CSC 7003 : Basics of Software Engineering

J Paul Gibson, D311

paul ..gibsondtelecom-sudparis.eu

Requirements Engineering

/~gibson/Teaching/CSC7003/L3-Requirements.pdf

2017: J Paul Gibson

TSP

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7003/

ILL NEED TO MNOW
YOUR REQUIREMENTS
BEFORE I BTART TO
DESTGN THE SOFTLIARE

£1];

st SCOTIADAMSS ACL COM

& N
FIRST OF ALL,
WHAT ARE YOU
TRYING TD
ACCOMPLISH?
= .

MAKE YOU DESIGN

(I™M TRYING TO
MY SOFTWARE.

€ 2008 Scott Adema, nc. Dt by IS no

fl MEAN WHAT ARE

YOU TRYING TO
ACCOMFLISH WITH

T LUONT KNCLS LUHAT
I CAN ACCOMPLISH
UNTIL YCU TELL ME

WHAT THE SOFTWARE

CAN DO,

2 Soott Adams, Inc/Dist. by UFS

TRY TO GET THIS
CONCEPT THROUGH YOUR
THICK SKULL: THE
SCUF TWAKE CAN DU
WHATEVER I DESIGN
IT TODO! £

1)

JIna.

==
CAN YOU DESIGN
IT TO TLL YOU
MY REQUIREMENTS
\’l
'.k

2017: J Paul Gibson

TSP

Requirements modelling is important in all life cycles

Requirements should
esay what not how
*be customer oriented
*be consistent
*be complete
*be unambiguous

*be useful to designers

Requirements capture and validation 1s probably the most
difficult part of software engineering. It 1s also one of the
most critical parts

2017: J Paul Gibson TSP

Reading Material

Requirements engineering in the year 00: A research perspective, A
van Lamsweerde, 2000

Requirements Engineering: A Roadmap, Bashar Nuseibeh and Steve
Easterbrook, 2000

On Non-Functional Requirements in Software Engineering, Lawrence
Chung and Julio Cesar Sampaio do Prado Leite, 2009

Requirements Engineering, Elizabeth Hull, Ken Jackson and Jeremy
Dick, 2005

2017: J Paul Gibson TSP 4

Requirements: the issues

The world of software engineering cannot always agree on
requirements modelling:

formal or informal
soperational or logical
textual or graphic

eclient-led or analyst-led

2017: J Paul Gibson TSP

Requirements: the issues

My guidelines:

*make the model as ‘formal’ as possible/necessary
*incorporate operational and logical semantics

elet the user (client, analyst or designer) decide on how they want
to view the models (the syntax)

*where possible, let the client construct their own requirements

eanimate/execute requirements specifications as a means of rapid
prototyping
enever force the client to use a vocabulary they don’t understand

enever compromise how the client structures their understanding of
the problem

*don’t let the client make implementation decisions

2017: J Paul Gibson TSP 6

The requirements model — needs to be validated

The model:

eacts as a contract between client and analyst

siImproves communication by attacking risks ---
eclient misunderstands
eclient informs/communicates
*analyst misunderstands
*analyst misleads

*will act as contract with designers

“f think you misunderstood me when
1 said I wanted var fuctory (v go

all green.”

2017: J Paul Gibson TSP

Requirements case study : incompleteness

A typical example 1s that of a stack (or queue):

eclient specifies LIFO behaviour using push

and pop (nr?mm FOFETON m) I< EXCEPT THIS (NE |
EVEYY RLLE, : 1 e W men e
the case: popping from

empty 1s not specified so what to do -

sreturn to client and ask them what 1s

required

eJeave it up to the implementers to decide
only if the client thinks that this 1s best

Note: formal methods can help identify incompleteness

2017: J Paul Gibson TSP

Requirements case study : inconsistency

A typical example 1s that of a double honours student

eclient specifies that student can do two different subjects

eclient allows students to change one of their subjects

Problem: by changing one subject, a student can end up
studying two subjects which are the same

Solution: make the client remove the inconsistency (don’t just
hide a fix away in the design/implementation)

Note: formal methods can help 1dentify inconsistency

2017: J Paul Gibson TSP 9

Requirements case study : non-(implementable/feasible)

Try and make sure you are not asked

to do something which can’t be done : . V/) CANCIEC .

*Implement a set of inconsistent : S
b 2| MaN WANTED [Soces
requirements : Wi TH | ReP
2| &4-0 YRS gy
Implement a set of uncomputable | ExperiENCE
: gt — A el
requirements vsT BE <

pedyawl g ysiag

Implement a set of requirements that
are unrealistic given today’s
technology

Sl

ST TSNS ALY

2017: J Paul Gibson TSP

10

Requirements case study : under-specification
Under-Specification occurs when requirements are too vague

Under-specification 1s easy to identify as 1t usually corresponds
to the expression of an idealistic goal, leaving the reader with no
1dea of how one could check whether a given system actually
meets the goal, or even 1f such a system could exist.

An example of this is an EU e-voting requirement [standard 65]:

“The presentation of the voting options shall
be optimised for the voter.”

2017: J Paul Gibson TSP 11

Requirements case study : over-specification

Over-Specification occurs when requirements are too concrete

Over-specification is easy to identify as it usually manifests itself in
a sentence of the form: “you must use X because X does Y.

Clearly, a requirements document would be better saying “you must
do Y”, and 1t could even state “and X is an alternative way of
guaranteeing Y.

Otherwise, if we had a machine that “uses Z to do Y then this
machine would be rejected even though 1t met its requirements.

An example of this is an EU e-voting requirement [standard 66]:

“Open standards shall be used to ensure that the various
technical components [. . . | interoperate”

2017: J Paul Gibson TSP

12

Requirements case study : keeping client structure

A typical example is that of a client who structures their understanding in
terms of components with which they are familiar. For example, a client
who wants:

a system of 2 stacks where we can push elements onto one stack and
pop elements of the other. When a pop is requested, all elements on the
first stack are popped off 1-by-1 and pushed onto the second stack I-
by-1.. Then, the last element is popped off. Finally, all the remaining
elements are popped off the second stack and pushed on the first
(again, 1-by-1)

Problem: this is in fact a queue!
Solution 1: explain queues to the client

Solution 2: transform automatically at the first design stage

Note: here the structure of the client’s understanding must be respected

2017: J Paul Gibson TSP 13

Problem Based Learning : a lift

Specify the requirements of a lift/elevator without making
any implementation decisions:

esay what not how
identify and formalise the client’s vocabulary
comment on validation

*how easy i1s it to verify a design/implementation?

Practical Work — working in teams (or alone) - specify —he
requirements of a lift/elevator system... you should need
about 60 minutes then we’ll try to evaluate how good
they are

2017: J Paul Gibson TSP

14

HINT - be careful about ambiguity

mwuw.oos-eookms.com /
& <]

e
> il

s
DowN Boy.

Reprinted from Funny Times / PO Box 18530/Cleveland Hts. OH 44118
phone: 216.371.8600 / email: ft @ funnytimes.com

2017: J Paul Gibson TSP

