
CSC7336:	AspectJ		(J	P	Gibson)November	2017 1

Aspects	in	AspectJ

•Motivation	
•Aspect	Oriented	Programming:	a	brief	introduction	to	terminology	
•Installation	
•Experimentation	
•AspectJ	–	some	details	
•AspectJ	–	things	you	should	know	about	but	we	dont	have	time	to	
cover	in	detail	
•AspectJ	–	profiling	problem	

CSC7336:	AspectJ		(J	P	Gibson)November	2017 2

Motivation

“Ability	is	what	you're	capable	of	doing.		
Motivation	determines	what	you	do.		
Attitude	determines	how	well	you	do	it.”	Lou	Holtz

CSC7336:	AspectJ		(J	P	Gibson)November	2017 3

Motivation

Even	well	designed	systems	have	aspects	
that	cut	across	a	large	number	of	the	
components	

For	example,	consider	Apache	Tomcat,	
where	certain	aspects	of	functionality	are:	

•XML	parsing	
•URL	pattern	matching	
•Logging	
•Session	Management	

Question:	which	of	these	are	well	
localised?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 4

Motivation

XML	parsing	

URL	pattern	matching	

Logging	

Session	Management:		different	types	

•Application	Session	
•Server	Session	
•Standard	Session		
•Managers	

So	the	code	for	each	session	stage	should	be	
well	localised?	

CSC7336:	AspectJ		(J	P	Gibson)November	2017 5

Motivation

Session	Expiration:		code	is	distributed	through	
lots	of	different	classes

CSC7336:	AspectJ		(J	P	Gibson)November	2017 6

Motivation

Session	Expiration:		a	better	design?

Unfortunately,	if	we	do	this	we	will	have	to	compromise	by	redistributing	previously	
localised	code.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 7

Motivation

Separation	of	Concerns	
is	a	time-honoured	principle	of	Software	design	

D.	Parnas.	On	the	Criteria	to	Be	Used	in	Decomposing	Systems	into	
Modules.	Comm.	ACM	15,	12	(December	1972),	1053-1058.	

Design	principles	for	decomposition:	
•Information-hiding	modules	
•Identify	design	decisions	that	are	likely	to	change.	
•Isolate	these	in	separate	modules	(separation	of	concerns)

CSC7336:	AspectJ		(J	P	Gibson)November	2017 8

Motivation

Cross-Cutting Concerns

In	the	motivation,	

•	XML	parsing	and	URL	pattern	matching	fit	the	class	hierarchy,	
•	Logging	and	Session	Management	do	not.	

A	cross-cutting	concern	is	one	that	needs	to	be	addressed	in	more	
than	one	of	the	modules	in	the	hierarchical	structure	of	the	
software.	

Cross-cutting	concerns	are	also	called	aspects.	

What	is	an	aspect	depends	on	the	chosen	decomposition!

CSC7336:	AspectJ		(J	P	Gibson)November	2017 9

Motivation

Problems	with	Cross-Cutting	Concerns	

Cross-cutting	concerns	pose	problems	for	standard,	
e.g.	OO,	programming	techniques:	

•hard	and	error-prone	to	introduce	in	an	existing	system	
•hard	to	change	afterwards	
•hard	to	understand/explain	to	newcomers	

Cross-cutting	implementation	of	cross-cutting	concerns	
does	not	provide	separation	of	concerns.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 10

Motivation

Solutions	

Possible	treatment	of	cross-cutting	concerns:	

Refactor	them	away.	
Change	the	module	hierarchy	so	that	the	aspect	becomes	
modular,	often	through	application	of	adequate	design	patterns.	

But:	
•	often	performance	penalties	through	indirection	
•	often	leaves	some	cross-cutting	boiler-plate	
•	can't	hope	to	capture	all	aspects

CSC7336:	AspectJ		(J	P	Gibson)November	2017 11

Aspect	Oriented	Programming:	a	brief	introduction

A	programming	methodology	is	called	Aspect-Oriented	if	it	
provides	possibilities	to	cleanly	separate	concerns	that	would	
otherwise	be	cross-cutting.	

There	are	various	Aspect-Oriented	methods.	They	differ	in	the	
kinds	of	aspects	they	can	address	and	in	the	ways	aspects	and	their	
relation	to	the	chosen	hierarchical	decomposition	are	expressed.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 12

Aspect	Oriented	Programming:	a	brief	introduction

Don’t	Forget	That	Good	Design	Helps	Avoid	Cross	Cutting:	so	only	use	
Aspects	if	they	are	really	needed,	and	not	just	because	the	design	is	bad!	

Example	of	Good	Design	–	The	Law	of	Demeter:	

An	object	should	only	call	methods	on	this,	instance	variables,	
method	arguments.	

no	this.getWife().getMother().getMaidenName()	chains.	

Prevents	dependency	on	too	many	other	classes.	

The	"Law	of	Demeter"		provides	a	classic	solution,	see:	

Lieberherr,	Karl.	J.	and	Holland,	I.	  
Assuring	good	style	for	object-oriented	programs	  
IEEE	Software,	September	1989,	pp	38-48	

CSC7336:	AspectJ		(J	P	Gibson)November	2017 13

Aspect	Oriented	Programming:	a	brief	introduction

Join	Points	

Analyse	commonly	occurring	aspects.	
Cross-cutting	implementations	can	often	be	formulated	in	terms	like:	

•Before	.	.	.	is	called,	always	check	for	.	.	.	
•	If	any	of	.	.	.	throws	an	exception,	.	.	.	
•	Everytime	.	.	.	gets	changed,	notify	.	.	.	

Implementations	of	aspects	are	attached	to	certain	points	in	the	
Implementation,	eg:	

•method	calls	
•constructor	calls	
•field	access	(read/write)	
•Exceptions	

These	correspond	to	point	in	the	dynamic	execution	of	the	program.	
Such	points	are	called	join	points

CSC7336:	AspectJ		(J	P	Gibson)November	2017 14

Aspect	Oriented	Programming:	a	brief	introduction

Code	Example:	Figure	Editor		(from	http://eclipse.org/aspectj/doc/released/progguide/)

CSC7336:	AspectJ		(J	P	Gibson)November	2017 15

Aspect	Oriented	Programming:	a	brief	introduction
Code	Example:	Figure	Editor

A join point is a point in the control flow of a program

https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Computer_program

CSC7336:	AspectJ		(J	P	Gibson)November	2017 16

Aspect	Oriented	Programming:	a	brief	introduction

Code	Example:	Figure	Editor	–	join	points	for	moveBy

In aspect-oriented programming a set of join points is called a pointcut

For	example,	all	calls	and	returns	from	moveBy	methods

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Pointcut

CSC7336:	AspectJ		(J	P	Gibson)November	2017 17

Aspect	Oriented	Programming:	a	brief	introduction

A	pointcut	designates	a	set	of	join	points	for	any	program	execution.	

At	execution,	any	join	point	may	or	may	not	be	selected	by	a	pointcut.	

Examples:	
•all	calls	to	public	methods	of	the	Point	class	
•every	execution	of	a	constructor	with	one	int	argument	
•every	write	access	to	a	public	field

Membership	of	a	join	point	may	be	determined	at	runtime

CSC7336:	AspectJ		(J	P	Gibson)November	2017 18

Aspect	Oriented	Programming:	a	brief	introduction

Advice	

Advice	is	code	that	should	be	inserted	before,	after	or	even	
instead	of	existing	code	at	some	set	of	join	points.	

`Mainstream'	AOP:	

•Designate	sets	of	join	points	using	some	specification	
language	for	pointcuts.	
•	Declare	advice	to	be	executed	before/after/instead	of	the	
calls/method	executions/field	accesses	etc.	selected	by	the	
pointcut.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 19

Aspect	Oriented	Programming:	a	brief	introduction

Example	

Display	updating	in	the	Figure	Editor:	

After	every	change	in	a	FigureElement's	state,	update	the	
display..	

AOP	implementation:	
•pointcut	to	select	every	state-changing	method	in	
FigureElement	classes.	
•`after'-advice	which	calls	display	update	code.

Question:	which	design	pattern	could	you	use	(instead	of	AOP)?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 20

Aspect	Oriented	Programming:	a	brief	introduction

Weaving:	

A	program	called		an	aspect	weaver	is	used	to	weave	the	advice	
code	into	the	main	program	code.	

Often,	but	not	always,	join	point	membership	in	a	pointcut	can	
be	decided	statically.	
	=>	no	need	to	insert	code	at	every	possible	join	point.	

Modern	systems:	
•some	do	weaving	and	compilation	in	one	step	
•some	can	do	weaving	at	runtime	(e.g.	on	Java	byte-code)

CSC7336:	AspectJ		(J	P	Gibson)November	2017 21

Aspect	Oriented	Programming:	a	brief	introduction

AspectJ	

Extensions	of	the	Java	language	for	
•	pointcuts	
•	attaching	advice	
•	static	cross-cutting	

Originally	developed	at	Xerox	PARC	
First	versions	in	Spring	of	2000	
Hosted	by	eclipse.org	since	December	2002

CSC7336:	AspectJ		(J	P	Gibson)November	2017 22

Installation	

Download	the	Eclipse	AJDT		plugin	from	
	http://eclipse.org/ajdt/downloads/	

http://eclipse.org/ajdt/downloads/

CSC7336:	AspectJ		(J	P	Gibson)November	2017 23

Installation	

If	AspectJ	is	already	there	then	you	should	not	need	to	add	it	(but	
may	need	to	update	it)

CSC7336:	AspectJ		(J	P	Gibson)November	2017 24

Installation	

Try	Out	The	HelloWorld	Example	Demo:

http://www.eclipse.org/ajdt/demos/

CSC7336:	AspectJ		(J	P	Gibson)November	2017 25

Try	Out	The	HelloWorld	Example	Demo:

Lets	look	at	this	together	in	Eclipse

CSC7336:	AspectJ		(J	P	Gibson)November	2017 26

Installation	

Try	Out	The	HelloWorld	Example	Demo:

package p_helloworld;

public class Hello {

public static void main(String[] args) {
 sayHello();
}

public static void sayHello() {
 System.out.print("Hello");
}

}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 27

Installation	

Try	Out	The	HelloWorld	Example	Demo:

package p_helloworld;

public aspect World {

pointcut greeting() : execution(*
Hello.sayHello(..));

 before() : greeting() {
 System.out.println(" World!");
 }

}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 28

Installation	

Eclipse	provides	a	useful	cross	reference	window:

advises	Hello.sayHello()

CSC7336:	AspectJ		(J	P	Gibson)November	2017 29

Experimentation	

Experiment	with	the	Demo:		what	will/should	happen	if	you	add	
another	aspect	to	the	project?

package p_helloworld;

public aspect MethodCounter {

int counter =0;

pointcut publicMethodCall() : execution(public * *.*(..));
pointcut afterMain(): execution(public * *.main(..));

after() returning() : publicMethodCall() {
 counter++;
 }

after() returning() : afterMain() {
 System.out.println("Method call counter = "+counter);
 }
}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 30

Experimentation	

Experiment	with	the	Demo:		can	you	write	an	Aspect	that	will	time	
the	execution	of	each	method	call?

package p_helloworld;

public aspect Profiler{

}

This	should	be	easy	to	complete.	Is	the	on-line	documentation	good	
enough?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 31

Experimentation	

Experiment	with	the	Demo:		can	you	write	an	Aspect	that	will	time	
the	execution	of	each	method	call?

 World!
Hello
void p_helloworld.Hello.sayHello() took 26042892 nanoseconds

Method call counter = 2

void p_helloworld.Hello.main(String[]) took 32298490 nanoseconds

When	you	run	the	code	with	all	3	aspects	woven	together,	you	should	get	output	of	
the	following	form	(more	or	less):

CSC7336:	AspectJ		(J	P	Gibson)November	2017 32

AspectJ	–	some	details

Reconsider	the	figure	editor

CSC7336:	AspectJ		(J	P	Gibson)November	2017 33

AspectJ	–	some	details

Reconsider	the	figure	editor

Primitive	pointcuts:	

call(void Point.setX(int))

each	join	point	that	is	a	call	to	a	method	that	has	the	signature	
void	Point.setX(int)	

Also	for	interface	signatures:	

call(void FigureElement.moveBy(int,int))

Each	call	to	the	moveBy(int,int)	method	in	a	class	that	
implements	FigureElement

CSC7336:	AspectJ		(J	P	Gibson)November	2017 34

AspectJ	–	some	details

Reconsider	the	figure	editor

Pointcuts	can	be	joined	using	boolean	operators	&&,||,!.	

call(void Point.setX(int)) ||
call(void Point.setY(int))

calls	to	the	setX	and	setY	methods	of	Point.	

Join	points	from	different	types	possible:	

call(void FigureElement.moveBy(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point))

Any	call	to	a	state-changing	method	in	the	given	FigureElement	classes

CSC7336:	AspectJ		(J	P	Gibson)November	2017 35

AspectJ	–	some	details

Reconsider	the	figure	editor

Named	Pointcuts	
Pointcuts	can	and	should		be	declared	to	give	them	a	name:	

pointcut stateChange() :
call(void FigureElement.moveBy(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

Analogous	to	method	declaration	or	typedef	in	C.	

After	declaration,	stateChange()	can	be	used	wherever	a	pointcut	is	expected.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 36

AspectJ	–	some	details

Reconsider	the	figure	editor

Wildcards	

Method	signatures	can	contain	wildcards:	

call(void java.io.PrintStream.println(*))

any	PrintStream	method	named	println	returning	void	and	taking	
exactly	one	argument	of	any	type.	

call(public * Figure.*(..))

any	public	method	in	Figure.	

call(public * Line.set*(..))

any	method	in	Line	with	a	name	starting	with	set.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 37

AspectJ	–	some	details

Reconsider	the	figure	editor

Example	

The	pointcut	from	before,	using	wildcards:	

pointcut stateChange() :
call(void FigureElement.moveBy(int,int)) ||
call(* Point.set*(*)) ||
call(* Line.set*(*));

CSC7336:	AspectJ		(J	P	Gibson)November	2017 38

AspectJ	–	some	details

Reconsider	the	figure	editor

Advice	in	AspectJ	

Advice	can	be	attached	to	join	points:	

before(): stateChange() {
System.out.println("about to change state");
}

after() returning: stateChange() {
System.out.println("just successfully changed state");
}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 39

AspectJ	–	some	details

//After	every	state	changing	call,	update	the	display.	

public aspect DisplayUpdating {
pointcut stateChange() :
call(void FigureElement.moveBy(int,int)) ||
call(* Point.set*(*)) || call(* Line.set*(*));
after() returning : stateChange() {
Display.update();
}
}

QUESTION:	Does	this	look	like	a	good	use	of	Aspects?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 40

AspectJ	–	some	details

CSC7336:	AspectJ		(J	P	Gibson)November	2017 41

AspectJ	–	some	details

CSC7336:	AspectJ		(J	P	Gibson)November	2017 42

AspectJ	–	some	details

Example:	Diagonal	Moves	

Define	a	pointcut	for	moves	with	equal	dx	and	dy.	

pointcut diagHelp(int dx,int dy) :
call(void FigureElement.moveBy(int,int)) &&
args(dx,dy) &&
if(dx==dy);

pointcut diagMove(int dxy) : diagHelp(dxy,int);

CSC7336:	AspectJ		(J	P	Gibson)November	2017 43

AspectJ	–	some	details

About	Conditionals	

AspectJ	specification:	

The	boolean	expression	used	can	only	access	static	members,	
variables	exposed	by	the	enclosing	pointcut	or	advice	

But	still.	.	.	static	methods	may	be	called,	which	may	have	side	effects!	

Question:	what	are	the	consequences	of	this?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 44

AspectJ	–	some	details

Before	and	After	

`Before'	advice:	
before(formal parameters) : Pointcut {
. . . advice body. . .
}

The	advice	body	gets	executed	every	time	just	before	the	program		flow	enters	
a	join	point	matched	by	the	pointcut.	
The	formal	parameters	receive	values	from	the	pointcut	

`After'	advice:	
after(formal parameters) returning : Pointcut {...}
The	advice	body	gets	executed	every	time	just	after	the	program	flow	exits	a	
join	point	matched	by	the	pointcutby	returning	normally.	

Capture	return	value:	
after(...) returning (int ret): Pointcut {...}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 45

AspectJ	–	some	details

What	about	exceptions?	

Advice	after	throwing	an	exception:	
after(formal parameters) throwing : Pointcut {...}

Capture	thrown	exception:	
after(...) throwing (Exception e): Pointcut {...}

Match	normal	and	abrupt	return:	
after(...) : Pointcut {...}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 46

AspectJ	–	some	details

Around	Advice	

Run	advice	instead	of	original	code:	

Type around(. . .) : . . . {
. . .
proceed(. . .);
. . .
}

•run	advice	body	instead	of	original	call,	field	access,	method	body,	etc.	
•use	proceed	to	use	the	original	join	point,	if	needed.

Hint:	this	may	help	you	to	write	the	timer	Aspect	asked	for	earlier

CSC7336:	AspectJ		(J	P	Gibson)November	2017 47

AspectJ	–	some	details

Tracing	Aspect	(first	try)	

package tracing;

public aspect TraceAllCalls {
pointcut pointsToTrace() :
call(* *.*(..)) ;

before() : pointsToTrace() {
System.err.println("Enter " + thisJoinPoint);
}

after() : pointsToTrace() {
System.err.println("Exit " + thisJoinPoint);

}
}

QUESTION:	Where	is	the	problem?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 48

AspectJ	–	some	details

Tracing	Aspect	(first	try)	

package tracing;
public aspect TraceAllCalls {
pointcut pointsToTrace() :
call(* *.*(..)) && !within(TraceAllCalls);

before() : pointsToTrace() {
System.err.println("Enter " + thisJoinPoint);
}

after() : pointsToTrace() {
System.err.println("Exit " + thisJoinPoint);
}
}

QUESTION:	Why	do	we	need	the	within?

CSC7336:	AspectJ		(J	P	Gibson)November	2017 49

AspectJ	–	things	you	should	know	about	

Exceptions	in	Advice	

Advice	body	may	throw	exceptions:	

before() : doingIO() {
openOutputFile();
}

If openOutputFile() throws
java.io.IOException:
before() throws java.io.IOException :
doingIO() {
openOutputFile();
}

=>	IOException	must	be	declared/handled	
at	all	places	where	pointcut	applies.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 50

AspectJ	–	things	you	should	know	about	

Aspects	throwing	exceptions	

Sometimes,	an	aspect	can	change	the	behaviour	of	methods,	
so	that	new	checked	exceptions	are	thrown:	

•Add	synchronization:	InterruptedException	
•Execute	calls	remotely:	RemoteException	

=>Two	possibilities:	
•catch	and	handle	exception	directly	in	advice.	Might	not	be	appropriate.	
•pass	exception	out	of	advice.	Needs	lots	of	declarations.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 51

AspectJ	–	things	you	should	know	about	

CSC7336:	AspectJ		(J	P	Gibson)November	2017 52

AspectJ	–	things	you	should	know	about	

Aspect	Precedence	(cont.)	

Syntax	to	declare	aspect	precedence:	

declare precedence : TypePattern1, TypePattern2, . . . ;

May	occur	in	any	aspect.	
Says	that	anything	matching	type	pattern	1	has	higher	precedence	
than	anything	matching	type	pattern	2,	etc.	

aspect CyclicPrecedence {
declare precedence : AspectA, AspectB;
declare precedence : AspectB, AspectA;
}

OK	iff	aspects	share	no	join	points.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 53

AspectJ	–	things	you	should	know	about	

Aspect	Precedence	(cont.)	

If	not	declared,	implicit	rule	for	inheritance:	

If	AspectA	extends	AspectB,	then	AspectA	has	higher	priority.	

⇒possible	to	overrule	advice	from	super-aspect.	

If	still	not	declared,	implicit	rule	for	advice	within	one	aspect:	
•	If	either	are	after	advice,	then	the	one	that	appears	later	in	the	aspect	
has	precedence	over	the	one	that	appears	earlier.	
•Otherwise,	then	the	one	that	appears	earlier	in	the	aspect	
has	precedence	over	the	one	that	appears	later.	

=>	first	do	something	in	the	same	order	as	they	appear	in	the	source

CSC7336:	AspectJ		(J	P	Gibson)November	2017 54

AspectJ	–	things	you	should	know	about	

Abstract	Aspects	

Reminder:	aspects	can	
•extend	classes	
•extend	abstract	aspects	
•implement	interfaces	

Abstract	aspects	may	contain	

•	abstract	methods,	like	abstract	classes	
•	abstract	pointcut	declarations	

Abstract	aspects	are	the	key	to	writing	reusable	aspects.

CSC7336:	AspectJ		(J	P	Gibson)November	2017 55

AspectJ	–	things	you	should	know	about	

Aspect	Instantiation	

At	runtime,	aspects	have	fields	like	objects.	

When	do	they	get	instantiated?	Usually:	
Instantiate	an	aspect	once	per	program	execution.	

aspect Id {...}
aspect Id issingleton {...}

Implemented	as	singleton		=>	static	field	in	aspect	class.	

NOTE:	Things	are	actually	much	more	complicated	when	we	consider	all	the	different	
ways	in	which	Java	objects	(including	Aspects)	are	instantiated

CSC7336:	AspectJ		(J	P	Gibson)November	2017 56

AspectJ	–	things	you	should	know	about	

Privileged	Aspects	

Usually,	advice	code	has	no	access	to	private	members	of	advised	classes.	

(Note	that	matching	in	pointcuts	does	see	private	members)	

But	the	privileged	keyword	can	help:	

privileged public aspect A {
before(MyFriend f) : this(f) && ... {
System.out.println("My best friends secret: " +
f._privateField);
}
}

CSC7336:	AspectJ		(J	P	Gibson)November	2017 57

AspectJ	–	profiling	problem

Return	to	the	profiling	problem	we	looked	at	in	previous	
class	

TO	DO:	Implement	3	or	more	interesting	profiling	aspects	
and	test	on	different	programs	

Practical	Work	For	Next	Class:	Invariant	Testing	

Write	an	aspect	that	tests	the	invariant	of	a	class	every	time	
a	method	is	executed,	and	writes	to	an	invariant	log	file	
whether	the	test	passes	or	fails.

