
CSC5524 - Personal Software Process2018: J Paul Gibson !1

CSC 5524 : Software quality, metrics, tests, processes

J Paul Gibson, D311

paul.gibson@telecom-sudparis.eu

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC5524/

Personal Software Process

http://www-public.telecom-sudparis.eu/~gibson/Teaching/CSC5524/CSC5524-PSP.pdf

CSC5524 - Personal Software Process2018: J Paul Gibson !2

Analogical Reasoning
World = Software Development Project
Birth = Me joining the development team

PSP - Just another self-improvement scam?

CSC5524 - Personal Software Process2018: J Paul Gibson !3

The Personal Software Process (PSP)

The software process is about making software engineering groups/teams work
to the best of their abilities
The personal software process is about making individual engineers work to
the best of their abilities
Central to both is feedback ---

through analysis of practical application of the process, the process should
be changed for the better

Software engineers should accept responsibility for the quality of their work
Software engineers can do this only if they have a way of evaluating quality and
improving quality (through experience)
The software process improves individual engineers to some extent, but it is
possible for a project to succeed even when an individual participant has not!
The PSP is individual oriented: it is possible for an individual to succeed within
a project that fails.

CSC5524 - Personal Software Process2018: J Paul Gibson !4

The Personal Software Process (PSP)

PSP is a structured software development process that is intended to help software
engineers understand and improve their performance, by using a "disciplined, data-
driven procedure“:

•Improve their estimating and planning skills.
•Make commitments they can keep.
•Manage the quality of their projects.
•Reduce the number of defects in their work.

The PSP was created by Watts Humphrey to apply the underlying principles of the
Software Engineering Institute’s (SEI) Capability Maturity Model (CMM) to the
software development practices of a single developer.

"Using a defined and measured Personal Software Process" by Watts
S. Humphrey, published in IEEE Software, May 1996, pages 77-88.

CSC5524 - Personal Software Process2018: J Paul Gibson !5

Criticism of the PSP

The PSP is not universally accepted:

•some think it is a good idea in theory but not in practice

•some think that it is not flexible enough
•some think that it is too time consuming

•some think it should be up to individuals to find their own way of working

In fact, the PSP is only a framework of common sense ideas and suggestions which
engineers are encouraged to think about as they learn from experience
The PSP fails, IMHO, when it is used by the team to criticise individuals. This risk
occurs when the PSP is used, rightly, to give feedback to the team-wide process.

… make up your own minds …

A good criticism is found in: Philip M. Johnson, Anne M. Disney,
"The Personal Software Process: A Cautionary Case Study," IEEE
Software, pp. 85-88, November/December, 1998

CSC5524 - Personal Software Process2018: J Paul Gibson !6

Overview of PSP

There are four main areas to examine:

•assumptions

•process stages

•measures: basic and derived

•results: training and industry

In the case study after this set of lectures you will be asked to run
your own PSP while developing a small piece of code.

This alone is not enough to let you judge the merits of PSP

It is enough to give you an idea of how to carry out the process

CSC5524 - Personal Software Process2018: J Paul Gibson !7

PSP Assumptions

•Software engineers currently learn software development by
developing toy programs
•They develop their own process since process is not taught in
introductory classes
•These toy processes do not provide a suitable foundation for
large-scale software development
•To use effective methods consistently, engineers must believe
that they are effective
•To believe that they are effective, they must use them
•To teach effective system processes we need to start with large
system practices, select those that are suitable for individuals
and introduce them incrementally

There is, IMHO, a degree of truth to each of these

CSC5524 - Personal Software Process2018: J Paul Gibson !8

PSP Process Stages

These are similar to the CMM for development processes.

PSP3 cyclic
development

PSP2 code
reviews, design
reviews

PSP1 size
estimating, test
report

PSP0 current
process, basic
measures

PSP2.1 design templates

PSP1.1 task planning,
schedule planning

PSP0.1 coding standard,
process improvement
proposal, size measurement

Scaling Up

Personal
Quality

Personal
Planning

Personal
Measurement

CSC5524 - Personal Software Process2018: J Paul Gibson !9

PSP0: Personal Measurement

Engineers gather data on the time they spend by phase and
the defects they find

Generates real, personal data and provides the base
benchmark for measuring progress

3 phases: planning, development and postmortem

PSP0 adds a coding standard, size measurement and a
process improvement proposal

CSC5524 - Personal Software Process2018: J Paul Gibson !10

PSP1: Personal Planning

This step must introduce some method for estimating
sizes and development times for new programs based on
personal data

The methods employed are usually (should be) based on
linear regression with prediction intervals to indicate size
and estimate quality

PSP1.1 adds schedule and task planning

CSC5524 - Personal Software Process2018: J Paul Gibson !11

PSP2: Personal Quality

This step introduces defect management

Using data from PSP exercises, engineers construct and
use checklists for design and code review

From their own data, they see how checklists help
personal reviews

PSP2.1 adds design specification and analysis techniques
along with defect prevention, process analyses and
process benchmarks

CSC5524 - Personal Software Process2018: J Paul Gibson !12

PSP3: Scaling Up

The final step shows how engineers can couple multiple
processes in a cyclic fashion to scale up to developing systems
with many thousands of lines of code (LOC)

It uses an iterative enhancement approach

A team software process should be developed as the next step for
systems larger that 10K LOC

CSC5524 - Personal Software Process2018: J Paul Gibson !13

PSP Programming Exercises
The following exercises are widely used and accepted as providing a
good case set on which to start developing a PSP:

•calculate mean and standard deviation of numbers in a linked
list

•count LOC in a source program

•enhance to count total and function LOC

•calculate linear regression parameters

•perform numerical integration

•enhance to calculate prediction interval

•calculate correlation of 2 lists

•chi-squared tests for normal distribution

•calculate multiple regression parameters

CSC5524 - Personal Software Process2018: J Paul Gibson !14

PSP Basic Measures

Development Time: measured in minutes (!) using a time
recording log designed to account for interruptions

Defects: any change to the design or code to get the
program to compile or test correctly; recorded in a defect
recording log

Size: lines of code, used primarily for estimating
development time; new, modified and re-used code is
distinguished.

CSC5524 - Personal Software Process2018: J Paul Gibson !15

PSP Derived Measures

Estimating accuracy --- time and size

Test defects/KLOC

Compile defects/KLOC

yield: % of defects injected before 1st compile that are
removed before 1st compile

appraisal time --- time in review

failure time --- time in compile and test

cost of quality --- appraisal time + failure time

appraisal/failure ratio

CSC5524 - Personal Software Process2018: J Paul Gibson !16

PSP Quality Strategy

Defects are basic quality measure

Engineers should:

•remove them

•determine their cause (type)

•learn to prevent them

PSP uses private review with the goal of finding all defects
before 1st compile and test

CSC5524 - Personal Software Process2018: J Paul Gibson !17

PSP Training Data

Each programming assignment results in approx. 70 pieces of
data being collected by each engineer

It is collected and collated by instructors to provide feedback
during training

There is a well cited study based on 23 PSP classes consisting
of 298 engineers, over 300,000 LOC during >15,000 hours,
about 22,000 defects were found and removed

Each analysis is based on at least 170 cases where complete
data was available

CSC5524 - Personal Software Process2018: J Paul Gibson !18

PSP Statistical Analysis

Large individual differences are expected when measuring
software engineering performance

Consequently, rather than studying changes in group
averages, the study focuses on the average change in
engineers

The repeated measures of variance method analyses the
differences across multiple trials to uncover trends

CSC5524 - Personal Software Process2018: J Paul Gibson !19

PSP Encouraging Results ---

Size estimation usually improves by a factor of >2.5
Defect density reduces at each level

•median reduction in compile defects is 3.7
•median reduction in test defects is 2.5
•median improvement in number of defects removed before compile >
50%

Productivity (measured in LOC/hour):
•Between PSP0 and PSP1 there is a decrease (1 LOC/hour)
•between PSP1 and PSP2 there is an increase (2 LOC/hour)

The following claims for CSC5524/PSP have been made and accepted (?)

Question: what are your feelings about PSP?

CSC5524 - Personal Software Process2018: J Paul Gibson !20

PSP: Sample Exercise (spiral walker)

You are to implement a function, f, in
Java that akes as input the:

•size of a square grid

Calculates the x,y co-ordinates of the
robot after it has walked half way
around the grid following a spiral
walk, starting at 0,0 and moving
clockwise.

In the example the function
Calculates
f(6) = (2,0)

0,0 0,5

5,55,0

2,0

!20

CSC5524 - Personal Software Process2018: J Paul Gibson !21

PSP: Sample Exercise (spiral walker)

Estimate: time of development, LOC

Note/Count/Measure (for every version, i.e. every time you
compile and run):

•Compile defects - syntax/semantic errors
•Test defects - code is wrong, design is wrong, test is wrong?
•LOC – implementation/tests
•Comments/Code ratio
•Time spent on each task between versions - testing, coding,
designing, commenting
•The reason for the compile/run - expected outcome versus
actual outcome

NOTE: After all of you have solved the
problem we will analyze the PSP ‘results’

