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Abstract—Pencil-and-paper ciphers are plausible solutions
that could provide lightweight protection to the communication
of resource-constrained devices. A good example in this
category is Schneier’s Solitaire cipher. In this paper, we propose
a probabilistic solution that is able to estimate Solitaire’s
keystream cycle length. We also present a variation of Solitaire’s
original design, and evaluate the resulting construction in terms
of predictability. We conduct statistical randomness tests on
both the original design and the modified version based on the
NIST randomness test suite. The results show that our approach
improves the randomness of original Solitaire’s output sequences.

Keywords: ICT Security, Cryptography, Pencil-and-Paper
Ciphers, Pseudo-Random Number Generators (PRNG), Cycle
Detection, Randomness Evaluation.

I. INTRODUCTION

Resource-constrained devices, such as sensors and passive

RFID tags, require the input of lightweight cipher designs in

order to protect their communications [8], [12]. Pencil-and-

paper ciphers, also known as hand ciphers or field ciphers by

the military, are a plausible solution to address such a concern

[16]. Pencil-and-paper ciphers are encryption methods that are

operated by human beings, and they hold an appropriate bal-

ance between security and lightweight computation. According

to studies like [11], humans and resource-constrained devices

share similar sets of memory properties. For example, passive

RFID tags are able to store only short secrets of about 32

to 128 bits of length in their volatile memory. Human can

maintain about seven decimal digits in their immediate mem-

ory [13]. Nevertheless, electronic devices are more efficient at

performing logical operations (e.g., AND, OR, and XOR-like

operations), and at choosing random values.

Schneier’s Solitaire cipher is a good example of a pencil-

and-paper cipher that could be used to protect the commu-

nications of resource-constrained devices. It was designed

by Bruce Schneier at the request of Neal Stephenson for

the Cryptonomicon novel [18]. Originally called Pontifex in

Stephenson’s novel, the algorithm behind Solitaire aims at

producing a practical cryptosystem calculated with an ordinary

deck of playing cards. Despite decades of existence, few

attacks or cryptanalysis techniques against Solitaire have been

reported in the related literature. Questions such as the period

of the Solitaire keystream algorithm, statistical properties of

its generated pseudo-random sequences, and complexity of the

Solitaire internal states remain open.

In this paper, we address some of the aforementioned

questions about the keystream algorithm of Solitaire. Further-

more, we propose a slight variation of the original design

which could be used as a pseudo-random number generator

(PRNG). We present a cycle detection algorithm, which is

computationally feasible when the deck size associated to the

PRNG is relatively small. We conduct experimental results and

show that it is possible to predict the maximum cycle length

period for the Solitaire PRNG of any deck size. To verify the

randomness quality of Solitaire keystream, we conduct as well

some statistical evaluations of sample sequences generated by

both Solitaire and our modified version. The evaluations are

based on the NIST statistical test suite for random and pseudo-

random number generators [17].

Paper organization: Section II introduces the cycle detec-

tion problem for PRNGs. Section III describes Solitaire’s

keystream algorithm. Section IV introduces our cycle estima-

tion algorithm and reports our experimental results. Section V

presents the NIST randomness evaluation results on the quality

of the Solitaire PRNG. Section VI outlines related work.

Section VII concludes the paper.

II. PRNGS AND THE CYCLE DETECTION PROBLEM

Deterministic pseudo-random number generators (PRNGs)

are often used to generate identical sequences for both the

sender and receiver sides of a communication exchange [19].

We assume that this sequence is generated synchronously in

each party. We also assume that the same sequence is used

to encrypt the messages following the one-time-pad principle

[7]. Most PRNGs are designed based on a wide range of

cryptographic primitives [3], [6]. Today’s PRNGs are typically

based on hash function or block cipher designs. Given the

limited computing power of resource-constrained devices (e.g.,

passive RFID tags), block cipher based implementations are

expected to be in use.

Solitaire’s keystream algorithm can be used as a PRNG

whose output is partitioned in blocks of length n. In block

cipher-based PRNGs, the unpredictability of the generator is

assured as long as a threshold N (related to the number of

PRNG outputs) is not reached — within the same initial state.

This threshold always exists due to the deterministic nature of

PRNGs. Once N is reached, the outputs may enter into a cycle.

This cycle is predefined in classical designs of block ciphers,
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e.g., Cipher Block Chaining (CBC). It is typically equal to

2n/2 [5]. In the sequel, we aim at estimating the threshold

value N as the maximum cycle length for the Solitaire PRNG.

III. THE SOLITAIRE KEYSTREAM ALGORITHM

We start with a concise description of the Solitaire

keystream algorithm. Further details, including additional ex-

amples can be found in [18]. Solitaire generates its keystream

using a deck of cards. Each card in the deck (54 cards,

including the 2 jokers) corresponds to a number 1 to 54. For

instance here, we use the bridge order of suits: clubs (1 -

13), diamonds (14 - 26), hearts (27 - 39), spades (40 - 52),

Joker A = 53, Joker B = 54. To initialize the deck, we have to

arrange the cards in the initial configuration that is the state.

The state (or key) in this instance corresponds to an element

of the permutation group S54. To produce a single output from

the keystream algorithm, the followings steps should be carried

out:

1) Find the A joker. Move it one card down. If the joker

is the bottom card of the deck, move it just below the

top card.

2) Find the B joker. Move it two cards down. If the joker

is the bottom card of the deck, move it just below the

second card. If the joker is one up from the bottom card,

move it just below the top card.

3) Perform a triple cut. That is, swap the cards above the

first joker with the cards below the second joker.

4) Perform a count cut. Look at the bottom card. Count

down from the top card that number. Cut after the card

that you counted down to, leaving the bottom card on

the bottom.

5) Find the output card (number). To do this, look at the top

card. Count down that many cards. If one hits a joker,

restart Step 1. This is the output card/number.

Solitaire is a block-permutation based algorithm. The

keystream output starts repeating itself after a cycle is reached.

The cycle length of the keystream is a crucial piece of

information since key recovery becomes possible once an

adversary is able to predict the keystream outputs.

A. Modeling by Group Theory

One natural way of modeling the Solitaire keystream algo-

rithm is to give a group theoretic point of view. This line of

investigation was extensively used in algebraic cryptanalysis

of the Advance Encryption Standard (AES) [9]. Pogorelov and

Pudovkina in [14] also used this approach in their investigation

of the Solitaire algorithm.

In this theoretical framework, the state function F (t) at t’th
keystream number generation step is an element of the per-

mutation group Sn, where n is the number of cards in a deck.

The state function F is composed of four transformations:

F1, F2, F3, F4 which correspond to the first four steps of the

keystream algorithm. Clearly, if a cycle of length m exists,

one would have

S(t+m) = S(t), o(t+m) = o(t)

from some t’th number onwards. Here o(t) denotes the t’th
number in the keystream output, and S(t) the corresponding

Solitaire state. Thus, the task of detecting a cycle in the

keystream is equivalent to finding a repetition of the Solitaire

state at some regular time intervals. This approach turns out to

be computationally feasible for us when the number of cards

is less than 16 (i.e. n ≤ 16, cf. Section IV-A).

Let o(t) be a keystream element within a cycle. The cycle

length which contains o(t) is equal to the size of the orbit

generated by < S(t) > that acted under the transformation

F . Pogorelov and Pudovkina give in [14] some algebraic

descriptions of the orbits generated by individual actions Fi.

At present, a complete algebraic description of those orbits

generated by < F = F1, F2, F3, F4 > does not exist in

the literature. The best we can do theoretically is to write

down the trivial bound (i.e., the maximum cycle length is

necessarily less than the group order |Sn| = n!). There are

some evidences, as shown in the next sections, that suggest

the orbit sizes should grow exponentially with respect to n.

B. Uniform Distribution Property of Keystream Outputs

We start by validating the uniform distribution property of

the Solitaire keystream outputs. Figures 1(a) and 1(b) plot

the frequency of occurrence of all possible keystream output

values. They correspond to, respectively, a deck of 10 cards

(Figure 1(a)); and 66 cards (Figure 1(b)). The plots depict the

average value associated to the frequency of occurrence of

each card (excluding the jokers, which are never provided as

a valid output). It also represents their 95% confidence inter-

vals. To generate these two figures, we used 1,000 different

sequences, composed of 100,000 keystream outputs each.

We can observe that the uniform distribution property

emerges when the number of cards n gets large. Indeed, as

can be seen from Figure 1(a), the probability distribution

for a deck of 10 cards lies in the range between 0.118

and 0.137. This is to be compared with the perfect uniform

distribution score 1/8 = 0.125. For a deck of 66 cards,

the discrepancy between the actual probability distribution

values and the perfect theoretical value 1/64 = 0.015625
becomes smaller (as shown in Figure 1(b)). The corresponding

probability distribution range for 66 cards is between 0.01559

and 0.01565. Note that the results for confidence interval are

too small to be shown in the plot of Figure 1(a), since they

are in the order of 0.003% for the mean. In Section V, these

results are also confirmed via the NIST randomness test suite.

IV. CYCLE ESTIMATION OF THE SOLITAIRE KEYSTREAM

The security of Solitaire’s keystream based PRNG (e.g.,

in order to prevent key-recovery attacks) depends on the

cycle length of its keystream. In this section, we propose a

probabilistic cycle detection method.

A. Cycle Detection Algorithm

The principle of our cycle detection algorithm (cf. Algo-

rithm 1) is as follows: if a cycle of length m exists, then we
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Fig. 1: Distribution of the Solitaire keystream numbers

would have:

S(t+m) = S(t), o(t+m) = o(t)

from some t’th number onwards. Here S(t) denotes the state of

keystream generation at t’th step, and o(t) the t’th number in

a keystream output. For a fixed initial configuration, we could

output S(t), o(t), t ≥ 1 in a file. Figure 2 shows a sample

output derived from a keystream generation for the case n =
18. Each line of the file corresponds to a S(t), in conjunction

with a o(t) derived from the keystream generation algorithm.

The left column represents the states of the permutation at the

corresponding time steps.

(6,8,12,15,7,4,13,14,1,9,16,2,5,11,3,10)  9 

(1,9,2,5,16,6,8,12,11,3,10,15,4,13,14,7)  2 

(4,15,1,9,2,5,6,13,14,7,16,12,11,3,10,8)  12 

(10,8,15,9,2,5,6,13,14,7,12,11,16,4,3,1)  13 

(11,4,3,16,10,8,1,15,2,5,6,13,14,7,12,9)  2 

(1,2,15,11,4,3,10,5,6,13,14,7,12,9,16,8)  6 

(3,10,5,6,13,14,7,12,9,8,16,2,11,15,4,1)  13 

(12,9,8,2,1,16,4,15,3,10,5,6,13,14,7,11)  5 

(13,14,7,11,16,15,12,9,8,2,1,4,10,5,6,3)  13 

(14,7,11,9,8,2,1,4,10,5,6,3,15,16,13,12)  3 

Fig. 2: Solitaire keystream output: state and keystream

Algorithm 1 takes a keystream as an input, and outputs a

cycle length when a cycle is found. The algorithm starts by

randomly selecting a line L1 at position i1 where 1 ≤ i1 ≤ α.

Here, α is an algorithm parameter that will be explained later.

The algorithm then will try to pattern match among the rest

of the lines, and find L2, ..., Lβ at the positions i2, i3, ..., iβ
within the keystream, which are identical to L1, i.e., S(i1) =
· · · = S(iβ) and o(i1) = · · · = o(iβ).

The random selection step in Algorithm 1 is justified

because any keystream number is equally likely to be in a

cycle (cf. Section III-B). The algorithm parameter β is a stop

counter, which stops the algorithms after β number of matches

are found. This parameter is designed to increase the algorithm

efficiency, as now the algorithm may terminate well before

the end of the keystream is reached. Computation efficiency

turns out to be crucial in exhaustive search scenarios as those

encountered in Section IV-B.

The parameter β is also significant in the following sense:

the algorithm is able to terminate and concludes that a cycle

has been found after β matches, because the probability that a

non-cycle keystream number appears at equal distance β times

is approximately ( 1n )
β , where n is the number of cards. Thus if

we choose β = 8 when n ≥ 4, then the chance that a fake cycle

is detected instead of an authentic cycle is negligible. The

approximation 1/n is valid because of the uniform distribution

property among all the keystream outputs (cf. Section III-B).

The parameter α is usually chosen to be less than or equal

to keystreamlength/β, so that the algorithm would not

terminate before β matches are found in the keystream file.

The parameter γ has the range 1 ≤ γ ≤ β. It is an in-built

parameter of the algorithm because sometimes a cycle does not

start right after the first state repetition. The cycle verification

step (line 8 in Algorithm 1) starts only after γ matches are

found. Table I summarizes the parameter values α, β, γ we

TABLE I: Parameter choices for the cases n = 4, 5, ..., 16

n α β γ
4 100 8 2
5 1, 000 8 2
6 1, 000 8 2
7 2, 000 8 2
8 5, 000 8 2
9 10, 000 8 2
10 200, 000 5 2
11 1, 000, 000 5 2
12 1, 000, 000 5 2
13 1, 000, 000 5 2
14 10, 000, 000 5 2
15 10, 000, 000 5 2
10 40, 000, 000 5 2
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TABLE II: Exhaustive cycle search (cards including 2 jokers)

Nb. Cards n Nb. Config: n! Min. Cycle Max. Cycle % Min. Cycle % Max Cycle
4 24 5 5 100% 100%
5 120 7 14 13.3% 45.8%
6 720 8 54 4.3% 36.3%
7 5,040 4 74 < 0.1% 86.8%
8 40,320 5 936 < 0.1% 40.1%
9 362,880 30 2808 < 0.1% 97.9%

Algorithm 1 Cycle Detection Algorithm

Input: A keystream file of which each line is composed of a

state S(t) and a Solitaire output o(t), and the algorithm

parameters α, β, γ
Output: A possible cycle Length if the algorithm succeeds

1: Randomly select a line L1 at the position i1 in the

keystream file, where 1 ≤ i1 ≤ α
2: Sequentially search for repetitions of L1 in the keystream

file

3: if No Matches are Found then
4: Goto Step 1

5: else
6: Record positions i2, i3, ..., iβ of those lines that are

identical to L1, or until the end of the keystream is

reached

7: end if
8: if iγ − iγ−1 = iγ+1 − iγ = · · · = iβ − iβ−1 then
9: return Cycle Length := iβ − iβ−1

10: else
11: Test fails

12: end if

have used in this paper for the purpose of cycle computations.

Observe that though Algorithm 1 is quite successful in

detecting a cycle length during a single run, it is not able to

produce the following information: (1) the number of different

cycles a keystream contains; (2) whether a detected cycle is a

maximum length cycle, or a minimum length cycle.

B. Cycle Detection Results

In this section, we present some practical detection results

based on Algorithm 1. We implemented the algorithm in the

Perl language, an extremely efficient programming language in

tasks such as line pattern matching, and pattern mining within

a keystream file. Table II and Table III below summarize our

findings. Table II contains cases where an exhaustive search

is feasible. By an exhaustive search, we mean that the cycle

detection in Algorithm 1 is applied to the keystream generated

by every initial cards position on a deck of n cards. There

are exactly factorial of n permutations, which correspond to

these positions. At the level of coding, we integrated the

GNU GSL library [1] with the ANSI C code of Solitaire

available in [18]. The goal was to benefit from using the

GSL permutation functions during the initial state/permutation

rotation stages. The exhaustive search computations were

performed on a PC with 32-bit Ubuntu OS running upon an

Intel Core i7/2.50 GHz CPU. The exhaustive search of cycles

was only feasible when the number of cards was lower than

10 (n < 10). The time-stamp shows that computations for the

n = 9 case took 39 days for checking all the possible initial

configurations (which turns to be factorial of 9, i.e., 362,880

possible configurations). Given such a speed, the estimated

computation time for the n = 10 case would have been 195

days, whereas for 16 cards it would have taken more than

three years.

Storage complexity is another issue. Recall from Algo-

rithm 1, the execution of the cycle detection algorithm requires

the storage of a keystream file. The length of the keystream

should be at least equal to the cycle length multiplied by β
(being β the number of matches one needs in order for the

program to terminate). For example, in the case n = 17, the

estimated max cycle length is 76,403,613 (cf. Equation (1)).

If one chooses β = 10, the length of the keystream is:

10 ·76, 403, 613. This is equivalent to a 60 Gb textfile. Files of

this size exceed the file size limit for a 32-bit machine. As a

result, we were only able to run the cycle detection algorithm

for the cases 4 ≤ n ≤ 16.

As a first observation, the Solitaire keystream may output

different cycle lengths depending on the initial state of the

deck. We have included in Table II percentages of the mini-

mum and maximum cycles for all exhaustive scenarios. The

maximum cycle length grows as n grows, and the growth

rate turns out to be exponential. The minimum cycle lengths

however, do not seem to be correlated, or have any functional

dependence on n. The minimum cycle length for each n occurs

extremely rare as shown from Table II when n ≥ 6. On

the other hand, the percentage of the maximum cycle length

occurrences for each n is much higher than any other cycle

length occurrence percentages. This observation also leads us

to the belief that if we perform cycle detections on a set of

TABLE III: Random cycle search (cards including 2 jokers)

Nb. Cards n Nb. Config Used Max. Cycle % Max Cycle
10 1,054,596 10,221 75.9%
11 246,663 7,543 39.9%
12 195,943 33,058 87.2%
13 119,373 554,526 91.2%
14 1,841 1,013,519 -
15 1,343 6,702,967 -
16 17 21,936,204 -



randomly selected initial positions for the case n ≥ 10, there

is a high probability that the maximum cycle length of the set

is also the global maximum cycle length.

Therefore, for the cases n ≥ 10, the cycle detection algo-

rithm is performed on a set of randomly picked states, i.e., a

fraction of all cards positions in a same state length. Tables III

contains the random configuration search results for the cases

n = 10, ..., 16. We did not record the percentage of maximum

cycle length occurrences for the cases n = 14, 15, 16 on

the ground that the number of checked samples (i.e., initial

positions) was too small to produce any significant results.

C. Extrapolation Results

Extrapolation results are based on the Maximum length cy-

cles. Figure 3(a) and Figure 3(b) show the curve fitting for the

maximum cycle length growth based on the exhaustive search

results, and the random cycles search results, respectively.

The resulting fitting curve for both cases is an exponential

function in n. Based on Figure 3(a), the coefficients a and

b are expressed with 95% confidence bounds. The resulting

function is represented in Equation 1.

f(n) = a · exp(b · n), where a = 0.02925, b = 1.276 (1)

V. RANDOMNESS EVALUATION OF THE SOLITAIRE PRNG

We evaluate the robustness of the Solitaire keystream al-

gorithm as a PRNG using the NIST Statistical test suite for

Random and Pseudo-random Number Generators [17].

A. Statistical Testing Tool

Our test results are obtained from the NIST test suite. The

statistics inferences are based on the P-Value approach. The

test consists of computing a test statistic for a sequence s
and its corresponding P-value. The P-value is the probability

of obtaining a test statistic as large as the one observed

from a random sequence. The sequence s passes a statistical

test if the P-value ≥ α, and fails otherwise. Here, α is the

significance level.

1) NIST Test Results: The NIST test suite produces a table

containing a summary report based on the Solitaire keystream

output bits it has tested. The table consists of:

• Ten columns labelled C1 to C10: each column represents

the number of tests that has a P-value in the correspond-

ing range (i.e., the range from 0 to 1 is divided into ten

equal-length segments called bins). A perfect RNG would

have P-values uniformly spread over the range 0 to 1.

• P-VALUE column records P-values: In particular, if P-

Value ≥ 0.001, then the sequences can be considered to

be uniformly distributed.1

• PROPORTION column indicates the number of P-values

that are above the 0.01 confidence interval. Thus, it is

acceptable for a few individual tests to fail. The test suite

will indicate a problem by flagging the PROPORTION

number with an ”*”.

1See the NIST test suite documentation in [17] for further details.

TABLE IV: Proportion of passed tests on different cards

number (with jokers)

Cards Frequency Block
Frequency
(16 bits)

Block
Frequency
(800 bits)

Cumulative
sums

10 0.0 0.0 0.0 0.0
18 0.98 0.0 0.35 0.98
34 0.99 0.51 0.98 0.99
66 1.0 0.13 0.88 1.0

• Name of the test. For the Solitaire outputs, we used the

following tests:

– Frequency (monobit) is to determine whether the

number of ones and zeros in a sequence are approx-

imately the same.

– Block Frequency is to determine whether the fre-

quency of m-bit blocks in a sequence appears as

often as would be expected for a truly random

sequence.

– Cumulative Sums is to determine whether the max-

imum of the cumulative sums in a sequence is too

large or too small. In other words, it is used to detect

if there are too many zeroes or ones at the beginning

of the sequence.

2) Data Management: A large amount of data is generated

for the purpose of the NIST evaluation. We conducted various

tests for the Solitaire keystream algorithm, varying the deck

size n. The input files usually contain billions of bits. We

have adhered to the following test procedures: (1) fix the deck

size, so that the representation of the card could be completely

rendered in bits (e.g., in the 16 cards version of Solitaire, each

card is represented in 4 bits); (2) generate necessary amount

of keystream output data in decimal; (3) transform the decimal

data into bits based on the size of the deck, and align all the

outputs into one line of bits; (4) input the bit file into the NIST

testing suite (version sts-2.1).

B. Statistical Tests

1) A test on Solitaire 34 cards: Figures 4 and 5 show NIST

test summaries over a set of data produced by the Solitaire with

34 cards (32 cards + 2 jokers). An input file of one billion (i.e.,

1012) bits is used. During the test, 100 individual sequences

are constructed, each of which consisting of 10 million bits.

For each sequence, three basic and essential tests described

in the previous section are performed. The two block values

considered in the block frequency tests are16-bit and 800-bit.

For this test, NIST indicates that the minimum pass rate for

each statistical test is approximately equal to 0.96 for a sample

size equal to 100 binary sequences. As shown in Figure 4, both

the frequency test and the Cumulative Sums test have passed.

However, the block frequency test fails when the block size is

16 bits. After re-sizing the block up to 800 bits (cf. Figure 5),

the Block frequency test is successful.

2) A general test: We have also performed the NIST tests

for Solitaire with 10 cards, 18 cards, 34 cards and 66 cards,
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Fig. 3: Evolution of the maximum cycle length

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
------------------------------------------------------------------------------
15 9 11 8 6 10 14 12 5 10 0.419021 0.9900 Frequency
80 11 5 0 4 0 0 0 0 0 0.000000 * 0.5100 * BlockFrequency
14 9 10 4 11 15 8 11 10 8 0.455937 0.9900 CumulativeSums
14 12 9 15 10 5 13 5 10 7 0.249284 0.9900 CumulativeSums

Fig. 4: NIST test outputs for 34 cards (16-bit block size)

------------------------------------------------------------------------------
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------
15 9 11 8 6 10 14 12 5 10 0.419021 0.9900 Frequency
24 12 10 15 8 8 6 6 8 3 0.000216 0.9800 BlockFrequency
14 9 10 4 11 15 8 11 10 8 0.455937 0.9900 CumulativeSums
14 12 9 15 10 5 13 5 10 7 0.249284 0.9900 CumulativeSums

Fig. 5: NIST test outputs for 34 cards (800-bit block size)

all considered with the two jokers. These values correspond

respectively to the 3, 4, 5, and 6 bits output values. As before,

an input file of 1 billion bits is used for each deck size. We

have used the same test configuration as the previous test case

of 34 cards.

Table IV contains the test results. We have highlighted

successful test entries in bold. Recall that the minimum pass

rate for each statistical test is approximately equal to the

proportion of 0.96 for a run of 100 binary sequences.

Test Results for the case of n = 10 are not statistically

good. Here is an example of Solitaire output when n = 10:

1 3 5 5 5 8 3 3 5 5 5 3 1
The frequent succession of the same pattern 3 5 5 5

indicates the reason of failure for the frequency test and block

frequency test (16 bits block).

From a deck of size n = 18, the sequences pass the

frequency test and the cumulative sum test. However, only

the version of 32 cards passes the block frequency test when

the block size is equal to 800 bits. This problem of block

frequency can be explained in the following sample output

(n = 18):

6 16 16 14 14 ...... 12 15 1 15 13 9 7 7
3 5 10 6 16 16 16

In the beginning and the end of this sequence, we see a

succession of 6 16 16. Converting this subsequence to a

block of 16 bits, we have 011011111111****, this block
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TABLE V: Proportions of passed tests in the original and

modified Solitaire - 10 cards version

Solitaire (10 cards) Frequency Block Frequency Cumulative sums
Original states 0.0 0.0 0.0
Updated states 0.44 0.97 0.44

pattern frequently occurs in the rest of the keystream file,

which explains the failure of block frequency test, although

the block repetition for n = 18 is much less frequent than the

case n = 10.

We may conclude here that when the block size is larger, the

probability of a block repetition is lower. Hence, this produces

a higher chance of passing the block frequency test.

C. Modified Solitaire keystream Algorithm

The modified Solitaire algorithm is a slight variation of

the original Solitaire algorithm described in Section III. The

original keystream algorithm has a fixed initial state, whereas

the modified Solitaire requires a random or a pseudo-random

change of initial state once a maximum cycle length as

predicted by formula (1) is reached (i.e. start the Solitaire

with a random initial state after a max. cycle is reached).

1) Comparison when n = 10: Figure 6 is a plot comparing

the original Solitaire against the modified version. To generate

this plot, 1000 experiments are run over a population of

100,000 Solitaire outputs. The modified Solitaire algorithm

produces a better uniform distribution result than the original

version. The probability distribution range for the original

Solitaire lies between 0.118 and 0.137, whereas the modified

Solitaire gives a probability distribution range between 0.122

and 0.128.

The NIST statistics confirm these resuts. They also show an

enhancement from the modified Solitaire keystream algorithm,

see Table V. Again here, the numbers highlighted in bold

indicate the success of a particular test, with a minimum pass

TABLE VI: Proportions of passed tests in the original and

modified Solitaire - 18 cards version

Solitaire (18 cards) Frequency Block Frequency Cumulative sums
Original states 0.98 0.93 0.98
Updated states 0.99 0.93 0.99

rate approximately equal to the proportion of 0.96 for a run

of 100 sequences.

2) Comparison when n = 18: Using formula (1), a max.

cycle for n = 18 is estimated to occur after approximately

270 million keystream outputs. For the NIST test, an input file

consisting of 800 million bits is used. 800 individual sequences

are constructed from this file, each consisting of 1 million bits.

For the block frequency test, we have set the block size equal

to 1000 bits.

Table VI summarises the test results. In particular, we have

that the P -values are more less the same for both original

and modified Solitaire. Nevertheless, the Block frequency test

remains unsuccessful for both versions.

From the experimental results obtained in this paper, we

may conclude that the Solitaire keystream (original and modi-

fied) algorithm does not operate as a typical block cipher, e.g.,

Cipher-block chaining (CBC), which has a fixed keystream

cycle 2n/2 (n is the length of the state). In this case, the

adversary can easily calculate the cyclic repetition of states and

predict the next outputs (i.e., Birthday attack [4]). The Solitaire

keystream cycles vary in length, depending on the initial state

of cards positions, making the cycle search more difficult

for the adversary. We have also shown that updating the

Solitaire initial state after a maximum cycle length enhances

the uniformity of the Solitaire outputs (cf. Figure 6). However,

there is not enough convincing evidences at present for us to

conclude that the modified Solitaire with the maximum cycle

length is a better candidate than the original Solitaire to be

used as a PRNG in constrained devices. In fact, the optimum

period for rekeying the Solitaire deck (i.e.,the initial state)

remains to be found, in order to show better statistics.

VI. RELATED WORK

Few research work exists in the area of pencil-and-paper

ciphers. Similar approaches, such as the straddling checker-

board cipher and the trifid cipher [16] have been reported as

vulnerable [7]. A bias in the Solitaire cipher was reported

by Crowley in [10]. Assuming the original design of Solitaire,

based on a deck of 54 cards, and arithmetic operations modulo

26, Crowley showed that Solitaire tends to have shorter periods

than expected. Anwar et al. addressed this issue in [2],

and proposed an alternative version that aims at introducing

additional shuffling steps and secret key parameters. The new

version is claimed to be cryptographically secure, with supe-

rior randomness properties, compared to the original Solitaire

cipher. Some statistical tests were conducted to assess the

validity and overhead of the modified version. However, no

formal proofs have been yet provided about its security. No



other improvements to the original Solitaire cipher exist in the

related literature.

With regard to the properties of the original Solitaire cipher,

some authors have studied its cycle structure and probabilistic

relations. In [15], Pudovkina reported some probabilistic rela-

tions for the Solitaire keystream generator. Some properties

about the distance relationship between the two jokers is

described. However, no attack exploiting such a relation is

presented. Exhaustive brute-force search is reported as the

only potential technique to realistically affect the cipher. In

[14], Pogorelov and Pudovkina modeled and investigated the

semi groups and group properties of the Solitaire cipher.

The deck state of Solitaire is presented as a composition of

transformations, and summarized as four basic transformations

based on the movement of the cards. The approach is presented

as a promising construction to cryptanalyze the cipher or

regular modification of the cipher. Their results show that the

cycle structure of Solitaire is very unpredictable. Solitaire is

reported as non bijective, with non trivial estimation of its

cycle lengths.

VII. CONCLUSION

We proposed the adoption of Solitaire’s PRNG (pseudo-

random number generator) as an alternative solution to protect

communication protocols from constrained devices. To ensure

long term secure communications, we proposed an algorithmic

solution to detect the cycle length of Solitaire’s sequences. The

cycle length is supposed to refresh Solitaire’s state. This is

proposed as a countermeasure to attacks such as the birthday

attack. We estimated the maximum cycle length of Solitaire

keystream in order to determine an update threshold. Our

results show that the maximum cycle length grows exponen-

tially with respect to the state size. To evaluate the security of

Solitaire’s PRNG, we performed a preliminary cryptanalysis

of the keystream algorithm. We also presented a modified

version of Solitaire, with a random update of Solitaire’s state

once a maximum cycle length is reached. We observed that

the modified version enhances the uniformity of the generated

keystream numbers and slightly improves the output statistics.

Further research is expected to improve the design of our

modified version of Solitaire’s PRNG, and to determine the

optimal threshold at which Solitaire’s state must be updated.
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