Heloword.java X = 0| 82 cutine 2 =0
=IR=3 package hello; BERY e w7
E & Helowerld & helo
=8 e public class HelloWorla { - Gb Helloworkl
= helo @ sayHelo()
b fmﬁ 'g’:‘:"d-irv Welcome to the Hello World Aspect] tutorial © * main(String[]
®) . I . .
YEETEYEL in AIDT. It will help you extend the famous
Java "Hello World" application by adding an
aspect. After converting a Java project to an
Aspect] project, you will add an aspect
which advises the execution of a method.
Press to begin: (M==")
\\ J
< >
Problems | Javacoc | Dedaration &l Console 3 B R el I s~-=0
<terminated > HelloWerld [Java Appi] E:\sun150\pin\javaw.exe (19 Jun 2006 13:05:07)
Hello
< 2
o Writable Smart Insert 1: QAP Ee

Rack ta dama nane

November 2017 CSC7336: Aspect) (J P Gibson)

Try Out The HelloWorld Example Demo:

v @Aspects-HelloWorld
¥ (8 src
v £ p_helloworld
» [J] Hello.java
» A MethodCounter.aj
» A Profiler.aj
» Al World.aj
» =\, JRE System Library [jak1.8.0_11./dk]
¥ B, AspectJ Runtime Library
I D:'_;" org.aspectj.runtime_1.8.9.201607291758.jar - /Users/jpaulgibson/.p2/pool/plugins

. =

Lets look at this together in Eclipse

November 2017 CSC7336: Aspect) (J P Gibson)

25

Installation

Try Out The HelloWorld Example Demo:

package p helloworld;
public class Hello {

public static void main(String[] args) {
sayHello (),

}

public static void sayHello() {
System.out.print ("Hello");,

}
}

November 2017 CSC7336: Aspect) (J P Gibson)

26

Installation

Try Out The HelloWorld Example Demo:

package p helloworld;
public aspect World ({

pointcut greeting() : execution(*
Hello.sayHello(..));

before () : greeting () {

System.out.println(" World!");

}

November 2017 CSC7336: Aspect) (J P Gibson)

27

Installation

Eclipse provides a useful cross reference window:

Ld o
=
[

1v @ i B QO QBHECG S

[£ Package Explorer £ JUnit
v & Aspects-HelloWorld
v (M erc
¥ # p_nelloworld
» [J] Hello.java
» A MethodCounter.aj
» A Profiler.aj
» B World.aj
» =)\, JRE System Library [jox1.8.0_11.jdk]
¥ B\ AspectJ Runtime Library

» (4 org.aspect).runtime_1.8.9.201607291758.jar
» (= Reflection

» 9=/ RESTsolver
» (=7 SegmentOverlap

November 2017

[Users/jpaulgibson/.p2/p

M workspace-Neon-Java - Java - Aspects-HelloWorld/src/p_helloworid/World.aj - Eclipse

¥y & Yilvgle =1 v

l
[

R=N v =8) quizjava [Hello.java @ World.aj 83

» (& Aspects-Helloworld » (® src b 3 p_helloworld » @ World »
| package p_helloworld;
3 public aspect World {
4
5 pointcut greeting() : execution(* Hello.sayHello(..));
b

&/ 7 before() : greeting() {
8 System.out.println(" World!");
) }
lug 10
11
12
13 }

CSC7336: Aspect) (J P Gibson)

= B & cross References 2
© world

o

=gl Ak -
v 9 E

28

Experimentation

Experiment with the Demo: what will/should happen if you add
another aspect to the project?

package p helloworld;
public aspect MethodCounter ({
int counter =0;

pointcut publicMethodCall () : execution(public * *_ *(..));
pointcut afterMain () : execution(public * * main(..));

after () returning() : publicMethodCall() ({

counter++;
}
after () returning() : afterMain() {
System.out.println("Method call counter = "+counter);,

November 2017 CSC7336: Aspect) (J P Gibson)

29

Experimentation

Experiment with the Demo: can you write an Aspect that will time
the execution of each method call?

package p helloworld;

public aspect Profiler{

}

This should be easy to complete. Is the on-line documentation good
enough?

November 2017 CSC7336: Aspect) (J P Gibson)

30

Experimentation

Experiment with the Demo: can you write an Aspect that will time
the execution of each method call?

When you run the code with all 3 aspects woven together, you should get output of
the following form (more or less):

World!

Hello
void p helloworld.Hello.sayHello () took 26042892 nanoseconds

Method call counter = 2

void p helloworld.Hello.main(String[]) took 32298490 nanoseconds

Aspect) — some details

Reconsider the figure editor

Figure

« | FigureElement

+makePoint (..)
+makeLine(..)

+moveBy (int, int)

Display| e e aa- !

I =

I |

I |

Point Line

+getX () 5 +getP1 ()
+getY () +getP2 ()
+setX (int) +setP1 (Point)
+setY(int) +setP2 (Point)
+moveBy (int, int) +moveBy (int, int)

November 2017 CSC7336: Aspect) (J P Gibson)

Aspect) — some details

Reconsider the figure editor
Primitive pointcuts:

call (void Point.setX(int))

each join point that is a call to a method that has the signature
void Point.setX(int)

Also for interface signatures:

call (void FigureElement.moveBy (int,int))

Each call to the moveBy(int,int) method in a class that
implements FigureElement

November 2017 CSC7336: Aspect) (J P Gibson)

33

Aspect) — some details

Reconsider the figure editor
Pointcuts can be joined using boolean operators &&,| |,!.

call (void Point.setX (int)) ||
call (void Point.setY (int))

calls to the setX and setY methods of Point.

Join points from different types possible:

call (void FigureElement.moveBy (int, int))
call (void Poilnt.setX (int))
call (void Point.setY (int))
call (void Line.setPl (Point))
((

call (void Line.setP2 (Point))

Any call to a state-changing method in the given FigureElement classes

November 2017 CSC7336: Aspect) (J P Gibson)

34

Aspect) — some details

Reconsider the figure editor

Named Pointcuts
Pointcuts can and should be declared to give them a name:

pointcut stateChange ()

call (void FigureElement.moveBy (int,int)) ||
call (void Point.setX(int)) ||

call (void Point.setY(int)) ||

call (void Line.setPl (Point)) ||

call (void Line.setP2 (Point)) ;

Analogous to method declaration or typedef in C.

After declaration, stateChange() can be used wherever a pointcut is expected.

November 2017 CSC7336: Aspect) (J P Gibson)

35

Aspect) — some details

Reconsider the figure editor

Wildcards

Method signatures can contain wildcards:

call (void java.io.PrintStream.println(¥*))

any PrintStream method named println returning void and taking
exactly one argument of any type.

call (public * Figure.*(..))
any public method in Figure.

call (public * Line.set*(..))

any method in Line with a name starting with set.

November 2017 CSC7336: Aspect) (J P Gibson)

36

Aspect) — some details

Reconsider the figure editor

Example

The pointcut from before, using wildcards:

pointcut stateChange ()

call (void FigureElement.moveBy (int,int))
call (* Point.set*(*)) ||

call (* Line.set* (*));

November 2017 CSC7336: Aspect) (J P Gibson)

37

Aspect) — some details

Reconsider the figure editor

Advice in Aspect)

Advice can be attached to join points:

before () : stateChange() {
System.out.println("about to change state");

}

after () returning: stateChange () {
System.out.println("just successfully changed state");

}

November 2017 CSC7336: Aspect) (J P Gibson)

38

Aspect) — some details

//After every state changing call, update the display.

public aspect DisplayUpdating {
pointcut stateChange ()
call (void FigureElement.moveBy (int,int)) ||

call (* Point.set*(*)) || call(* Line.set*(*));

after () returning : stateChange () {
Display.update() ;

}

}

QUESTION: Does this look like a good use of Aspects?

November 2017 CSC7336: Aspect) (J P Gibson)

39

Aspect) — some details
Pointcuts with Parameters

One often needs information about the context of a join point.

mp use pointcuts with parameters.

Example:

pointcut stateChange(FigureElement figElt)
target (figElt) &&
(call(void FigureElement.moveBy(int,int)) ||
call(* Point.set*(x)) |

call(* Line.setx(x)));

after (FigureElement fe) : stateChange(fe) {...}

November 2017 CSC7336: Aspect) (J P Gibson)

40

Aspect) — some details

Parameters in pointcut declaration

pointcut stateChange(FigureElement figElt)
target (figElt) &&
(call(void FigureElement.moveBy(int,int)) ||
call(* Point.set*(x)) |

call(* Line.set*(*)));
* figElt declared in "header’, together with name.
* bound by the target pointcut

target alone matches any non-static call, field access, etc. if the target type

matches the declared parameter type.

November 2017 CSC7336: Aspect) (J P Gibson)

41

Aspect) — some details

Example: Diagonal Moves

Define a pointcut for moves with equal dx and dy.

pointcut diagHelp (int dx,int

dy)

call (void FigureElement.moveBy (int,int)) &&

args (dx,dy) &é&
if (dx==dy) ;

pointcut diagMove (int dxy)

November 2017 CSC7336: Aspect) (J P Gibson)

diagHelp (dxy, int) ;

42

Aspect) — some details

About Conditionals
Aspect]) specification:

The boolean expression used can only access static members,
variables exposed by the enclosing pointcut or advice

But still. . . static methods may be called, which may have side effects!

Question: what are the consequences of this?

Aspect) — some details

Before and After

‘Before' advice:

before (formal parameters) : Pointcut {
. advice body.

}
The advice body gets executed every time just before the program flow enters
a join point matched by the pointcut.
The formal parameters receive values from the pointcut

"After' advice:
after (formal parameters) returning : Pointcut {...}

The advice body gets executed every time just after the program flow exits a
join point matched by the pointcutby returning normally.

Capture return value:
after(...) returning (int ret): Pointcut {...}

November 2017 CSC7336: Aspect) (J P Gibson) 44

Aspect) — some details

What about exceptions?

Advice after throwing an exception:
after (formal parameters) throwing

Capture thrown exception:
after(...) throwing (Exception e):

Match normal and abrupt return:
after(...) : Pointcut {...}

November 2017 CSC7336: Aspect) (J P Gibson)

Pointcut {...}

Pointcut {...}

45

Aspect) — some details

Around Advice

Run advice instead of original code:

Type around(. . .) : . . . {

proceed(. . .);

erun advice body instead of original call, field access, method body, etc.
suse proceed to use the original join point, if needed.

Hint: this may help you to write the timer Aspect asked for earlier

November 2017 CSC7336: Aspect) (J P Gibson)

46

Aspect) — some details

Tracing Aspect (first try)

package tracing;

public aspect TraceAllCalls ({
pointcut pointsToTrace ()

call(* *.*(..)) ;

before() : pointsToTrace() {
System.err.println("Enter " + thisJoinPoint);

}

after() : pointsToTrace() {
System.err.println("Exit " + thisJoinPoint);

}
}

QUESTION: Where is the problem?

November 2017 CSC7336: Aspect) (J P Gibson)

47

Aspect) — some details

Tracing Aspect (first try)

package tracing;

public aspect TraceAllCalls ({

pointcut pointsToTrace ()

call(* * . *(..)) && 'within(TraceAllCalls);

before() : pointsToTrace() {
System.err.println("Enter " + thisJoinPoint);

}

after () : pointsToTrace() ({
System.err.println("Exit " + thisJoinPoint);

}
}

QUESTION: Why do we need the within?

November 2017 CSC7336: Aspect) (J P Gibson)

48

Aspect) — things you should know about

Exceptions in Advice
Advice body may throw exceptions:

before() : doingIO() {
openOutputFile () ;

}

If openOutputFile () throws
java.io.IOException:

before () throws java.io.IOException
doingIO() {

openOutputFile() ;

}

=> |OException must be declared/handled
at all places where pointcut applies.

November 2017 CSC7336: Aspect) (J P Gibson)

49

Aspect) — things you should know about

Aspects throwing exceptions

Sometimes, an aspect can change the behaviour of methods,
so that new checked exceptions are thrown:

*Add synchronization: InterruptedException
*Execute calls remotely: RemoteException

=>Two possibilities:
ecatch and handle exception directly in advice. Might not be appropriate.
*pass exception out of advice. Needs lots of declarations.

Aspect) — things you should know about

Aspect Precedence

What happens if several pieces of advice apply at the same join point?

mp Assign precedence to aspects to control order of advice execution

Program
Flow

T highest precedence / \
e ’ - -
precedence m— \Iim Poy

lowest precedence lowest

precedence
lowest @ c e

precedence

/ ‘\ highest
Join Pomt/ precedence

before around after
advice advice advice

November 2017 CSC7336: Aspect) (J P Gibson) 51

Aspect) — things you should know about

Aspect Precedence (cont.)

Syntax to declare aspect precedence:

declare precedence : TypePatternl, TypePattern2,

May occur in any aspect.
Says that anything matching type pattern 1 has higher precedence
than anything matching type pattern 2, etc.

aspect CyclicPrecedence {

declare precedence : AspectA, AspectB;
declare precedence : AspectB, Aspectd;

}

OK iff aspects share no join points.

November 2017 CSC7336: Aspect) (J P Gibson)

Aspect) — things you should know about

Aspect Precedence (cont.)

If not declared, implicit rule for inheritance:

If AspectA extends AspectB, then AspectA has higher priority.

=possible to overrule advice from super-aspect.

If still not declared, implicit rule for advice within one aspect:
* If either are after advice, then the one that appears later in the aspect
has precedence over the one that appears earlier.
*Otherwise, then the one that appears earlier in the aspect

has precedence over the one that appears later.

=> first do something in the same order as they appear in the source

Aspect) — things you should know about

Abstract Aspects

Reminder: aspects can
*extend classes
eextend abstract aspects
*implement interfaces

Abstract aspects may contain

* abstract methods, like abstract classes
* abstract pointcut declarations

Abstract aspects are the key to writing reusable aspects.

Aspect) — things you should know about

Aspect Instantiation
At runtime, aspects have fields like objects.

When do they get instantiated? Usually:
Instantiate an aspect once per program execution.

aspect Id {...}
aspect Id issingleton {...}

Implemented as singleton => static field in aspect class.

NOTE: Things are actually much more complicated when we consider all the different
ways in which Java objects (including Aspects) are instantiated

November 2017 CSC7336: Aspect) (J P Gibson)

55

Aspect) — things you should know about

Privileged Aspects

Usually, advice code has no access to private members of advised classes.
(Note that matching in pointcuts does see private members)
But the privileged keyword can help:

privileged public aspect A {

before (MyFriend f£f) : this(f) && ... {
System.out.println("My best friends secret:
f. privateField);

}

}

November 2017 CSC7336: Aspect) (J P Gibson)

1A

+

56

Aspect) — profiling problem
Return to the profiling problem we looked at in previous
class

TO DO: Implement 3 or more interesting profiling aspects
and test on different programs

Practical Work For Next Class: Invariant Testing

Write an aspect that tests the invariant of a class every time
a method is executed, and writes to an invariant log file
whether the test passes or fails.

November 2017 CSC7336: Aspect) (J P Gibson)

57

