
TSP (MSc CCN)2017 1

Software Engineering and Ethics:
when code goes bad

Once upon a time, estimates for the Strategic Defense Initiative (SDI or
``Star Wars'') claimed that there would be 30 million lines of code, all bug
free. This is at least three orders of magnitude greater than ever has been
achieved. ... What have we learned since then?

TSP (MSc CCN)2017 2

Lecture Plan It is a bad plan that admits
of no modification

•Software Crisis

•Ethics

•Software Engineering

•Software Engineering and Ethics

•The root of the problem - computer science boundaries?

•When code goes bad - education through classic examples

•Proposals for the future

Publilius Syrus

3

Software Crisis

Do you recognise this?

TSP (MSc CCN)2017 4

Software Engineering and “Bugs”
When everyone is wrong
everyone is right

QUESTION: What’s the difference between hardware and
software ?…

buy some hardware and you get a warranty, buy
some software and you get a disclaimer

The software crisis:
•always late
•always over-budget
•always buggy
•always hard to maintain
•always better the next time round … but never is!

This doesn’t seem right … where are our ethics?

Does this really exist?

Nivelle de La Chaussee

TSP (MSc CCN)2017 5

Is there really a crisis? …
 … look at the advances we have made

To avoid crisis, just hire
the best people

Success in software development depends most upon the quality of the
people involved.

There is more software to be developed than there are capable developers
to do it.

Demand for engineers will continue to outstrip supply for the foreseeable
future.

Complacency has already set in … some firms acknowledge that many of
their engineers make negative contribution. Some engineers don’t care.

Hence, more and more software development will be in crisis.

What can we do about this? … Try and make software engineering a true
engineering discipline. Try and make better (ethical) engineers.

6

Ethics

TSP (MSc CCN)2017

TSP (MSc CCN)2017 7

What are ethics and what can they do
for me? A man who moralises is

usually a hypocrite

The doctrine of morals; A moral philosophy; A system of moral principles

Morals - generally to do with right and wrong

Ethics in software engineering would define an acceptable code-of-practice.

We already have such codes-of-practice in law, medicine, architecture, etc..

Usually, they are defined and enforced by a particular professional body…

Such structures are in place for engineers.

However, for software engineers there is only a voluntary code of practice
which is ill-defined, imprecise, ambiguous and not specific to problems
particular to software engineering.

Typical attitude: I’ve got better things to think about

This attitude is not unique to software engineers … the Challenger Disaster
provides a good example.

Oscar Wilde

TSP (MSc CCN)2017 8

According to the Report of the Presidential Commission on the Space Shuttle Challenger
Accident, evidence pointed to the right solid rocket booster as the source of the accident…
this is well known because of Richard Feynman

In January of 1987, nearly a full year after the Challenger exploded, Roger Boisjoly (A
NASA scientist) spoke at MIT about his attempts to avert the disaster during the year
preceeding the Challenger launch:

In 1985 Boisjoly began work to improve the O-ring seals which connect segments of the
solid rocket booster. [...] He repeatedly warned them of potential dangers! Yet, a flawed
design went into production as the scientists’ issues were continually overlooked.

For his honesty and integrity leading up to and directly following the shuttle disaster,
Boisjoly was awarded the Prize for Scientific Freedom and Responsibility by the American
Association for the Advancement of Science.

FOOTNOTE: None of his superiors was ever taken before a court-of-law (some of them
were even promoted a few months after the enquiry!)

The Challenger Disaster... A 1-in-a-billion bit of bad luck

TSP (MSc CCN)2017 9

Where is the science in
software engineering?

The Challenger example illustrates the need for the engineers to listen to the
scientists… this is even more of a problem in software engineering.

Problem 1: software engineering is technology driven and therefore our
fundamental understanding of computers, programs, algorithms, information, etc
… would seem to be aiming at a moving target

Problem 2: computer scientists and software engineers speak different languages,
and are unsympathetic to each other’s problems

Problem 3: efforts to bring mathematical rigour to programming quickly reach a
level of complexity that makes the techniques of verification subject to the very
concerns that prompted their development in the first place!

Computer Science can’t demonstrate
to the software engineering people on
a sufficiently large scale that what it is
doing is of interest or importance to them.

Christopher Strachey

TSP (MSc CCN)2017 10

The study of ethics is a necessary part of the education of every software engineer.

Software Engineering Ethics involves any decision made by a software engineer
during the design, development, construction and maintenance of computing
artifacts. Learning how to make these decisions is an essential part of the technical
education of a software engineer.

•Base level - don't lie, cheat, steal, hurt etc..- an ethical commitment to minimal
morality!

•Professional level - like any other professional ethics in requiring a special
commitment to the public served and affected by the profession - an ethical
commitment to public well being.

•Engineering level the responsibilities within software engineering, which are
closely related to the state of the art: an ethical commitment to quality work.

Software Engineering and Ethics Morality is a private and
costly luxury

Henry B Adams

11

The root of the problem - computer science boundaries?

TSP (MSc CCN)2017 12

Fundamental Boundaries of Computation

To be as good a software engineer as you can be requires you to understand
the boundaries of computation as defined by computer science.

To ignore the theoretical basis should open you to accusations of
malpractice… no other engineering/professional discipline would let you
get away with it.

I have spoken to senior, experienced, well-respected software engineers
whose projects have got into a crisis because they didn’t understand the
following fundamentals:

•Computability
•Complexity
•Correctness
•Common Sense

The overall malaise is one of complacency

Man is still the most
extraordinary
computer of them all

JFK

TSP (MSc CCN)2017 13

Computability The Feynman Problem-Solving Algorithm:
(1) write down the problem; (2) think very hard; (3)
write down the answer.

The Church-Turing thesis proposes that each one of a variety of different
formal systems adequately define the intuitive concept of (effectively)
computable

The complementary nature of the work by Godel, Church, Turing, Rosser,
Kleene and Post is a great illustration of the way in which mathematics and TCS
(sometimes) walk along the same paths.

Undecidability is, IMHO, the most important lesson for all computer scientists.

The Turing machine model of computation is fundamental in that it identifies a
set of machines which, through historical evidence, almost certainly correspond
to modern electronic computers.

COMMENT: it is surprising how many software engineers waste their time
trying to solve the halting problem

Murray Gell-Mann

TSP (MSc CCN)2017 14

Complexity Attempt the end, and never stand to doubt;
Nothing's so hard, but search will find it out.

A different, yet related, problem is that of complexity – not all computational
problems which can be solved in principle can be solved in practice: the
computational resources required may be prohibitive.

In the standard (Turing) model of computation, complexity theory identifies
time and space as fundamental resources; and within this framework the most
challenging area of study is precisely the boundary between ‘easy’ and
‘difficult’ problems (P vs NP).

Recent research has applied evolutionary models of computation to stretch
the boundary between P and NP, in specific subsets of classes of difficult
problems.

COMMENT: it is surprising how many software engineers waste their time
by not understanding intractability.

Robert Herrick

TSP (MSc CCN)2017 15

Common Sense

It is accepted that no current computer system exhibits intelligent behaviour
comparable to that seen in most living organisms.

Intelligence - like computer science and software engineering - is about problem
solving. We must ask why some problems appear to be more complex than others.

In every other engineering discipline, estimations of complexity are built upon
scientific foundations… not ours!

•Be wary of any SE model which claims to exhibit common sense when
judging complexity

•Be wary of any SE model which claims to remove the need for common
sense when judging complexity

Many great results in software engineering research are just common sense

COMMENT: it is surprising how many software engineers waste their time by
trying to build intelligence when they don’t know what it is

Logic is one thing and
common sense another

Elbert Hubbard

TSP (MSc CCN)2017 16

Correctness I have a good idea why it's hard to verify
programs. They're usually wrong.

How to prove that a system is correct (bug free)

Define correctness as a mathematical relationship between a specification and
an implementation.

The specification may contain a set of properties that need to be verified.

Verification is not validation .. where we check correctness of the original
specification ‘informally’… and formally (consistency and completeness)

Systems may be incorrect if they are developed from an incorrect
specification -- this is a requirements modelling problem

Systems may be incorrect if a design decision introduces unwanted behaviour.
COMMENT: it is surprising how many software engineers do not understand
that the ends of this development chain are the weakest points… and it is even
more surprising how many software engineers do not know what correctness
is!

Manuel Blum

TSP (MSc CCN)2017 17

Complacency He that is too secure is not safe

Developers:
Anyone can build and sell software

Educators:
Software development is not a profession because it is not taught like one

Researchers:
Much of their work is camouflaged theory or poor project management

Qualifications:
No qualification in SE guarantees an acceptable minimum standard of engineer

Customers:
Quality of life depends on quality of software, yet we accept faulty software as
a matter of course

Thomas Fuller

TSP (MSc CCN)2017 18

Everyone writes software! The secret of all good writing
 is sound judgement

Who programs? -
Engineers, scientists, computing graduates, psychologists, mathematicians,
businessmen, teachers, gardeners, school children ….

Who knows the science of software?-where is the sound judgement?-
Few of the above, even the graduates!

An unthinkable solution:
Stop everyone from programming

A better (more ethical) solution:
Provide a clear, 2-tier system of software engineers where the qualified
engineers continually work to attack the root of the problem.

The root of the software crisis:
Current software standards are weak, superficial, and not based on software science

Horace

19

When code goes bad - education through classic examples

TSP (MSc CCN)2017 20

When code goes bad … learning by example Learn as though you
 would never be
 able to master it

There are 1000s of software horror stories (many of them untrue)

They are often memorable because of their comic nature

They can also be tragic

Some are trivial to explain to a non-engineer

Some are very complex to understand, even for software engineers

The most important thing is that they make us think, and that we can learn
from them.

Confucius

TSP (MSc CCN)2017 21

Reason: The Apollo 11 software had a bug that made gravity repulsive instead of
attractive …

Analysis: The chief engineer asked the programmer involved did he learn nothing
from Sir Isaac Newton?

Who was to blame: ??

Ignorance is the only universal constant
that is universally ignored

Problem: Apollo 11’s main navigation system crashed and secondary system
had to be installed (on the fly) .. reducing the number of scheduled tests by
50%, at an estimated cost of 120 million dollars.

APOLLO 11

22

Apollo 11 - would unsigned integer types have helped?

void foo(void)
{
 unsigned int a = 6;
 int b = -20;
 (a+b > 6) ? puts("> 6") : puts("<= 6");
}

This example C code illustrates 1 of the many problems
with unsigned integers, if you don’t know your language
very well!

TSP (MSc CCN)2017

TSP (MSc CCN)2017 23

Problem: Gemini V landed 100 miles off course

Reason: some programmer was a bit weak on physics. The correct elapsed
distance (the key variable in this case) should have been calculated by using the
Sun as a fixed reference point and not a point on the Earth. The programmer
instead used elapsed time, thinking the reference point on Earth returns every 24
hours. (The value of 24 is ~ 1.00273790935 of the correct value). This
difference results in only a few hundred miles in our solar system!

Analysis: the chief software engineer stated that none of his team knew about the
inaccuracy of the 24-hour day … and had coded it as an exact integer!

Who was to blame: ??

You mean Pi isn’t exactly twenty two
over seven? Nobody told me

Gemini V

24

Gemini V - rounding errors are universal

public class Main {
 public static void main(String[] args)
{
 double a = 0.7;
 double b = 0.9;
 double x = a + 0.1;
 double y = b - 0.1;
 System.out.println(x == y);
 }
}

Consider this Java code, what would you expect it to give as output?

System.out.println(Math.abs(x - y) < 0.0001);

Comparing ‘reals’ should always include a precision/error value -

TSP (MSc CCN)2017

TSP (MSc CCN)2017 25

Problem: On October 5, 1960, the North American Defense Command (NORAD)
went to 99.9% alert … just minutes from a defensive counter strike

Reason: programmers forgot that the Moon rises and would show on radar.

Analysis: the moon did not even appear in the requirements model … why would
we want to shoot at the moon?

Who was to blame: ??

Why would we want to
shoot at the moon?

NORAD - Modelling the moon

26

NORAD - Modelling the moon

Finding the right level of
abstraction is very difficult

TSP (MSc CCN)2017

TSP (MSc CCN)2017 27

Problem: On June 3, 1980, and again on June 6, 1980, NORAD (again!) went to
full alert and tried to launch everything.

Reason: Training tapes had been loaded onto the live system.

Analysis: there was no way physically or electronically to distinguish training tapes
from recording tapes without actually running the tapes!

Who was to blame: ??

The quickest way of
 ending a war is to lose it

NORAD - training for disaster

George Orwell

28

NORAD - training for disaster

Exactly the same type of problem has been reported for e-
voting machines

TSP (MSc CCN)2017

TSP (MSc CCN)2017 29

Problem: On July 3, 1988, the U. S. Aegis cruiser Vincennes - jammed to the
gunnels with computers, radars and the fanciest equipment afloat - shot down an
Iranian airliner that had complied with every restriction placed on a civilian aircraft
in the area.

Reason: it appears that the crew panicked and misinterpreted the information
presented -- in effect, they drowned in information. The one man who needed the
information, Captain Rogers, could not get a clear picture of what was going on
because there was no one computer station that had the complete picture.

Analysis: Reverse engineering the scenario showed that the data across different
machines was inconsistent … no wonder the poor man made a bad decision!

Who was to blame: ??

Without knowledge, life is no
more than the shadow of death

HCI Problems & ‘big’ data

Moliere

30

HCI Problems: information overload

TSP (MSc CCN)2017

TSP (MSc CCN)2017 31

Problem: In July of 1983, Air Canada Flight 143, a brand-new Boeing 767,
made an emergency landing at an abandoned RCAF airfield at Gimli, Manitoba.

Reason: Their problems began when a microprocessor that monitors fuel supply
malfunctioned. This cut off the engines and the electrical power.

Analysis: Boeing engineers thought it would be impossible to lose both engines
and therefore electrical power. But Flight 143 did.

Who was to blame: ??

We thought, because we had
power, that we had wisdomBoeing 767 - the biggest glider in the world

Stephen Vincent Benet

TSP (MSc CCN)2017 32

Problem: 1.5 million bank accounts had data corrupted and a whole day’s
transaction had to be re-entered by hand … some complaints were still not
resolved 5 years later and court cases cost millions of dollars.

Reason: On the night of February 25, 1988, the Australian Commonwealth Bank
doubled all debits and credits.

Analysis: A simple spurious 0 in a data file was not picked up and resulted in
credits being multiplied by 2 … to compensate, debits were also multiplied. This
prompted the manager to make the now famous-in-folk-lore comment: `

The effects of software errors are limited only by the imagination..

Who was to blame: ??

A bank is a place that will
 lend you money if you

can prove that you don’t need it
Australian Commonwealth Bank

Bob Hope

TSP (MSc CCN)2017 33

Ariane 5 Everything in space obeys the laws
of physics … except the software

Problem: the rocket exploded on take-off

Reason: a 16-bit integer was used to perform a 32-bit calculation…
plus a few other things to do with the polymorphic type system which
I won’t go into

Analysis: due to over-zealous re-use of code from Ariane 4 (which
never exploded!)

Who was to blame: ??

Wernher von Braun

34

OpenSSL Heartbleed

TSP (MSc CCN)2017

35

OpenSSL Heartbleed

TSP (MSc CCN)2017

36

OpenSSL Heartbleed

TSP (MSc CCN)2017

37

OpenSSL Heartbleed

See http://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-bug.html for
analysis

See http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db902 for a fix

38

Apple’s “goto fail;” SSL bug

Consider theSSLVerifySignedServerKeyExchange function, found in the sslKeyExchange.c file -

. . .
hashOut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
 goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail; /* MISTAKE! THIS LINE SHOULD NOT BE HERE */
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;

err = sslRawVerify(...);
. . .

Can you see the problem? Who is to blame?
TSP (MSc CCN)2017

http://opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/sslKeyExchange.c

39

Proposals for the future

TSP (MSc CCN)2017

TSP (MSc CCN)2017 40

Proposals for the future Not every end is the goal

We need professional software engineers

We need a code-of-practice (enforced by a professional body)

We need acceptance and teaching of the ethical approach

We need a theoretical (formal) foundation

We need to stop being complacent

Friedrich Nietzsche

