CSC 7003 : Basics of Software Engineering

J Paul Gibson, D311

paul ..gibsondtelecom-sudparis.eu

Testing

.../~gibson/Teaching/CSC7003/L7-Testing.pdf

2017: J Paul Gibson

TSP: Software Engineering

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7003/

Why do we need tests?

. SOFTWRRE

ENGINEERING £~ > =
- COMIX -2

—_

. a
e ——
-

;(we'veimventas
VarRi
LT -

Geal,

/ Now we can lve
ol thoeme G4 mire,
’h\ - -’4 L}

"we have this pill, so
there can't be any bugs..” -~

e

There's
all the differencein the
world between saying,

- / -
T - -\‘-x ’(-(.'»:,

L

-

g
e

——

« and Knowing TN
there aren't any bugs
__because youlooked. -~

—

o

—_

- and besides,
somebody might forget
to take hispill?/

2017: J Paul Gibson

TSP: Software Engineering

Do we test our software like this?

HOW DO THEY KNOW THE
LOAD LIMIT ON BRIDGES,
PAD?

THEY DRIVE BIGGER AND
BIGGER TRUGKS QWER THE
BRIDGE UNTIL \T BREAKS

THEN THEY WEIGH THE
LAST TRUCK AND
REBUILD THE BRIDGE.

. I
SHOULD'VE
QUESSED.

DEAR, IF YOU
DONT KNOW
THE ANSHER,

JUST TELL
WMt —

2017: J Paul Gibson

TSP: Software Engineering

Do we test our software like this?

HOW TO PASS ALL YOUR TESTS
NO BUGS, NO COMPLAINTS, NO MORE RE-TESTING

WRITE TESTS
&/RITE COCE EXECUTE CODE FROM VIEWING EXECUTE TESTS

THE EXECUTION

152 480 5 2

A

2017: J Paul Gibson TSP: Software Engineering 4

Testing : in the V life cycle

Software Development Life Cycle Software Test Life Cycle

SN STLO

LIser Acrsprance

v

Tezt 2lans

I Requirement l User Acceptance |
\ | Sverom Toat Plas ,—\
I Funcrional Qpc-(ﬂlt atlon Svstem Testing
\— Intserated Fasr Pans g ’
[111gh 1 ével Desizn | Integration 1'esnng l
_..| Unt: Tost Plons H
s - a
Detadled Design/Program] Unit Testing

| CODE

’

2017: J Paul Gibson TSP: Software Engineering

Black box or White box Testing

Application Code
Application Test Case Input * S = Test Case Output
J’ . | J
BLACK BOX TESTING APPROACH WHITE BOX TESTING APPROACH

Question: advantages and disadvantages of each?

2017: J Paul Gibson TSP: Software Engineering

Unit Testing

Most (nearly all) programming languages have automated
tool support for unit testing (as well as other types of
testing)

JUnit CUnit xUnit etc

Whenever you learn a new programming language, learn the
testing tool(s) that come with 1t

Automated Unit testing 1s very valuable and
beginners to programming need to learn it ASAP

http://blog.smartbear.com/automated-testing/a-short-lecture-on-the-
value-and-practice-of-unit-testing/

2017: J Paul Gibson TSP: Software Engineering

Integration Testing

Why do we not just do unit tests?

“2 unit tests, zero integration tests”’

Why do we not just
http://i.imgur.com/qSN5SFR.gifv do validation tests?

2017: J Paul Gibson TSP: Software Engineering

Integration Testing

Fixing problems later
in development can
cost much more than
fixing them earlier -
but you have to
detect them first

2017: J Paul Gibson TSP: Software Engineering 9

System Testing

is not whnt
the software does.
it's what the
USer does.

@\w \R

Never underestimate the users’ ability to surprise

o

2017: J Paul Gibson TSP: Software Engineering 10

Regression Testing

Regression:
"when you fix one bug, you
introduce several newer bugs."

WD Bt M D P e R

A

2017: J Paul Gibson TSP: Software Engineering

11

Testing Metrics

The problem with software testing metrics

May not
have found

o
@0_~

"This pie chart shows the bugs I may
have found and may hot have found
while making this chart."

-
Ancy &over cartoontesterblogspet.com & 2012

2017: J Paul Gibson

TSP: Software Engineering

12

100% 1

Coverage

0% 1<

Testing Code Coverage

Hightesting
productiaty

Low testing

productivity

Effort (time)

Figure 1: Coverage rate

Hightesting
procuctivty

Low testing

productivity

Effort (time)
Figure 2: Failure discovery rate

Most testing tools come/work with coverage tools

2017: J Paul Gibson

TSP: Software Engineering

Test first development

2017: J Paul Gibson

TSP: Software Engineering

14

Some other testing types

Functional - Nonfunctional
Performance

Usability

Security

Accessibility

Internationalisation/ localisation etc ...

http://testautomation.applitools.com/post/98802238427/41-awesome-
quotes-about-software-testing

2017: J Paul Gibson TSP: Software Engineering

15

Your test code needs testing?

: -

8 -

I SPENT THE WEEK 3 AND T WROTEA |£
WRITING A TEST 5 TEST SCRIPT TO |z 1?.&"62%15?:&;‘1\'?
SCRIPT FOR OUR ¢ TEST DILBERT'S 2] KEEP UP THE GOOD

PRODUCT. 8 TEST SCRIPT. g WORK, BUDDY.
| ; :
\ 7 : :
=8) ‘

\ r! » il S g

B\\\ "d! \S T)

- LN |2 2

o ~M

2017: J Paul Gibson TSP: Software Engineering 16

The Line Overlap Problem

Consider the integer number line:

-8-7-6-5-4-3-2-10+1+2+3+4+5+6+7 +8 ...

We can define a segment on this line by a range (minimum ... maximum)

Below, we 1llustrate 2 segments: (-3, 1) and (0,6)

L -8-7-6-5432-10+1+24+3+4+5+6+7 +8 ...

In this example, the 2 segments are said to overlap on the
line because they share at least 1 point in common.
The overlap 1n this case 1s the segment (0, 1).

2017: J Paul Gibson TSP: Software Engineering 17

The Line Overlap Problem

Requirements and Tests

The problem 1s to write a program that can calculate whether any 2
segments overlap on the integer line. It 1s to return the segment
overlapped as the result of the program (an “empty” segment if there
1S no overlap)

You are to specify and implement a test set for this problem. You are
not to code a working solution until after your tests are coded.

Your test code should be written in the same programming language
as the solution(s) which you will be expected to test.

The code (including tests) must be well documented.

[llustrate that your tests can find errors in an incorrect solution

2017: J Paul Gibson TSP: Software Engineering

18

The Line Overlap Problem

Complete Tests

G1ven the minimum and maximum values,
how many tests must be executed 1f we wish
to test (exhaustively) every possible case?

2017: J Paul Gibson TSP: Software Engineering

19

The Line Overlap Problem: Part 2 - An extra dimension

Consider a 2- 8,8
dimensional grid

/ The problem is to
e tell whether the 2
segments intersect
v on the specified
e integer grid.

In the example, the
answer 1s clearly
yes.

Note that we do not

Segment ((2,7), (6,3)) need to calculate

Segment ((1,4), (6,7)) (e oIkl @if
Intersection

0,0

2017: J Paul Gibson TSP: Software Engineering 20

The Line Overlap Problem: Part 2 - An extra dimension

Requirements and Tests

The problem 1s to write a program that can calculate whether
any 2 segments overlap on the integer grid.

You are to specify and implement a test set for this problem.

You are not to code a working solution until after your tests are
coded.

Your test code should be written 1n the same programming
language as the solution(s) which you will be expected to test.

The code (including tests) must be well documented.

[llustrate that your tests can find errors in an incorrect solution

2017: J Paul Gibson TSP: Software Engineering

21

The Line Overlap Problem: Part 2 - An extra dimension

Testing a design hypothesis for re-use of code.

I would like to be able to re-use my code to the first 1-dimensional
overlap problem in order to solve the problem in 2 dimensions.

It 1s suggested that 2 lines overlap 1n a grid if and only if they
‘overlap vertically’ and ‘overlap horizontally’.

Intuitively, this seems right. However this needs to be tested. For
example:

Segment ((2,7), (6,3))
Segment ((1,4), (6,7))

(2,6) and (1,6) overlap
and
(7,3) and (4,7) overlap

overlap 1ff

Is this true for all such segments in the grid space?

2017: J Paul Gibson TSP: Software Engineering

22

Problem Analysis

What did you learn about testing from this problem?
Did you try to use a testing tool, like JUnit or CUnit?

If so, how did you find 1t?
If not, what sort of things would you like such a tool to be able to do?

Did you find any bugs in your test code?

How good are your tests?
How do you judge the quality of the tests?

Did your tests help you to find bugs in your solution code?

2017: J Paul Gibson TSP: Software Engineering 23

