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Rigour and Formal Methods

Formal methods are: 

•necessary in achieving correct software --- fulfil its requirements 

•unambiguous and analysable 

•a means of improving understanding 

•a modelling technique which may support non-determinism as a 
means of allowing implementation freedom 

•facilitate re-use of analysis through correctness preserving 
transformations 
•amenable to mathematical manipulation and reasoning 
•support rigorous testing 

But,  

•they are not often found in industry
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http://www.easterbrook.ca/steve/2010/11/the-difference-
between-verification-and-validation/

Verification and Validation – 
where are the formal methods?
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Formal Methods --- technology transfer

Industrial wide acceptance is coming: 
•tool support is building 

•safety-critical systems are under scrutiny 

•graduates are being taught the need for rigour 

•engineers are realising that maths is the best tool for handling complexity 

•they are being factored in as another variable in the cost-quality equation  

Software engineering is about compromise --- formal methods do 
not need to be an all or nothing proposition so they do not remove 
control from the engineers they actually offer them more choice!
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Correctness

Formal methods are principally concerned with maintaining 
correctness 

Correctness is the property that a model fulfils a set of well defined 
requirements 

In the life cycle models, formal methods can be applied anywhere 
between the initial customer-oriented requirements and the final 
implementation oriented design 

The formal boundaries break down at either end of the process 
because: 

•target implementation environments are not formally defined 

•customer understanding of requirements is incomplete
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Before we begin ...

We are not going to look at any one formal method: 

•Z, VDM, ADTs, Logic, LOTOS, CSP, CCS, ML, ... 

First, we are going to study simple examples which illustrate the 
need for formal methods (and the key concepts) … 

In software process one has to identify where/when formality is 
appropriate. 

Bottom line --- formal methods is a state of mind, but:

a formal method is any technique concerned with the 
construction and/or analysis of mathematical models 
which aid the development of computer systems
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Typographical Re-write Systems (TRS)

A TRS is a formal system based on the ability to generate a set of strings 
following a simple set of syntactic rules. 

Each rule is calculable --- the generation of a new string from an old string by 
application of a rule always terminates 

A TRS may produce an infinite number of strings 

TRSs can be as powerful as any computing machine (Turing equivalent) 

TRSs are simple to implement (simulate) using other computational models 

Using TRSs we introduce the following concepts: 

proof, theorem, decision procedure, meta-analysis, structural induction, 
necessary and sufficient, isomorphism, meaning and consistency

Don’t worry … they are very simple to understand ….
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Case Study 1 --- The MUI TRS

Alphabet = {M,I,U} 

Strings: any sequence of characters found in the alphabet 

Axiom: MI 

Generation Rules: for all strings such that x and y are strings of MUI or ‘ ‘ : 

•1) xI can generate xIU 

•2) Mx can generate Mxx 

•3) xIIIy can generate xUy 

•4) xUUy can generate xy

A theorem of a TRS is any string which can be generated from the axioms 
(or any other theorem) 

A proof of a theorem corresponds to the set of rules which have been 
followed to generate that theorem

Thanks to Hofstadter - 
https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach

https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
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Case Study 1 --- The MUI TRS  (proof procedure)

Alphabet = {M,I,U} 
Strings: any sequence of characters found in the alphabet 
Axiom: MI 
Generation Rules: for all strings such that x is a string of MUI or x =‘’ : 

•1) xI can generate xIU 

•2) Mx can generate Mxx 

•3) xIIIy can generate xUy 

•4) xUUy can generate xy

Question: can you prove the theorem MUIIU? 

Question: can we automate the process of 
testing for theoremhood of a given string in a 
finite period of time?

Input 
string

True or 
False

machine

Such a machine would be a decision procedure of MUI
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Case Study 1 --- The MUI TRS (decision tree)

Alphabet = {M,I,U} 
Strings: any sequence of characters found in the alphabet 
Axiom: MI 
Generation Rules: for all strings such that x is a string of MUI or x =‘’ : 

•1) xI can generate xIU 

•2) Mx can generate Mxx 

•3) xIIIy can generate xUy 

•4) xUUy can generate xy

Is this a decision procedure for the MUI machine? … 
Construct a tree of strings, starting with the axiom at the root. Any 
application rule constitutes a branch of the tree. To decide if a given string 
is a theorem it is sufficient to keep extending the tree until the string is 
found. 

Task: construct the top (1st 3 layers) of such a tree
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Case Study 1 --- The MUI TRS (meta-reasoning)

Alphabet = {M,I,U} 
Strings: any sequence of characters found in the alphabet 
Axiom: MI 
Generation Rules: for all strings such that x is a string of MUI or x =‘’ : 

•1) xI can generate xIU 

•2) Mx can generate Mxx 

•3) xIIIy can generate xUy 

•4) xUUy can generate xy

Question: is IIIIUUUIIIUUUI a theorem of the system? 

Question: can you prove your answer is correct?

Note: only through meta-reasoning can we do this !!
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Case Study 1 --- The MUI TRS (more meta-reasoning)

Alphabet = {M,I,U} 
Strings: any sequence of characters found in the alphabet 
Axiom: MI 
Generation Rules: for all strings such that x is a string of MUI or x =‘’ : 

•1) xI can generate xIU 

•2) Mx can generate Mxx 

•3) xIIIy can generate xUy 

•4) xUUy can generate xy

The meta-property that all theorems start with an M is called a necessary 
but not sufficient property of theorem-hood. 

Question: before we move on … is MU a theorem of MUI?

Now we move onto a more practical TRS ...
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Case Study 2 --- The pq- TRS

Alphabet = {p,q,-} 

Axiom: for any such x such that x is a possibly empty sequence of ‘-’s, 

 xp-qx- is an axiom 

Generation Rules: for any x,y,z which are possibly empty sequences of ‘-’s, 
if xpyqz is a theorem then xpy-qz- is a theorem

Question: is there a decision procedure for  this formal system? 

Hint: all re-write rules lengthen the string so …?
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Case Study 2 --- The pq- TRS

Alphabet = {p,q,-} 

Axiom: for any such x such that x is a possibly empty sequence of ‘-’s, 

 xp-qx- is an axiom 

Generation Rules: for any x,y,z which are possibly empty sequences of ‘-’s, 
if xpyqz is a theorem then xpy-qz- is a theorem

Why is the pq- TRS practical? 
Because it provides us with a formal model of a mathematical property: the 
addition of integers --- 

•--p---q----- is a theorem and “2+3=5” is true 

•--p-q-- is a non-theorem and “2+1=2” is false



MSc - CCN - Introduction to Software 
Engineering  (Rigour & Formal Methods)

2017 16

Case Study 2 --- The pq- TRS  interpretation

If we interpret 

•p as plus 

•q as equals 

•and a sequence of n ‘-’s as the integer n 

then we have 

a means of checking x+y=z for all non-negative integers x,y and z 

We say that pq- is consistent (under the given interpretation) because all 
theorems are true after interpretation 

We say that pq- is complete if all true statements (in the domain of 
interpretation) can be generated as theorems in the system. 

We say that the interpretation is isomorphic to the system if the system is 
both complete and consistent
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Case Study 2 --- The pq- TRS extension

The pq- system is isomorphic to a very limited domain of interpretation (but 
maybe that is all that is required!) 

Normally, to widen a domain we can 

add an axiom 

add a generating rule 

For example, what happens if we add the axiom: 

xp-qx. 

Using this, we can generate many new theorems! 

Question: with this new axiom what about completeness and consistency? 

Answer: the new, extended system is not consistent with our interpretation.
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Case Study 2 --- The extended pq- TRS reinterpreted
After extension, 

--p--q--- is now a theorem but 2+1=2 is not true 

To solve this problem we can  re-interpret for consistency --- 

interpet q as  “ >= “ 

However, we have now lost completeness --- 

“2+5 >= 4” is true (in our domain of interpretation) but  

--p-----q---- is a non-theorem

Note: this is a big problem of mathematics (c.f Church) --- 
it is not possible to have a complete, decidable system of 
mathematical properties which is consistent 

if all the theorems that can be checked are consistent then there are 
some things which we would like to be able to prove as theorems 
which the system is not strong enough for us to do
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Case Study 3 --- A tq- TRS

Question: 

•can you define a TRS for modelling the multiplication of 
two integers 

•can you show that it is complete and consistent 

Interpretation: 

•t as times 

•q as equals 

•sequences of ‘-’s as integers
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BACK TO THE SOFTWARE PROCESS …

PBL - Imagine you were asked to implement a function, f say, to 
calculate the ith prime number. 

Thus, given the primes to be 2,3,5,7,11,13,17,19,…, 

f(1) =2, f(2) = 3, f(3) =5, … 

I assume you could all code this directly in C, C++, Python, Java, Prolog … 
How many of you could prove your code was correct? 
Where would you even start? 

First: formalise requirements 
Second: transform requirements into design and prove transformation to be correct 
Third: keep correctly transforming design until it is directly implementable 
Fourth: implement it

Question - but is this process/sequence fully formal?
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A TRS for formally defining if a number is prime

Note: easier to do in other formal languages/methods because the necessary 
concepts (like integers and lists are part of the language) 

But, with the TRS we define just what we need and use it only where needed. 

In software process it is this targeting (with the minimum force necessary) 
which is best …  

Question: can you write a TRS for deciding if a given number is prime? 

Hint: if not, try to break the problem down into bits 

In a more realistic approach, we introduce Abstract Data Types…. IMHO the 
most powerful and universally applicable software process formal methods tool.
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From TRSs to Abstract Data Types (ADTs)
ADTs are a very powerful specification technique which exist in many forms 
(languages). 

These languages are often given operational semantics in a way similar to 
TRSs (in fact, they are pretty much equivalent) 

Most ADTs have the following parts --- 

•A type which is made up from sorts 

•Sorts which are made up of equivalent sets 

•Equivalent sets which are made up of expressions 

For example, the integer type could be  made up of 

•sorts integer and boolean 

•1 equivalence set of the integer sort could be {3, 1+2, 2+1, 1+1+1} 

•1 equivalence set of the boolean sort could be {3=3, 1=1, not(false)}
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Case Study 4: A simple ADT specification

TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 
+: integer, integer -> integer 

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 
0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE
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Case Study 4: A simple ADT specification
TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 
+: integer, integer -> integer

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE 

Question: how do we show, for example --- 

•1+2 = 3, 

•3+2 = 4+1, 

•2+2 != 3+2
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Case Study 4: A simple ADT specification
TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 
+: integer, integer -> integer

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

ENDTYPE 

Note: this model is complete and consistent with respect to the 
modelling of the addition of integers (like the TRS pq-)

Question: extend this model to include multiplication
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Case Study 4: An equivalent ADT specification

TYPE integer SORTS integer, boolean 

OPNS  

0:-> integer 

succ: integer -> integer 

eq: integer, integer -> boolean 
+: integer, integer -> integer

EQNS forall x,y: integer 

0 eq 0 = true; succ(x) eq succ(y) = x eq y; 

0 eq succ(x) = false; succ(x) eq 0 = false; 

0 + x = x; succ(x) + y = x + (succ(y)); 

x+y = y+x; 
ENDTYPE

Consider changing the original specification to make 
explicit the fact that x+y = y +x, for all integer values of x 
and y:

Note: this does not change the meaning of the specification but it may 
affect the implementation of the evaluation of expressions
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Case Study 4: Evaluation termination

If expressions are evaluated as left to right re-writes (as they often are) 
then evaluation may not terminate: 

3 +4 = 4+3 may be re-written as 

4+3 = 3+4 which may be re-written as 

3+4 = 4+3 … 

Consequently, there are 3 important properties of ADT 
specifications: 

•completeness 
•consistency  
•evaluation termination/convergence
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Case Study 4: Incompleteness, inconsistency and termination

Not having enough equations can make a specification incomplete. For example, 
the integer ADT specification  would be incomplete without the equation: 

0 eq 0 = true 

Having too many equations can make a specification inconsistent. For example, 
the integer ADT specification is inconsistent if we add the equation: 

x + succ(0) = x 

but adding the equation: 

x + succ(0) = succ(x)  

would not introduce inconsistency (just redundancy) 
Changing the equations may affect termination: 

0 + x = x to  x + 0 = x  

would introduce non-termination to the original ADT specification
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Case Study 5 --- A Set ADT specification

TYPE Set SORTS Int, Bool 
OPNS 
empty:-> Set 
str: Set, int -> Set 
add: Set, int -> Set 
contains: Set, int -> Bool 
EQNS forall s:Set, x:Int 
contains(empty, int) = false; 
x eq y => contains(str(s,x), y) = true; 
not (x eq y) => contains(str(s,x), y) =  
                          contains(s,y); 
contains(s,x) => add(s,x) = s; 
not(contains(s,x)) => add(s,x) = str(s,x) 
ENDTYPE

Notes: 
•use of str and add 
•preconditions 
•completeness? 
•consistency?

Question:  
add operations for -- 

•remove 
•union 
•equality



MSc - CCN - Introduction to Software 
Engineering  (Rigour & Formal Methods)

2017 30

Case Study 6: Set verification

We would like to verify the following properties: 

•e ∉ (S-e) = true 

•e ∈ S1 ∪ S2 ⇒ e ∈S1  ∨ e ∈ S2

Proof technique: structural induction on the ADT 
specification

Question: try it yourselves to see how it goes ...

Invariant Property: verify also that a set never contains any 
repeated elements
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Back to the Primes Proof

Question: 

•write an ADT specification of a list of integers  

•include a means of verifying that it is ordered 

•include a function for returning the length 

All that is left to do is plug the two parts together and we 
have a formal specification (and implementation) of our 
prime problem requirements. 

Question: 

•what use is it to us?
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