
MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017: J Paul Gibson 1

CSC 7003 : Basics of Software Engineering

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7003/

Rigour And Formal Methods

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7003/

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 2

Rigour and Formal Methods

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 3

Rigour and Formal Methods

Formal methods are:

•necessary in achieving correct software --- fulfil its requirements

•unambiguous and analysable

•a means of improving understanding

•a modelling technique which may support non-determinism as a
means of allowing implementation freedom

•facilitate re-use of analysis through correctness preserving
transformations
•amenable to mathematical manipulation and reasoning
•support rigorous testing

But,

•they are not often found in industry

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 4

http://www.easterbrook.ca/steve/2010/11/the-difference-
between-verification-and-validation/

Verification and Validation –
where are the formal methods?

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 5

Formal Methods --- technology transfer

Industrial wide acceptance is coming:
•tool support is building

•safety-critical systems are under scrutiny

•graduates are being taught the need for rigour

•engineers are realising that maths is the best tool for handling complexity

•they are being factored in as another variable in the cost-quality equation

Software engineering is about compromise --- formal methods do
not need to be an all or nothing proposition so they do not remove
control from the engineers they actually offer them more choice!

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 6

Correctness

Formal methods are principally concerned with maintaining
correctness

Correctness is the property that a model fulfils a set of well defined
requirements

In the life cycle models, formal methods can be applied anywhere
between the initial customer-oriented requirements and the final
implementation oriented design

The formal boundaries break down at either end of the process
because:

•target implementation environments are not formally defined

•customer understanding of requirements is incomplete

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 7

Before we begin ...

We are not going to look at any one formal method:

•Z, VDM, ADTs, Logic, LOTOS, CSP, CCS, ML, ...

First, we are going to study simple examples which illustrate the
need for formal methods (and the key concepts) …

In software process one has to identify where/when formality is
appropriate.

Bottom line --- formal methods is a state of mind, but:

a formal method is any technique concerned with the
construction and/or analysis of mathematical models
which aid the development of computer systems

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 8

Typographical Re-write Systems (TRS)

A TRS is a formal system based on the ability to generate a set of strings
following a simple set of syntactic rules.

Each rule is calculable --- the generation of a new string from an old string by
application of a rule always terminates

A TRS may produce an infinite number of strings

TRSs can be as powerful as any computing machine (Turing equivalent)

TRSs are simple to implement (simulate) using other computational models

Using TRSs we introduce the following concepts:

proof, theorem, decision procedure, meta-analysis, structural induction,
necessary and sufficient, isomorphism, meaning and consistency

Don’t worry … they are very simple to understand ….

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 9

Case Study 1 --- The MUI TRS

Alphabet = {M,I,U}

Strings: any sequence of characters found in the alphabet

Axiom: MI

Generation Rules: for all strings such that x and y are strings of MUI or ‘ ‘ :

•1) xI can generate xIU

•2) Mx can generate Mxx

•3) xIIIy can generate xUy

•4) xUUy can generate xy

A theorem of a TRS is any string which can be generated from the axioms
(or any other theorem)

A proof of a theorem corresponds to the set of rules which have been
followed to generate that theorem

Thanks to Hofstadter -
https://en.wikipedia.org/wiki/Gödel,_Escher,_Bach

https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 10

Case Study 1 --- The MUI TRS (proof procedure)

Alphabet = {M,I,U}
Strings: any sequence of characters found in the alphabet
Axiom: MI
Generation Rules: for all strings such that x is a string of MUI or x =‘’ :

•1) xI can generate xIU

•2) Mx can generate Mxx

•3) xIIIy can generate xUy

•4) xUUy can generate xy

Question: can you prove the theorem MUIIU?

Question: can we automate the process of
testing for theoremhood of a given string in a
finite period of time?

Input
string

True or
False

machine

Such a machine would be a decision procedure of MUI

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 11

Case Study 1 --- The MUI TRS (decision tree)

Alphabet = {M,I,U}
Strings: any sequence of characters found in the alphabet
Axiom: MI
Generation Rules: for all strings such that x is a string of MUI or x =‘’ :

•1) xI can generate xIU

•2) Mx can generate Mxx

•3) xIIIy can generate xUy

•4) xUUy can generate xy

Is this a decision procedure for the MUI machine? …
Construct a tree of strings, starting with the axiom at the root. Any
application rule constitutes a branch of the tree. To decide if a given string
is a theorem it is sufficient to keep extending the tree until the string is
found.

Task: construct the top (1st 3 layers) of such a tree

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 12

Case Study 1 --- The MUI TRS (meta-reasoning)

Alphabet = {M,I,U}
Strings: any sequence of characters found in the alphabet
Axiom: MI
Generation Rules: for all strings such that x is a string of MUI or x =‘’ :

•1) xI can generate xIU

•2) Mx can generate Mxx

•3) xIIIy can generate xUy

•4) xUUy can generate xy

Question: is IIIIUUUIIIUUUI a theorem of the system?

Question: can you prove your answer is correct?

Note: only through meta-reasoning can we do this !!

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 13

Case Study 1 --- The MUI TRS (more meta-reasoning)

Alphabet = {M,I,U}
Strings: any sequence of characters found in the alphabet
Axiom: MI
Generation Rules: for all strings such that x is a string of MUI or x =‘’ :

•1) xI can generate xIU

•2) Mx can generate Mxx

•3) xIIIy can generate xUy

•4) xUUy can generate xy

The meta-property that all theorems start with an M is called a necessary
but not sufficient property of theorem-hood.

Question: before we move on … is MU a theorem of MUI?

Now we move onto a more practical TRS ...

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 14

Case Study 2 --- The pq- TRS

Alphabet = {p,q,-}

Axiom: for any such x such that x is a possibly empty sequence of ‘-’s,

 xp-qx- is an axiom

Generation Rules: for any x,y,z which are possibly empty sequences of ‘-’s,
if xpyqz is a theorem then xpy-qz- is a theorem

Question: is there a decision procedure for this formal system?

Hint: all re-write rules lengthen the string so …?

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 15

Case Study 2 --- The pq- TRS

Alphabet = {p,q,-}

Axiom: for any such x such that x is a possibly empty sequence of ‘-’s,

 xp-qx- is an axiom

Generation Rules: for any x,y,z which are possibly empty sequences of ‘-’s,
if xpyqz is a theorem then xpy-qz- is a theorem

Why is the pq- TRS practical?
Because it provides us with a formal model of a mathematical property: the
addition of integers ---

•--p---q----- is a theorem and “2+3=5” is true

•--p-q-- is a non-theorem and “2+1=2” is false

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 16

Case Study 2 --- The pq- TRS interpretation

If we interpret

•p as plus

•q as equals

•and a sequence of n ‘-’s as the integer n

then we have

a means of checking x+y=z for all non-negative integers x,y and z

We say that pq- is consistent (under the given interpretation) because all
theorems are true after interpretation

We say that pq- is complete if all true statements (in the domain of
interpretation) can be generated as theorems in the system.

We say that the interpretation is isomorphic to the system if the system is
both complete and consistent

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 17

Case Study 2 --- The pq- TRS extension

The pq- system is isomorphic to a very limited domain of interpretation (but
maybe that is all that is required!)

Normally, to widen a domain we can

add an axiom

add a generating rule

For example, what happens if we add the axiom:

xp-qx.

Using this, we can generate many new theorems!

Question: with this new axiom what about completeness and consistency?

Answer: the new, extended system is not consistent with our interpretation.

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 18

Case Study 2 --- The extended pq- TRS reinterpreted
After extension,

--p--q--- is now a theorem but 2+1=2 is not true

To solve this problem we can re-interpret for consistency ---

interpet q as “ >= “

However, we have now lost completeness ---

“2+5 >= 4” is true (in our domain of interpretation) but

--p-----q---- is a non-theorem

Note: this is a big problem of mathematics (c.f Church) ---
it is not possible to have a complete, decidable system of
mathematical properties which is consistent

if all the theorems that can be checked are consistent then there are
some things which we would like to be able to prove as theorems
which the system is not strong enough for us to do

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 19

Case Study 3 --- A tq- TRS

Question:

•can you define a TRS for modelling the multiplication of
two integers

•can you show that it is complete and consistent

Interpretation:

•t as times

•q as equals

•sequences of ‘-’s as integers

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 20

BACK TO THE SOFTWARE PROCESS …

PBL - Imagine you were asked to implement a function, f say, to
calculate the ith prime number.

Thus, given the primes to be 2,3,5,7,11,13,17,19,…,

f(1) =2, f(2) = 3, f(3) =5, …

I assume you could all code this directly in C, C++, Python, Java, Prolog …
How many of you could prove your code was correct?
Where would you even start?

First: formalise requirements
Second: transform requirements into design and prove transformation to be correct
Third: keep correctly transforming design until it is directly implementable
Fourth: implement it

Question - but is this process/sequence fully formal?

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 21

A TRS for formally defining if a number is prime

Note: easier to do in other formal languages/methods because the necessary
concepts (like integers and lists are part of the language)

But, with the TRS we define just what we need and use it only where needed.

In software process it is this targeting (with the minimum force necessary)
which is best …

Question: can you write a TRS for deciding if a given number is prime?

Hint: if not, try to break the problem down into bits

In a more realistic approach, we introduce Abstract Data Types…. IMHO the
most powerful and universally applicable software process formal methods tool.

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 22

From TRSs to Abstract Data Types (ADTs)
ADTs are a very powerful specification technique which exist in many forms
(languages).

These languages are often given operational semantics in a way similar to
TRSs (in fact, they are pretty much equivalent)

Most ADTs have the following parts ---

•A type which is made up from sorts

•Sorts which are made up of equivalent sets

•Equivalent sets which are made up of expressions

For example, the integer type could be made up of

•sorts integer and boolean

•1 equivalence set of the integer sort could be {3, 1+2, 2+1, 1+1+1}

•1 equivalence set of the boolean sort could be {3=3, 1=1, not(false)}

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 23

Case Study 4: A simple ADT specification

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;
0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 24

Case Study 4: A simple ADT specification
TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

Question: how do we show, for example ---

•1+2 = 3,

•3+2 = 4+1,

•2+2 != 3+2

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 25

Case Study 4: A simple ADT specification
TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

ENDTYPE

Note: this model is complete and consistent with respect to the
modelling of the addition of integers (like the TRS pq-)

Question: extend this model to include multiplication

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 26

Case Study 4: An equivalent ADT specification

TYPE integer SORTS integer, boolean

OPNS

0:-> integer

succ: integer -> integer

eq: integer, integer -> boolean
+: integer, integer -> integer

EQNS forall x,y: integer

0 eq 0 = true; succ(x) eq succ(y) = x eq y;

0 eq succ(x) = false; succ(x) eq 0 = false;

0 + x = x; succ(x) + y = x + (succ(y));

x+y = y+x;
ENDTYPE

Consider changing the original specification to make
explicit the fact that x+y = y +x, for all integer values of x
and y:

Note: this does not change the meaning of the specification but it may
affect the implementation of the evaluation of expressions

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 27

Case Study 4: Evaluation termination

If expressions are evaluated as left to right re-writes (as they often are)
then evaluation may not terminate:

3 +4 = 4+3 may be re-written as

4+3 = 3+4 which may be re-written as

3+4 = 4+3 …

Consequently, there are 3 important properties of ADT
specifications:

•completeness
•consistency
•evaluation termination/convergence

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 28

Case Study 4: Incompleteness, inconsistency and termination

Not having enough equations can make a specification incomplete. For example,
the integer ADT specification would be incomplete without the equation:

0 eq 0 = true

Having too many equations can make a specification inconsistent. For example,
the integer ADT specification is inconsistent if we add the equation:

x + succ(0) = x

but adding the equation:

x + succ(0) = succ(x)

would not introduce inconsistency (just redundancy)
Changing the equations may affect termination:

0 + x = x to x + 0 = x

would introduce non-termination to the original ADT specification

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 29

Case Study 5 --- A Set ADT specification

TYPE Set SORTS Int, Bool
OPNS
empty:-> Set
str: Set, int -> Set
add: Set, int -> Set
contains: Set, int -> Bool
EQNS forall s:Set, x:Int
contains(empty, int) = false;
x eq y => contains(str(s,x), y) = true;
not (x eq y) => contains(str(s,x), y) =
 contains(s,y);
contains(s,x) => add(s,x) = s;
not(contains(s,x)) => add(s,x) = str(s,x)
ENDTYPE

Notes:
•use of str and add
•preconditions
•completeness?
•consistency?

Question:
add operations for --

•remove
•union
•equality

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 30

Case Study 6: Set verification

We would like to verify the following properties:

•e ∉ (S-e) = true

•e ∈ S1 ∪ S2 ⇒ e ∈S1 ∨ e ∈ S2

Proof technique: structural induction on the ADT
specification

Question: try it yourselves to see how it goes ...

Invariant Property: verify also that a set never contains any
repeated elements

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 31

Back to the Primes Proof

Question:

•write an ADT specification of a list of integers

•include a means of verifying that it is ordered

•include a function for returning the length

All that is left to do is plug the two parts together and we
have a formal specification (and implementation) of our
prime problem requirements.

Question:

•what use is it to us?

MSc - CCN - Introduction to Software
Engineering (Rigour & Formal Methods)

2017 32

Further Reading

Hall, Anthony. "Seven myths of formal methods." Software, IEEE 7.5 (1990): 11-19.

Bowen, Jonathan P., and Michael G. Hinchey. "Seven more myths of formal methods."
IEEE software 12.4 (1995): 34-41.

Clarke, Edmund M., and Jeannette M. Wing. "Formal methods: State of the art and
future directions." ACM Computing Surveys (CSUR) 28.4 (1996): 626-643

Woodcock, Jim, et al. "Formal methods: Practice and experience." ACM Computing
Surveys (CSUR) 41.4 (2009): 19.

Clarke, Edmund M., E. Allen Emerson, and Joseph Sifakis. "Model checking:
algorithmic verification and debugging." Communications of the ACM 52.11 (2009):
74-84.

Bowen, Jonathan P., and Mike Hinchey. "Ten Commandments of Formal Methods…
Ten Years On." Conquering Complexity. Springer London, 2012. 237-251.

