Capacity Requirements in Networks of Quantum Repeaters and Terminals

Michel Barbeau¹ Joaquin Garcia-Alfaro² Evangelos Kranakis¹

¹Carleton University

²Institute Polytechnique de Paris

October 13, 2020

- ► Topic: Path congestion avoidance in networks of quantum repeaters and terminals
- Assumption: Complete paths between terminals
- What is the required quantum memory size in repeaters?
- Contributions:
 - Lower and upper bounds for the required qubit memory size of repeaters for general graphs and two-dimensional grid network topologies
 - Congestion avoidance algorithm: Layer-peeling path establishment

Network Model

- ► Simple error model: single qubit errors in Bell-EPR pairs
- Achieve fidelity with purification
- Adjacent nodes use direct communications to establish entanglement
- ▶ Remote nodes use entanglement swapping and teleportation
- Quantum memory size of a repeater is equal to the sum of the lengths of the paths going through it (Lemma 7)

- ► For each simulation, we compute the following metrics
 - ▶ Congestion: # of paths passing through most visited repeater
 - ► Entanglement rate: Following existing work (cf. [24,25,26])

$$\mathcal{T}(n) = egin{cases} 1/R(n), & ext{if } \mathcal{X}_{ch} \geq au(n) - (\mathcal{X}_s - au(1)) \ 0, & ext{else} \end{cases}$$

(precise calculation is summarized in the paper)

► Minimum required quantum memory (Corollary 9)

$$M_P(r) \ge 2 \left\lceil \frac{1}{|R|} {|T| \choose 2} \right\rceil$$
 qubits

Maximum required quantum memory (Lemma 10)

$$M_P(r) \leq \delta \binom{|T|}{2}$$
 qubits

where δ is the diameter of the graph.

In general, the quantum memory required by a repeater \emph{r} (Corollary 16)

$$M(r) \in \Omega(k^2)$$
 qubits.

- Assumption 1: Path establishment for all terminals
 - ► End-to-end paths from every terminal to any other terminal:

- Assumption 2: Random arrangement of repeaters using Bernoulli bond percolation
 - ightharpoonup Probability p of ensuring repeater connectivity greater than 0.5

- ► NetworkX library¹ to conduct Monte Carlo simulations²
- ► A (step-by-step) construction example follows

¹ Python Library available online at: https://networkx.github.io

²Code available online at: http://j.mp/QCECodeGitHub

```
## Initial Parameters
b = 20 fk quadratic (20) lattice
p = 1 fbernoulli probability for bond percolation
q = 1 fbernoulli probability for terminal arrival
Drawfid=True
Bobutable=Palse
Additionalling=True
Rowcabel=Palse
Rowcabel=Palse
rathSearchAlgorith==1 fl=shortestFaths 2=peelingFaths
CGSVFOrmat=False
```


Output:

The graph contains 324 repeaters and 72 terminals [(k^2 (- modes 0, 19, 380, and 399 removed, to avoid terminal adjacency]

Initial Parameters

k = 20 #k quadratic (2D) lattice

- p = 0.55 #bernoulli probability for bond percolation
- q = 1 #bernoulli probability for terminal arrival

DrawGrid=True

ShowLabels=False AdditionalRing=True

BondPercolation=True

ComputePaths=False
PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths
CSVFormat=False

Run 1

Output:

The graph contains 254 repeaters and 105 terminals.

```
## Initial Parameters
```

k = 20 #k quadratic (2D) lattice

- p = 0.55 #bernoulli probability for bond percolation
- q = 1 #bernoulli probability for terminal arrival

DrawGrid=True

ShowLabels=False

AdditionalRing=True BondPercolation=True ComputePaths=False PathSearchAlgorithm= CSVFormat=False

ComputePaths=False
PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths

Run 2

Output:

The graph contains 266 repeaters and 108 terminals.

Evaluation Example

```
## Initial Parameters
k = 10 #k quadratic (2D) lattice
p = 0.65 #bernoulli probability for bond percolation
q = 1 #bernoulli probability for terminal arrival
DrawGrid=True
ShowLabels=True
AdditionalRing=True
BondPercolationsTrue
ComputePaths=True
PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths
CSVFormat=False
```

Output:

```
The graph contains 56 repeaters [ [11, 12, 13, 14, 15, 16, 17,
18. 21. 23. 24. 25. 26. 27. 28. 31. 32. 33. 34. 36. 37. 38. 41.
42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 61, 62, 63,
67. 68. 71. 72. 73. 74. 75. 77. 78. 81. 82. 83. 84. 85. 86. 87.
881 1 and 37 terminals [ [1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 20,
29, 30, 39, 40, 49, 50, 59, 60, 69, 70, 79, 80, 89, 91, 92, 93,
94, 95, 96, 97, 98, 22, 35, 44, 64, 761 1
1 -> 2 : [1, 11, 12, 2]
```

```
1 -> 3 : [1, 11, 21, 31, 32, 33, 34, 24, 14, 13, 31
```



```
22 -> 35 : [22, 21, 31, 41, 42, 43, 53, 54, 55, 45, 35]
22 -> 44 : [22, 21, 31, 41, 42, 43, 44]
22 -> 64 : [22, 21, 31, 41, 51, 61, 62, 63, 641
22 -> 76 : [22, 21, 31, 41, 51, 61, 62, 63, 73, 74, 75, 85, 86, 76]
35 -> 44 : [35, 45, 55, 54, 53, 43, 44]
35 -> 64 : [35, 45, 55, 54, 53, 52, 51, 61, 62, 63, 641
35 -> 76 : [35, 45, 55, 54, 53, 52, 51, 61, 62, 63, 73, 74, 75, 85, 86, 76]
44 -> 64 : [44, 43, 42, 41, 51, 61, 62, 63, 64]
44 -> 76 : [44, 43, 42, 41, 51, 61, 71, 72, 73, 74, 75, 85, 86, 76]
64 -> 76 : 164, 63, 73, 74, 75, 85, 86, 761
Congestion = 288 (Repeater 31 appears in 288 paths, repeater 41 appears in 245 paths, repeater 51 appears in 223 paths, etc.)
Entanglement rate = 200
```


(a,c) shortest path and (b,d) peeling path strategies. Values of p and q are 0.95 in (a,b) and 0.65 in (c,d). Values of p and q are 0.95 in (a,b) and 0.65 in (c,d).

(a,c) shortest path and (b,d) peeling path strategies. Values of p and q are 0.95 in (a,b) and 0.65 in (c,d). Values of p and q are 0.95 in (a,b) and 0.65 in (c,d).

Conclusion 16/17

Topic: Path congestion avoidance in networks of quantum repeaters and terminals

- Assumption: Complete paths between terminals
- Evaluation
 - shortest-path establishment vs. layer-peeling path establishment
- Main results:
 - Both strategies provide an equivalent entanglement rate
 - Layer-peeling establishment considerably reduces congestion
 - → Repeaters in the inner layers get less congested and would require a lower number of qubits, while providing a similar entanglement rate

References

- [24] M. Caleffi, Optimal routing for quantum networks, IEEE Access, 5(22):299–312, 2017.
- [25] M. Uphoff et al., Integrated quantum repeater at telecom wavelength, Applied Physics B, 122(3):46, 2016.
- [26] Y. Wang et al., Single-qubit quantum memory, Nature Photonics, 11(10):646–650, 2017.