
TSP MSc CCN: Software Engineering2017: J Paul Gibson 1

CSC 7003 : Basics of Software Engineering

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7003/

Software Process Life Cycle

~gibson/Teaching/CSC7003/L10-Process.pdf

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC7003/

TSP MSc CCN: Software Engineering2017: J Paul Gibson 2

Object Solutions: Managing the
Object-Oriented Project, Grady
Booch

Recommended text

Many of our initial
recommendations are taken from
this text.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 3

Why Do Software Projects Fail (Often) ?

Most often it is because of:

•A failure to properly manage the risks

•Building the wrong thing

•Being blinded by technology

Adopting a good software process life cycle will help us address
these failure modes.

Adopting a good software process life cycle does not guarantee
success.

We can never have a completely rational development process

We will concentrate on software engineering process life cycle:

TSP MSc CCN: Software Engineering2017: J Paul Gibson 4

Failure to Manage Properly

As projects progress, they often seem to lose their way:
•Unrealistic schedules and plans are drawn up

•No-one has the nerve to stand up and acknowledge reality

•Many problems are viewed as ‘a simple programming matter’, even when
they are process or architecture concerns

•Project direction is set by the most ‘stubborn’ participants because it is
easier for management to let these people have their way.

•Free fall --- No one takes responsibility and everyone waits for the
impact.

•Petty empires form … issues become political

KEY: Management must actively attack a project’s risks

TSP MSc CCN: Software Engineering2017: J Paul Gibson 5

But don’t over-manage (the risks)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 6

Failure from Building the Wrong Thing

Projects can also lose their way because they go adrift in
completely uncharted territory:

•There is no shared vision of the problem being solved.

•The (development) team is clueless as to the final destination

•No-one takes time to validate what is being built with end-users or
domain experts

•Analysts understand the real requirements, but for a number of political/
social reasons, this understanding never reaches the designers/
implementers

•A false air of understanding pervades the project.
•Everyone will be shocked when users reject the delivered software.
•This is known as working in a vacuum.

KEY: Involve real users throughout (development) process

TSP MSc CCN: Software Engineering2017: J Paul Gibson 7

Failure from Being Blinded By Technology

Don’t be blinded by the technology being used to build the
software itself:

•Tools can break (be erroneous) … be ready for it

•Project complexity can grow exponentially … can your tools scale up
accordingly?

•Third-party suppliers often do not deliver on promises (if at all)

•Hardware advances can out-run software development
•Technology can fuel changes to users’ expectations

•New languages/tools/methods are prone to premature adoption

KEY: Do not bind your project/process to any single-source
technology (except if it is a known risk which is outweighed by
the competitive advantage offered)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 8

No process is perfect

Even the most successful projects seem to take longer, involve more effort, and
require more crisis management than we really believe they ever should. We must
never rely on the process pulling a project through. The process can never be
completely rational:

•Users typically don’t know what they want
•Users typically can’t express what they want
•Requirements are incomplete and/or change
•Implementation architectures change
•We all bring intellectual/technological baggage to projects
•Systems built by humans are always subject to human error
•Fundamental limits to the amount of complexity which can be handled

KEY:Make your process as rational as possible and
understand the fundamental limits

TSP MSc CCN: Software Engineering2017: J Paul Gibson 9

Decisions and Compromises

Every software engineering project is about making compromises.

Many steps of development involve technical decisions.

A software process provides a framework to help developers make
compromises/decisions in a consistent and coherent fashion.

Strategic decisions have sweeping, perhaps global, implications on
the system being developed

Tactical decisions are localised and have little to do with the
primary reasons why software projects fail, although they will
have impact on strategy.

A good software process allows freedom in tactics whilst
supporting more-rigid strategy.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 10

Identifying Primary Characteristics For Strategy

It is impossible for a system to be perfect. At the beginning of a
project, we must decide upon the primary characteristics which will
drive the project. A good software process lets one evaluate
characteristics such as:

•Time-to-market
•Completeness
•Performance
•Quality
•Fault tolerance
•Scale-ability
•Extensibility
•Portability
•Re-usability
•Cost

KEY: The task of software
management is to balance a
set of requirements to
produce a system that is
optimal for its essential
minimal characteristics

TSP MSc CCN: Software Engineering2017: J Paul Gibson 11

Project Styles --- providing a focus

There are many different ways of balancing project characteristics.
Certain styles are commonly seen in most industrial projects. These
styles correspond to the drive towards a certain focus:

•Calendar-driven

•Requirements-driven

•Documentation-driven

•Architecture-driven

•Quality-driven

KEY: A good software process should help you to focus

TSP MSc CCN: Software Engineering2017: J Paul Gibson 12

Calendar-driven Projects

These are often characterised by an obsessive focus on the schedule.
Decisions are made primarily to meet the next deadline and such short-term
expediency is usually detrimental to the project.

But, a good process should force the project members to be aware of the
importance of schedule without making it too important.

There are times when an obsessive calendar-driven approach is the only solution:

•the organisation will be out of business if project delivery is late
•the delivery deadline is fixed and critical
•if it is the only way to break into a market (typically for a young company)

KEY: A calendar-driven approach should be used only
when really necessary

TSP MSc CCN: Software Engineering2017: J Paul Gibson 13

Requirements Driven Projects

Focus on external, observable, behaviour of system:
•Decisions are made primarily according to local needs of each requirement.

•More likely to slip schedules to reach required functionality

•Quality is usually only related to meeting requirements expressed

•Documentation usually adds little other than tracing what-to-how

•Little motivation for scale-ability, extensibility, portability or re-usability
(unless explicitly stated as a requirement)

KEY: A requirements-driven approach is best when the observable
behaviour is well-defined and largely unchanging. It often yields a
system that is fairly optimal for a static set of needs.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 14

Documentation Driven Projects

One of the most common/popular, but…
•Generally, not a good way of developing software

•Worst aspects of calendar-driven and requirements-driven

•Management imposes controls on creative aspects of project

Documentation is important, but …
•No more than 5% of project documentation is ever critical

•Gratuitous documentation can be very expensive

KEY: the only time documentation should drive a project is
when the documentation is central to requirements (e.g. when
developing a library of re-usable components).

TSP MSc CCN: Software Engineering2017: J Paul Gibson 15

Architecture Driven Projects

These represent the most mature style of development… if not the best!

Focus on creating a framework which is both rigid to known requirements and
flexible to new requirements.

They are an evolutionary step above requirements driven approaches

Support scale-ability, extensibility, portability, re-usability

KEY: An architecture-driven style is usually the best approach
for the creation of most complex software-intensive systems.
Object oriented methods are generally accepted as being the
most architecture oriented ...

TSP MSc CCN: Software Engineering2017: J Paul Gibson 16

Quality Driven Projects - the need for rigour

Focus on quantifiable measures and mostly concentrate on external system-
wide behaviours:

•seconds of down time per year/decade

•number of transactions per second

•mean time between failures ...

Other measures may focus on internal, software specific measures:

•‘shape’ of class hierarchy

•complexity of individual classes ...

Decisions are usually made to optimise the selected measures.

KEY: Quality is essential in some safety-critical domains and
must never be compromised when lives are at stake.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 17

Software Engineering – for correctness

•We emphasise correctness as being critical to all good software
engineering.
•Correctness can be built-in through rigorous engineering discipline
at all stages of development
•Correctness does not come for free
•It is not just an all or nothing choice
•We must know how to engineer to different degrees of confidence
in our correctness, no matter what else is driving our engineering
process

TSP MSc CCN: Software Engineering2017: J Paul Gibson 18

Software Engineering Process Life Cycle

Having a good process depends on:

•Understanding software and software engineering
•Understanding the software life cycle
•Measuring Process Quality
•Improving Process Quality
•Matching life cycle to process
•Managing life cycle (complexity)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 19

Software Engineering and Life Cycle Models

•What is (software) engineering?

•What is a software (engineering) process?

•What is the software life cycle?

•What is a life cycle model?

•Why are these symbiotic?

TSP MSc CCN: Software Engineering2017: J Paul Gibson 20

What is Engineering?

Ask any engineer and they will all come up with a different answer;
here’s mine:

Engineering is the construction (or design) of solutions to problems: based
on the foundation of science, implemented by the force of technology, aided
by experience and fed by intuition.

Now, we ask ‘what is science’. Again, here is my personal view:
Science is the synthesis and analysis of mathematical models, based on
observation and experiment, used to capture properties (and define
abstractions) of the real world.

Finally, we ask ‘what is mathematics’. Here is my favourite:
Mathematics is speaking the language of nature

Note: these definitions correspond to actions or processes
(verbs). We can easily talk about a body of work (or study)
associated with these actions in order to define them as nouns

TSP MSc CCN: Software Engineering2017: J Paul Gibson 21

What is Software Engineering?

The establishment and use of sound engineering principles
(methods) in order to obtain economically software that is
reliable and works on real machines

(Bauer, F. L. Software Engineering. Information Processing 71., 1972).

Mr. Bauer was a principal organiser of the 1968 NATO conference that
led to the widespread use of the term "software engineering."

(2)The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance
of software; that is, the application of engineering to
software
The study of approaches as in (2) (IEEE Std 610-1990).

TSP MSc CCN: Software Engineering2017: J Paul Gibson 22

What is Software Engineering ? … continued

the technological and managerial discipline concerned with
systematic production and maintenance of software products that
are developed and modified on time and within cost estimates

(Fairley, R. Software Engineering Concepts. McGraw-Hill, 1985).

the computer science discipline concerned with developing large
applications. It covers not only the technical aspects of building
software systems, but also management issues, such as directing
programming teams, scheduling, and budgeting

(WebReference Webopedia).

TSP MSc CCN: Software Engineering2017: J Paul Gibson 23

What is Software Engineering? …the process view

Engineering is about making useful things, software engineering is
about making useful software!?

Software engineering is an approach to various software lifecycle activities that
emphasises the use of systematic techniques to attain specified quality objectives:

•Life cycle activities: specification, design, implementation, testing,
maintenance, evolution, reuse.
•Systematic techniques: methodologies of disciplined development,
processes involving specified analyses and measurements, repeatability.
•Quality objectives:

• Correctness, reliability, robustness, safety.
• Security, privacy.
• Performance, economy.
• Usability (user-friendliness), predictability, interoperability.
• Portability, modifiability, adaptability.
• Reusability.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 24

Software engineering: problem solving (using a computer)

What How

Problem Solution

Informal Formal

Abstract Concrete

KEY: going from
left to right requires
structure,
communication and
transformation

TSP MSc CCN: Software Engineering2017: J Paul Gibson 25

What is the Software Process?

A process is a systematic approach performed to achieve a
specific purpose.

A software process is the set of activities, methods, practices,
and transformations used to develop software and associated
products that are released with it.

Software Process Capability is the range of expected results that
are achievable by following the software process.

Software process performance is the actual result achieved in
the development of software by following a software process.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 26

Software Process Maturity is the extent to which a Software
Process is defined, managed, controlled, measured and effective.

Capability Maturity Model Integration (CMMI)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 27

What is the Software Process? … continued

There is a Capability Maturity Model (CMM) for Software Process
where the SEI (Software Engineering Institute) describes 5 levels
of maturity:

•Initial
•Repeatable
•Defined
•Managed
•Optimising

We will (briefly) look at each of these in turn. The
categorisation gives some insight into what a software
process is trying to achieve.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 28

CMM: Level 1 - Initial

The lowest level:

• software process is ad hoc

• few formalisms

• managers fly by gut feel and seat-of-pants

• success depends on individual efforts and heroics

The capability is a characteristic of individuals, not the organisation.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 29

CMM: Level 2 - Repeatable

• basic process are established
• basic software management controls
• procedures to implement policies
• a process discipline is in place
• realistic commitments
• earlier success can be repeated on similar applications

 The process is disciplined.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 30

CMM: Level 3 - Defined Level

• management practices are defined and documented
• peer reviews, inter-group co-ordination, training
• engineering practices are defined and documented
• practices are integrated into a standard process
• all projects use a tailored form from the generic model of
project management

 The capability of level 3 institutions is standard consistent
 as the process is stable and repeatable

TSP MSc CCN: Software Engineering2017: J Paul Gibson 31

CMM: Level 4: Managed Level

• Measures of the software process and product quality
are employed.
• The software products and process are quantitatively
understood and controlled.

 Organisations are quantified and predictable because
 the process is measured.

 The firm can predict trends in process quality.

 The process is understood and variations analysed,
 understood and correct.

 Products are of predictable high quality.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 32

CMM: Level 5: Optimising Level

 Improvements in SPM suggested by previous development
 are fed back into the generic SPM in use.

 New technologies and methodologies are piloted and
 incorporated if successful.

 Defect prevention methods are in place.

Such firms are adaptive with continually improving capabilities.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 33

Automating the Software Process --- Tools

Software process automation has much in common with the field of
business process automation

Workflow and workgroup products can be used in both fields, and
some commercial products are targeted to both markets

Apart from the fact that the applications tools used will not always
be the same in both areas, the complexity of interactions between
tools and the complexity of processes in the software field are
likely to be more pronounced.

Thus, we most look at the underlying life cycle which is unique to
software, and analysis the modelling of this life cycle as a means of
incorporating our understanding in the process tools

TSP MSc CCN: Software Engineering2017: J Paul Gibson 34

What is the Software Life Cycle?

The software life cycle is the collection of phases through which
a software product passes from initial conception through to
retirement from service.

•Every software product has a life cycle.
•Life cycles are typically quite long—some software products have
been “alive” for 30 years.

Life Cycle Phases - Implicitly or explicitly, all software products go
through at least the following phases:

• Requirements—determine customer needs and product constraints
• Design—determine the structure/organisation of the software system
• Coding—write the software
• Testing—exercise the system to find and remove defects
• Maintenance—correct and enhance product after customer deployment

TSP MSc CCN: Software Engineering2017: J Paul Gibson 35

Software Life Cycle Models

A process is a collection of activities, with well-defined inputs
and outputs, for accomplishing some task.

A life cycle model is a description of a process for carrying a
software product through all or part of its life cycle.

•Life cycle models tend to focus on major life cycle phases and their
relationships to one another.
• Recent work on software processes has examined many aspects of
development and maintenance in great detail.
•A life cycle model is a software process description, but the term life cycle
model predates recent discussions of software processes.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 36

Life Cycle Models and the Software Process

The core of any software project is the coding ---architecture,
abstraction, implementation

Life cycle models revolve around this core --- how does the
software evolve as the project progresses?

All life-cycle models are based on the simple idea of feedback
--- synthesis and analysis are mutually defined and recursively
interdependent.

The differences between the life-cycle models lie in the ways in
which the feedback is organised.

Note: the non-core (support) aspects of software process are
also open to feedback … as are most complex systems

TSP MSc CCN: Software Engineering2017: J Paul Gibson 37

Trial and Error

•The most primitive life cycle model is trial and error, sometimes

called build-and-fix or hack-and-foist

•In this life cycle model, the first version of the system is built

without planning, documentation, or control

•If the product is accepted, the developers face an interminable

period of confusion, frustration, and drudgery fixing an endless

stream of problems

The feedback can be very primitive --- will we accept the first
and only version of the system (yes/no)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 38

Exploratory Programming

A bit better than trial-and-error (but not much):
•it establishes feedback before delivery to customer

•it allows multiple feedback

•it separates specification from implementation

TSP MSc CCN: Software Engineering2017: J Paul Gibson 39

The Waterfall Model

The waterfall model is the oldest life cycle model; is was
proposed by Winston Royce in 1970.

This model is called a waterfall because it is usually drawn with
a cascade of activities through the phases of the life cycle
“downhill” from left to right:

•analysis, requirements, specification, design, implementation,
testing, maintenance

There are many versions of the waterfall model:

•the phases can be structured to different levels of detail
•the feedback can be more or less flexible

TSP MSc CCN: Software Engineering2017: J Paul Gibson 40

Non-strict Waterfall Model

Although the waterfall model stresses a linear sequence of
phases, in fact there is in practice always an enormous amount of
iteration back to earlier phases, a point made by the arrows
leading back up the waterfall, in the following diagram.

Note: feedback is only from testing phase to any previous stage

TSP MSc CCN: Software Engineering2017: J Paul Gibson 41

Analysis of waterfall method

Strengths:
•Emphasises completion of one phase before moving on
•Emphasises early planning, customer input, and design
•Emphasises testing as an integral part of the life cycle
•Provides quality gates at each life cycle phase

Weaknesses:
•Depends on capturing and freezing requirements early in the life cycle
•Depends on separating requirements from design
•Not politically feasible in some organisations
• Emphasises products rather than processes

TSP MSc CCN: Software Engineering2017: J Paul Gibson 42

Iterative Feedback Model

Like the waterfall method except that feedback is allowed from
any phase to the previous phase.

Note that we can still jump anywhere from testing!

TSP MSc CCN: Software Engineering2017: J Paul Gibson 43

Contractual Models: a more formal approach

Like the iterative method except that feedback is allowed
only from any phase to the previous phase.

Note that we can no longer jump anywhere from testing!

Phase(x)

Phase(x+1)

Phase(x-1)

Contractual
boundary

Contractual
boundary

Phase(x) produces a solution to
its contract with x-1, which in
turn acts as a requirement to its
contract with x+1

TSP MSc CCN: Software Engineering2017: J Paul Gibson 44

Prototyping Models

A prototype is a working model of (part of) a final system.
Prototypes can be used in two ways:

• in the requirements or design phases of a waterfall model, called
throwaway prototyping or rapid prototyping
•in a prototype evolution model, also called iterative enhancement,
incremental development, or exploratory programming

Prototyping is becoming more popular all the time, and people often
refer to prototypes in the literature.

Unfortunately, a variety of terminology is used, so it is often
difficult to tell what is meant when people discuss prototyping.

Note also that rapid prototyping and prototype evolution are very
different uses of prototypes.

TSP MSc CCN: Software Engineering2017: J Paul Gibson 45

Rapid Prototyping

Strengths:
•Requirements can be set earlier and more reliably
•Requirements can be communicated more clearly and completely
•between developers and clients
•Requirements and design options can be investigated quickly and
cheaply
•More requirements and design faults are caught early

Weaknesses:
•Requires a rapid prototyping tool and expertise in using it–a
cost for the development organisation
•The prototype may become the production system

TSP MSc CCN: Software Engineering2017: J Paul Gibson 46

In a prototype evolution life cycle, an initial set of requirements is
used to build a rough prototype than can then be evaluated by
clients and developers alike. Feedback is then used to fix and
extend the requirements,followed by revision of the original
prototype. This cycle can continue as long as necessary, ending
only when a satisfactory product has been developed.

Prototype Evolution Model

Strengths:
•Avoids building systems to bad requirements
•Delivers a working system early and cheaply
•Fits top-down implementation and testing strategies
•Probably improves developer productivity

Weaknesses:
•Users may become frustrated:
•The process may collapse into trial & error
•It is difficult to measure progress or estimate completion times
•Systems tend to develop poor design structures, leading to maintenance
problems

TSP MSc CCN: Software Engineering2017: J Paul Gibson 47

Generic Spiral Model Barry W Boehm

TSP MSc CCN: Software Engineering2017: J Paul Gibson 48

Design Oriented Process: because everything is design

TSP MSc CCN: Software Engineering2017: J Paul Gibson 49

Model Driven Development/Architecture (MDD/MDA)

Code
Generation

Computation
Independent
Model (CIM)

Platform
Independent
Model (PIM)

Platform
Specific
Model (PSM)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 50

Agile Methods
The chief aim is that each
short iteration produces a
functional, usable piece of
software

TSP MSc CCN: Software Engineering2017: J Paul Gibson 51

Agile Examples: Scrum

TSP MSc CCN: Software Engineering2017: J Paul Gibson 52

Agile Examples: Extreme Programming (XP)

TSP MSc CCN: Software Engineering2017: J Paul Gibson 53

Agile Examples: Extreme Programming

TSP MSc CCN: Software Engineering2017: J Paul Gibson 54

Tests Driven Process: Build tests in parallel with code

Specification

Initial Design

Detailed Design

Coding (system and tests)

Unit Tests

Integration Tests

preparation

preparation

preparation

execution

execution

execution

Validation Tests

TSP MSc CCN: Software Engineering2017: J Paul Gibson 55

Life Cycle Model Complexities:

We have looked at models which are abstractions of what actually
happens in the real world. As for all abstractions we try to
emphasise what is important and hide what is irrelevant. But, this
process is never perfect. So we should bear in mind the following
aspects of the process which may complicate our life-cycle models:

•Working in parallel – Versioning and Change management

•Re-use – Versioning and Change Managment

•Top-down, bottom-up, inside out, …

NOTE: never forget that the people – not the machines/
procedures - are the key components of the process. Managing
people is difficult/complex!

