CSC 5524 : Software quality, metrics, tests, processes

J Paul Gibson, D311

paul.gibson@telecom-sudparis. eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC5524/

Software Quality - Tips Techniques & Tools

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC5524/
TipsTechniquesTools.pdf

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

These are the following TTTs that all quality software engineers know
about, and use as a matter of habit:

* Code style formatting

 Literate Programming

* Code Documentation Generators

* Code defect detection (bug finding)

» Design defect detection (bad smells), based on OO metrics
e Automated unit testing

* Code Coverage

 Version control

« Automated build: make, ant

« Continuous integration/delivery/testing

 Personal Software Process

» Software Process Improvement (SPI) & Capability Maturity Model (CMM)

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Code style formatting: indenting, whitespace

All modern IDEs include tools for automatically formatting code to a
predefined template/style/configuration

Many permit the definition of a library of these templates

TODO: Can you find and use this functionality in Eclipse (for Java)?

Oyl X,

\\\\\\\\\\\\\\\\\\

@MyAnnotation(valuel = "this is an example”, value2 = "oi

READING : The elements of programming style, Kernighan, Brian W., and Phillip
James Plauger, 1979

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Literate Programming

READING: Donald Knuth. "Literate Programming” (1984)

“Let us change our traditional attitude to the
construction of programs: Instead of
imagining that our main task is to instruct a
computer what to do, let us concentrate
rather on explaining to human beings what
we want a computer to do.”

Useful Link: http://vasc.ri.cmu.edu/old help/Programming/Literate/
literate.html

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools 4

Code Documentation Generators

All modern IDEs include tools support for automating
documentation generation

Language dependent, e.g. JavaDoc

http://www.oracle.com/technetwork/java/javase/
documentation/index-137483.html

http://doclet.com
Language independent, e.g. doxygen

http://www.stack.nl/~dimitri/doxygen/index.html

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Code defect detection (bug finding)

Static analysis of code

Example, findbugs

http://findbugs.sourceforge.net

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Design defect detection (bad smells), based on OO metrics

Example: JDeodorant 1s an Eclipse plugin that identifies
bad designs and proposes fixes (refactorings)

@\‘f}] Deodorant

when quality matters the most...

http://users.encs.concordia.ca/~nikolaos/jdeodorant/

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools 7

Automated unit testing

Nearly all modern programming languages have
library/tool support for automated unit testing

For Java - JUnit J l ‘nlt http://junit.org/junit4/

For C - CUnit http://cunit.sourceforge.net

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Code coverage

When running tests, you need to know what percentage of
code executed during the test runs.

Most modern IDEs provide coverage tools/plugins

For Eclipse, with Java, a good example 1s EClIEmma

http://eclemma.org

s || Bt

=0l x|

2
=
=4
=

2f

ey ||[Preblevs | dovecke Ceduatin | Corocke | Coverege =
Testalitachages (31,10 2006 15:04:14) ol

|
1573
15

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Version control

You should know the basics of V — == §
‘ LSubversion

Subversion -svn -

https://subversion.apache.org &

SUBVERSION

Git
https://git-scm.com/

git

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools 10

Automated build: make, ant

& makefile &3 - O

all: main

clean:
-rm main.o Classl.o Class2.o0 main.exe main

main: main.o Classl.o Class2.o
g++ -g -0 main main.o Classl.o Class2.o0

main.o: main.cpp Classl.h Class2.h
g++ -Cc —-g main.cpp

Classl.o: Classl.cpp Classl.h
g++ -c -g Classl.cpp

Class2.0: Class2.cpp Class2.h
g++ -c —-g Class2.cpp

http://www.gnu.org/software/make/manual/make.html

1

4

| '\, A (\ Another neat tool

<XPACHE ANT>

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

11

Continuous integration/delivery/testing

Maven https://maven.apache.org M aven

Sonar http://www.sonarqube.org sonarqube\\

Jenkins https://jenkins.10

Hudson http://hudson-ci.org

Make build easy

Make build a uniform process

Provide quality information feedback
Support/enforce best practice for test/delivery
Wrap up all this on an intreated service/server

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Personal Software Process

TSP
Team Crele PSP3
yc.
r Development Persomal Cyrle development
Process
PSP 2 Practice defect and B . PSP2.1
Quality yield management, Q&::;“; PSP2 Design terplates
Code wviewrs

andimprove design Management
practices Derien wriews

r Management

PSP 1 Practice size and Persemal T:kspl-l
Planningand effort estimation Phnning sml;sul:im Schedule plaming
r Tracking Process Test wport
PSPO.1
PSPO Establisha measured PSP Coding standard
Definingand Performance baseline Baseline Cuert process mi'::f”;’:“:;:‘

Using Personal Tire wcarding o

Porcesses Process Defict econding | —22PE 50
Defect type stand axd

Using a defined and measured Personal Software Process, Watts S. Humphrey, 1996

The Personal Software Process: A Cautionary Case Study, Philip M. Johnson, Anne M. Disney, 1998

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

Software Process Improvement (SPI) &
Capability Maturity Model (CMM)

Characteristics of the Maturity levels

Focus on process
improvement

Level 4 Processes measured
antitatively Managed and controlled

Processes characterized for the
Level 3 organization and is proactive.

1 (Projects tailor their processes from
Deﬂn ed organization's standards)

Processes characterized for projects
and is often reactive.

Processes unpredictable,
poorly controlled and reactive

http://www.sei.cmu.edu/cmmi/

2018: J Paul Gibson CSC5524 - Tips Techniques & Tools

