
On the Difficulty of Hiding the Balance
of Lightning Network Channels

Jordi Herrera-Joancomartí
jordi.herrera@uab.cat

Universitat Autònoma de Barcelona
Cybercat

Guillermo Navarro-Arribas
guillermo.navarro@uab.cat

Universitat Autònoma de Barcelona
Cybercat

Alejandro Ranchal-Pedrosa
ranchal@telecom-sudparis.eu

Institut Polytechnique de Paris, CNRS
SAMOVAR, Telecom SudParis, France

Cristina Pérez-Solà
cperezsola@uoc.edu

Universitat Oberta de Catalunya
Cybercat

Joaquin Garcia-Alfaro
jgalfaro@ieee.org

Institut Polytechnique de Paris, CNRS
SAMOVAR, Telecom SudParis, France

ABSTRACT
The Lightning Network is a second layer technology running on top
of Bitcoin and other Blockchains. It is composed of a peer-to-peer
network, used to transfer raw information data. Some of the links in
the peer-to-peer network are identified as payment channels, used
to conduct payments between two Lightning Network clients (i.e.,
the two nodes of the channel). Payment channels are created with
a fixed credit amount, the channel capacity. The channel capacity,
together with the IP address of the nodes, is published to allow
a routing algorithm to find an existing path between two nodes
that do not have a direct payment channel. However, to preserve
users’ privacy, the precise balance of the pair of nodes of a given
channel (i.e. the bandwidth of the channel in each direction), is
kept secret. Since balances are not announced, second-layer nodes
probe routes iteratively, until they find a successful route to the
destination for the amount required, if any. This feature makes the
routing discovery protocol less efficient but preserves the privacy of
channel balances. In this paper, we present an attack to disclose the
balance of a channel in the Lightning Network. Our attack is based
on performing multiple payments ensuring that none of them is
finalized, minimizing the economical cost of the attack. We present
experimental results that validate our claims, and countermeasures
to handle the attack.

ACM Reference Format:
Jordi Herrera-Joancomartí, Guillermo Navarro-Arribas, Alejandro Ranchal-
Pedrosa, Cristina Pérez-Solà, and Joaquin Garcia-Alfaro. 2019. On the Diffi-
culty of Hiding the Balance of Lightning Network Channels. In ACM Asia
Conference on Computer and Communications Security (AsiaCCS ’19), July
9–12, 2019, Auckland, New Zealand. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3321705.3329812

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6752-3/19/07.
https://doi.org/10.1145/3321705.3329812

1 INTRODUCTION
The Lightning Network is a second layer running on top of Bitcoin
and other Blockchains. Its goal is to address scalability problems
with Bitcoin payment systems, and to lower transaction fees [17].
It uses a peer-to-peer network, to transfer raw information data.
Some of the links in the peer-to-peer network are identified as
payment channels. Payment channels allow payments to be routed
between Lightning Network clients.

The Lightning Network not only provides better scalability. It
also enables users to perform payments privately, and with low
or negligible fees. In its current specification [31], payments are
conducted with an onion-routing protocol [9], to provide each node
in the route with the minimum information required to relay and
retrieve payments. A node other than the origin and the destination
does not know who is the origin node or the destination node; it
only knows from whom and to whom forward the payment.

Channels are created with a fixed credit amount, the channel
capacity. Channels can be used to perform payments between the
two nodes of the channel. The channel capacity, together with the
IP address of the nodes, is published to allow a routing discovery
algorithm to find an existing path between two nodes that do not
have a direct payment channel. To preserve privacy properties,
and although the channel capacity can be known, the particular
balances of each of the nodes of the channel at a given time is set
confidential only to the two members of the channel. Given that
such balances (i.e., the bandwidth of the channel in each direction)
are not announced, routing nodes need to probe and monitor routes
iteratively, until they find a successful path to the destination for the
amount required, if any. This feature makes the routing discovery
protocol less efficient, but preserves the privacy of channel balances.

In this paper, we present an attack to disclose the balance of a
channel in the Lightning Network. Our attack is based on perform-
ing multiple payments, ensuring that none of them is finalized, and
minimizing the economical cost of the attack. Our attack exploits
the detailed information provided by the Lightning Network clients
on the occurred errors. The onion-routing nature of the Lightning
Network routing makes difficult for victims to detect the source of
the attack, i.e., the source of the payments.

Section 2 introduces the basic background to understand the
proposed attack and countermeasures. Section 3 describes the ad-
versarial model and provides a detailed description of the attack.

https://doi.org/10.1145/3321705.3329812
https://doi.org/10.1145/3321705.3329812

Section 4 provides experimental results. Section 5 provides the coun-
termeasures. Section 6 surveys related work. Section 7 concludes
the paper.

2 LIGHTNING NETWORK BACKGROUND
From an architectural point of view, the Lightning Network is
a separated peer-to-peer (P2P) network, connected to the main
Bitcoin P2P network [12]. More precisely, the Lightning Network is
formed from nodes that run a Lightning software client [14, 32]. The
client maintains a P2P network with other nodes of the Lightning
Network and also a connection with a node in the Bitcoin main
P2P network.

Once a node establishes a connection with a peer in the Light-
ning P2P Network, they can open a payment channel in which they
can exchange Bitcoin transactions without the need for such trans-
actions to be set down in the blockchain. This payment channel
is not a real network connection, but a state of the P2P network
connection that both nodes have in the Lightning P2P Network. For
that reason, a payment channel between two users A and B cannot
be created or used without the existence of a connection between
A and B in the Ligthning P2P Network. This online model of the
Lightning Network differs from the offline mechanism of standard
Bitcoin payments, in which A and B may perform payments be-
tween them without being connected, since payments pass through
the blockchain.

2.1 Payment Channels
The core element of the Lightning Network is the payment channel.
A payment channel can be seen as a smart contract between exactly
two parties,A and B, with a capacity amount of BitcoinsCAB = CBA
that is divided between the parties and can be exchanged. Such
division, represented as the balance of A and balance of B, can
be updated without having to send a transaction to the Bitcoin
blockchain.

To create a payment channel, A and B need to set a node in
the Lightning P2P Network and connect both nodes in that net-
work. Once the connection is established, they proceed to create
a payment channel. Channel creation is performed by sending a
special transaction to the Bitcoin blockchain. The open nature of
the Bitcoin blockchain allows any user to check when a channel
is created and some basic information for that channel, like the
capacity of the channel or the Bitcoin addresses that created the
channel1.

The Bitcoin transaction needed to create a channel is known
as the funding transaction, a transaction in which one of the users
deposits some bitcoins in a multisignature address controlled by
bothA and B. The total amount included in the funding transaction
is the channel capacity, CAB = CBA.

Once a channel is open, the two users holding that channel can
perform payments in both directions, only restricted to the balance
that each of them has in the channel. The balance of each user
in a channel is a fraction of the capacity of that channel, and can
be indicated with balanceAB for the balance that user A has in
the channel and balanceBA for the balance of B. Obviously, the

1Although Bitcoin addresses are included, the identity of users A and B holding the
channel may be preserved.

following expression always holds: CAB = CBA = (balanceAB +
balanceBA). For instance, if the user A has deposited 0.1 Bitcoins
in the funding transaction of the channel, then the initial balances
of the channel will be balanceAB = 0.1 and balanceBA = 0. When
A performs a payment of 0.02 to B in that channel, the balances are
updated accordingly: balanceAB = 0.08 and balanceBA = 0.02.

Payments in a channel are performed through commitment trans-
actions. When A wants to perform a payment to B both users ex-
change a Bitcoin transaction with special features. In short, the
transaction takes as input the funding transaction output of the
channel and splits the input creating outputs in which every user
gets the new balance of the channel. Since such a transaction is
not published in the Bitcoin blockchain, but stored by each user of
the channel, when a new payment has to be performed, new com-
mitment transactions are created and exchanged. However, since
the new commitment transactions spend the same output from the
funding transaction as used in a previous committed transaction, a
mechanism should be added to invalidate a previous commitment
transaction once a new one has been exchanged. This mechanism is
performed by a set of transactions that are kept offline. The transac-
tions are only published if the counterpart intends to commit to an
invalid, old, commitment transaction. Users are discouraged to use
previous transactions since at every new commitment transaction,
(secret) information of the previous one is revealed, giving the op-
portunity to honest users to punish a dishonest one, by collecting
all the balance of the channel [26].

Notice that commitment transactions are valid formatted Bitcoin
transactions that, although they are not intended to, can be posted
in the Bitcoin blockchain at any time for any of the participants of
the channel.

At any moment, users of a channel can close the channel and
refund the balance each one has in the channel. This reset can be
performed unilaterally, by any of the users sending the last commit-
ment transaction to the Bitcoin blockchain or jointly, by creating a
closing transaction in which the funding transaction output of the
channel is spent in two outputs that equal the actual balances of
each user. More types of channels and similar constructions have
been proposed and generalized, identifying the same open-close
funds mechanism [28].

2.2 Multihop Payments
Channels described so far are of little use in real scenarios, since
they are based on a two party agreement, and often a stable payment
relation between only two users is not common. However, payment
channels can be concatenated allowing to route payments between
two users that do not hold a direct payment channel. WhenAwants
to perform a payment to C and there is no direct payment channel
between A andC , A tries to find a multihop path of direct channels.
In case the path exists (for instance, with two hops), a sequence
A↔ B ↔ C is established where each arrow indicates a payment
channel. In such a case, ifAwants to pay 0.01 Bitcoins toC , she can
pay 0.01 Bitcoins to B and B can perform the 0.01 payment to C .
The only condition that has to be set to perform the aforementioned
mechanism is that balanceAB ≥ 0.01 and balanceBC ≥ 0.01.

In the multihop approach, payments at each individual payment
channel cannot be performed exactly in the same way that with a

single hop because user B has to enforce that he would receive the
payment fromA once he has performed the payment toC , otherwise
he would lose the amount of the payment. The enforcement of this
type of atomic exchange between all the nodes of the path (i.e., all
simple one-hop payments have to be completed or none can be
processed) is performed using Hashed Timelock Contracts (HTLCs)
[11]. In an HTLC between the sender A and the receiver B, A can
deposit Bitcoins that can be redeemed by B if B can perform a digital
signature and provide a preimage of a hash value. Furthermore, the
deposit performed by A has an expiration date after which A can
retrieve the deposit providing a digital signature. The idea is that
C generates a random value x and sends h(x) to A. A performs the
single hop payment to B with an HTLC based on h(x) and B also
performs the single hop payment to C with an HTLC based on the
same value h(x). In that way, since C knows x , he can redeem the
transaction from B, but redeeming the transaction implies revealing
the value of x which, in turn, implies that B may also redeem the
payment from A.

Information in a Lightning multihop payment is routed through
an onion routing protocol where every node of the path is only
aware of his previous and next neighbor. For that reason, the payer
is the one that decides the route of the payment based on the path
availability.

To determine the path, the network topology of the payment
channels of the Lightning Network is published. For each payment
channel, the capacity of the channel and the fees of each node
are advertised. Based on this information, the payer determines
the path for the payment. However, for privacy reasons, the only
information available for a channel is its capacity, but not the exact
balance for each of the two users of the payment in which the
capacity is split. Hence, it is possible that, although the capacity of
the channel could allow to route a payment through that channel,
its exact balance for each part may not allow the payment to be
processed. In that case, the payer cannot be aware of that situation
until she tries to proceed with the payment and the protocol returns
an error indicating that a particular hop in the path has not enough
funds. Such an error indicates that the payer needs to find another
path which avoids that hop with insufficient balance in the right
direction.

2.3 Invoices in the Lightning Network
In contrast with regular Bitcoin payments, where a payment request
is based only on the Bitcoin address of the payee and the amount of
the payment, Lightning Network payments are requested through
invoices. When user A wants to make a payment to user D, the
payee creates an invoice. The invoice includes, among others, the
amount of the payment, p, the key of the destination node, the
value h(x) described in the previous section (to redeem atomically
all the payments of the payment path) and an invoice signature
from the payee (see [31] for all the details). Once A receives the
invoice, she looks for a path in the Lightning Network to route the
payment. In case there is no direct payment channel with enough
capacity between A and D, then A should find a path, for instance
A↔ B ↔ C ↔ D, in whichCAB ≥ p,CBC ≥ p,CCD ≥ p. With this
information, using the public keys of each node,A creates an onion-
routing path in which every node can only decrypt information

with regard to the next hop payment, and the value h(x) needed to
redeem all the conducted payments.

Every node of the network performs a commitment transaction
to the next hop of the path, by using the existing payment channel.
The commitment transaction includes the value h(x) in an output
to be redeemed once the value x will be revealed. Upon reception
of the last payment, D looks for the value x that he previously
generated and used to include h(x) in the invoice. Then, D reveals
the value x to obtain the payment performed by C . In doing this, C
gets to know about x and can redeem the payment from B that, in
turn, can do the same.

3 CHANNEL BALANCE DISCOVERY
Our scenario assumes that Alice,A, and Bob,B, have an open Bitcoin
Lightning Channel, AB, with capacity CAB . Then, the objective of
the adversary, MalloryM , is to disclose the exact balances that each
node has in channel AB, that is balanceAB and balanceBA.

M A B

MA AB

Figure 1: Simple single channel scenario.

To perform our attack, Mallory M needs to open a payment
channel with2 A,MA (see Figure 1). Once theMA channel is open,
M performs a payment through the path M ↔ A ↔ B. In case
that balanceMA ≥ balanceAB , any payment with amount p ≤
balanceAB performed byM can be routed through that route and
the payment will be correctly delivered to B. Obviously, a naive
attack may be carried by performing multiple payments each of
one increases p from balanceMA step by step3 until an error in
the payment is obtained. The amount p of the last correctly pro-
cessed payment can be considered the value balanceAB and then
balanceBA = CAB − balanceAB .

The previously described attack can be enhanced, in order to
reduce the economic cost for the adversary, by routing an invalid
payment. To that end,M creates a fake invoice as if created by B,
with a random value h(x). However, the fake invoice cannot be
detected by A but only by B, who will not be able to retrieve the
corresponding x value (in fact, he could not locate the invoice, that
was created by M) denying the last hop payment and, therefore,
the whole payment.

3.1 Attack Extension
The previously described attack can be easily extended in order to
discover the balance of all open channels that A has with n peers
B1,B2, · · ·Bn (see Figure 2). Notice that with the same set-up as
before (M opens a single channel with A), M can also obtain the
pairs (balanceABi ,balanceBiA) ∀i = 1, · · · ,n as far as M is aware
of the existence of Bi and balanceMA ≥ balanceABi ∀i . In that case,
M should set payments with each end node Bi .
2There is a symmetry in the channel creation, soM can choose either A or B , or both,
for the attack.
3The implemented approach, however, improves its efficiency by using a binary search
to obtain the threshold value.

M A B2

B1

Bn

MA

A
B
1

AB2

A
B
n

Figure 2: Multiple nodes scenario.

3.2 Attack Implementation
Algorithm 1 describes the first attack presented in the previous
section, i.e., the adversary trying to discover the balanceAB by
performing invalid payments to B through the path M ↔ A↔ B
route (cf. Figure 1). Algorithm 1 takes as inputs the target node B,
the route to B (i.e., node A), the range of the payment minFlow and
maxFlow, that is [0,CAB], and the accuracy the adversary wants for
the obtained balance. The function returns the value balanceAB .

The algorithm starts by trying a payment in themiddle of the pay-
ment range (cf. Lines 8-10). The value h(x) for the invoice needed
to perform the payment has been randomly created by M ensur-
ing that the sendFakePayment() function always will return an
error. In case the failure message is “UnknownPaymentHash”, then
the adversary knows that the payment would have been possible
(cf. Line 11), i.e., the channel can forward the payment. Thus, the
minimum bandwidth of the channel can be updated to this new
flow, unless its minimumwas already greater (cf. Lines 12-14). If the

Algorithm 1: minmaxBandwidth
Data: route, target, maxFlow, minFlow,

accuracy_threshold
Result: bwidth, an array of tuples that gives the range of bandwidth discovered

for each channel
1 missingTests← T rue ;
2 bwidth.max ← maxFlow;
3 bwidth.min ← minFlow;
4 while missingTests do
5 if bwidth.max − bwidth.min ≤ accuracy_threshold then
6 missingTests← False ;
7 end
8 flow← (bwidth.min + bwidth.max)/2;
9 h (x) ← RandomValue ;

10 response← sendFakePayment(route = [route, target], h (x), f low);
11 if response = UnknownPaymentHash then
12 if bwidth.min < flow then
13 bwidth.min ← flow;
14 end
15 else if response = InsufficientFunds then
16 if bwidth.max > flow then
17 bwidth.max ← flow;
18 end
19 end
20 end

21 return bwidth

Algorithm 2: Complete Node Attack
Data: node, accuracy_threshold
Result: routes2Neighbors, an array of routes and bandwidths for each neighbor

of the node
1 channelPoint← getChannelPointListChannels(node);
2 created← False ;
3 if channelPoint is undefined then
4 channelPoint = getChannelPointPendingChannels(node);
5 if channelPoint is defined then
6 waitChannelNotPending(channelPoint);
7 else
8 created← T rue ;
9 createConnection(node.externalIP);

10 maxFunding← calculateMaxFunding;
11 responseOpenChannel← createChannelSync;
12 channelPoint← waitChannel(responseOpenChannel);
13 end
14 end
15 neighbors← getNeighbors(node);
16 for neighbor in neighbors do
17 neighbor.minmaxBandwidth ←

minmaxBandwidth(route =node, target =neighbor);
18 end
19 if created then
20 closeChannel(channelPoint);
21 end

22 return routes2Neighbors

failure message is instead “InsufficientFunds”, then the payment
could not pass through channel A↔ B , due to insufficient funds4
(Line 15). In this case, the maximum bandwidth (cf. Lines 16-18) is
modified. Since the adversary cannot get any further information
w.r.t. the maximum bandwidth, the new maximum and minimum
values are those of the channel that produced the failure message,
which held the lowest index in the route, w.r.t. the origin. Lines 5–7
ensure the termination of the algorithm when the range is less than
the desired accuracy threshold (since, at least, the desired channel
reaches such a precision when maxFlow equals the capacity of the
channel created by the adversary created).

In order to estimate the balance of the channel, one simply has
to add up 1% of the capacity of the channels to each of the results of
the algorithm, since this is the default percentage that members of
a channel require to always have as balance to be accountable for
punishments in the event of fraud. In order to perform the attack
described in Section 3.1, Algorithm 2 can be used. Given the victim
node A, the adversary discovers all the channels she had open with
other peers Bi for i = 1, · · · ,n and obtains their current balances
balanceABi for i = 1, · · · ,n. We assume here that the adversary
advertises its external IP address to the victim (i.e., the IP address
which is accepting incoming connections).

Lines 1-6 first check if the adversary has an open or pending
open (i.e. waiting to get enough confirmations) channel with the
victim node. If not, then the adversary creates the channel (Lines 7-
13). Afterwards, the adversary gets the neighbors of the victim in
Line 15, to perform Algorithm 1 on each of the channels with its
neighbors (Line 17). Finally, if the attack opened a channel, it closes
it in Line 20.

4The payment should always pass through the channel M ↔ A since M controls the
channel and can ensure that balanceMA ≥ CAB .

3.3 Adversary Model and Attack Cost
The Bitcoin Lightning Network is an open P2P network to which
any user can connect, and for that reason, there is no special require-
ments for an adversary to perform the proposed attack, besides the
ability to open a payment channel with the victim node A from
which the adversary knows the IP address. Of course, node A could
refuse to open a payment channel with the adversary, since such
procedure should be authorized by both parties, and then the attack
could not be initiated. However, nodes in the Lightning Network
are expected to be willing to open new channels, to allow better
connectivity. In case the adversary completely funds the funding
transaction, node A should not need to provide any liquidity, being
more likely to accept the request from the adversary to open the
channel.

In order to disclose the balance of a channel, the adversary needs
to open another channel (i.e., first hop in the path). To do this, the
adversary needs to send two transactions to the Bitcoin blockchain:
(1) a first transaction to open the channel and lock the funds of the
channel; and (2) a second transaction to close the channel and re-
fund the funds that were previously locked. No Lightning Network
fees need to be used, since the attack does not fulfill any payment.

The total cost of the attack can be divided between the entrance
barrier cost and the economic cost. On the one hand, the entrance
barrier cost takes into account the economic resources that the
adversary has to control to be able to perform the attack. Such
resources will be completely recovered after the attack has been
finished. On the other hand, the economic cost of the attack is the
amount of money that the adversary will lose due to the execution
of the attack.

Regarding the entrance barrier cost, the proposed attack needs to
fund a Lightning Channel to perform the balance disclose of other
channels. In order to achieve maximum accuracy, the adversary
needs to open a channel with its maximum capacity, that at present
time is bounded at 0.16777215 BTC (stock symbol for Bitcoins, in
which 1 BTC represents 100, 000, 000 satoshis5). Hence, the entrance
barrier cost will be around6 640.05 USD (United States Dollars).

With regard to the economic cost of the attack, three values have
to be taken into account: (i) the fee corresponding to the funding
transaction of the channel; (ii) the fee corresponding to the transac-
tion that closes the channel; and (iii) the financial cost from having
funds of the channel locked during the attack execution. Although
the amount of bitcoins deposited in the funding transaction has
to be, at least, as big as the biggest capacity of the channel that
the adversary wants to attack, the cost in fees of the transaction
does not depend on the amount deposited in the channel but on
the size in bytes of the transaction. Additionally, being such size
mostly independent from its inputs that will vary for each particu-
lar transaction, funding transactions with a single input can cost
as low as 0.00001534 BTC7. Secondly, and regarding the closing
transaction, it is difficult to estimate the exact fee for a generic

5Smallest amount within Bitcoin, i.e., one hundred millionth of a BTC.
6Exchange rate from Jan 10, 2019 in which 1 BTC exchanges at 3, 815 USD.
7See, for instance, transaction:
930d1c204258afee13fac4d45f9fa98e6e807c918cdbfde49f9d56e2dc482f4a It is the funding
transaction corresponding to the Channel Id 614573123866132481 opened on January
17, 2019, by node
021387e1257d1da1c93996e10e7c4e2a2183683e978e60e40ae9f1927b86fabd27

closing transaction, since multiple parameters may affect such a
value. A cost rounding 0.00000463 BTC can be achieved, as can be
seen in different existing closing transactions8.

The financial costs derived from the locking funds can be mea-
sured in terms of standard interest rate [8]. However, as we detail
in the next section, even a standard fixed annual interest rate of
4% implies negligible values when estimating this type of costs,
since the time to perform the aforementioned attack is in the range
of seconds. Then, the economic cost of the attack will be around
0.00002 BTC, i.e., equivalent to 0.0763 USD. Such a reduced cost
can be used not only to disclose the balance of a single channel, but
also to disclosing the balances of all the open channels of node A.

4 EXPERIMENTAL RESULTS
To analyze the feasibility of our attack, we have performed two
different evaluations. The first evaluation focuses on the Lightning
Network running over the Bitcoin Mainnet Blockchain, where real
value is being transacted. In this first evaluation, we estimate the
impact of our attack over Mainnet, based on topological measures,
as well as the cost estimation that such an attack could have. The
second evaluation focuses on the Lightning Network running over
the Bitcoin Testnet Blockchain, to test a real attack over transac-
tional functionality. This second evaluation reports the technical
feasibility of the attack.

The choice of only running the second evaluation over Testnet,
rather than executing the attack over Mainnet, does not follow any
technical, nor economical, reasons. In fact, experiments over Testnet
have a very erratic and unrealistic behavior. The implications on
the exact information extracted from Testnet are not always easy
to extrapolate over Mainnet. However, our decision of conducting
the real evaluation only over Testnet follows ethical reasons. In
addition, we performed a responsible disclosure to the developers
of the Lightning Network, about our findings.

4.1 Bitcoin Mainnet Evaluation
To analyze the feasibility of our attack in the Bitcoin Lightning
Mainnet, we have performed some measurements on that network
that is composed by 1, 732 nodes and 6, 501 channels (snapshot
taken the 8th of January, 2019).

At the moment of writing, there is a detail in the main implemen-
tations of the Lightning Network that may let our attack less effec-
tive, providing a bound on the balance of the channel rather than
the exact balance. Lightning Network implementations have two
main limits, one on the maximum amount to pay in one single pay-
ment (MAX_PAYMENT_ALLOWED), and another one on the maximum
amount with which to create a channel (MAX_FUNDING_ALLOWED),
with values 4, 294, 967 and 16, 777, 215 satoshis, respectively. Re-
garding the logic of Algorithm 1 and with these limits in mind, we
can perform the attack to a channel with capacity CAB and obtain
its exact balance only if CAB ≤ MAX_PAYMENT_ALLOWED. Should
that not be the case, and considering that MAX_FUNDING_ALLOWED
is almost four times the MAX_PAYMENT_ALLOWED, it is possible that,
if a channel has a big amount of funds in both ends, the attack

8For instance, Channel Id 608922733705166848 with total capac-
ity 0.1 BTC has been closed with the following close transaction
8da4d6b708eabbedaeb978e88fb8a5331c6e164c64cf9e561ba165dbdd200e71

https://blockstream.info/tx/930d1c204258afee13fac4d45f9fa98e6e807c918cdbfde49f9d56e2dc482f4a
https://1ml.com/channel/614573123866132481
https://1ml.com/node/021387e1257d1da1c93996e10e7c4e2a2183683e978e60e40ae9f1927b86fabd27
https://1ml.com/channel/608922733705166848
https://blockstream.info/tx/8da4d6b708eabbedaeb978e88fb8a5331c6e164c64cf9e561ba165dbdd200e71

will not see the actual balance, but provide a lower bound for that
balance that will be MAX_PAYMENT_ALLOWED. In these cases, the ex-
act balance of the channel can be obtained only depending on the
actual balance of the channel, and the direction in which the attack
is performed.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107 1.6x107

Pe
rc

en
ta

ge
 o

f C
ha

nn
el

s

Channels (sorted by increasing capacity)

MAX-PAYMENT-ALLOWED
Channel Number

Figure 3: Percentage of deanonymizable channels, per num-
ber of channels attacked, sorted by increasing capacity.

Figure 3 shows that the number of channels in the Mainnet
for which the exact balance may not be recovered is very low.
The plot shows the cumulative distribution of the channels by
its capacity, that is, for a given capacity, it shows the percentage
of channels with lower or equal such capacity. We can see that
there are 89.10% of channels in Mainnet with lower capacity than
MAX_PAYMENT_ALLOWED, which means that their balances can be
exactly disclosed.

Another interesting measure performed in Mainnet is the cost
for an adversary to compute the balances of all the channels in
the network. As mentioned in Section 3.3, if an adversary wants
to perform the attack, the cost can be minimized by choosing as
victims of the attack (i.e., node A in Figure 2) nodes that are highly
connected. A single channel creation is required to get the balance
of all the channels connected to such a node. A good strategy is
to select the nodes by their number of channels and perform the
attack until all the channels are processed.

Figure 4 shows the percentage of channels that can be deanonymi-
zed by attacking a given number of nodes, assuming that the nodes
are sorted by their number of channels. We can see that we can
deanonymize 50% of the channels by just attacking 18 nodes, 80%
with 78 nodes, and 90% with 141 nodes. Moreover, we can easily
estimate the minimum vertex cover of the Lightning Network using
the local-ratio algorithm [5], which yields a set of 624 nodes. In
other words, with less than 624 attacks to specific nodes, one could
cover all the channels in the network. Note that, by the local-ratio
algorithm, the vertex cover is guaranteed to be at most twice the
minimum vertex cover. The actual size of the minimum cover set
will range between 312 and 624 nodes. Then, to disclose the balance
for all the network, there is a trade-off between the entrance barrier
cost and the time needed to perform the attack. The attack can
be parallelized by opening channels with each of the nodes at the

same time. In the worst case, this implies an entrance barrier cost of
624 × 640.05 = 339, 391.2 USD. If time is not a constrain, channels
can be open sequentially, hence lowering the entrance barrier cost
to 640.05 USD. From Figure 4, we can observe that by attacking only
78 nodes, an adversary can disclose the balance of 80% of the chan-
nels. Therefore, by performing a parallel attack with these settings,
the entrance barrier cost gets reduced to 78 × 640.05 = 49, 923.9
USD. With regard to the economic cost of the attack, and since the
transactions fees are charged per channel, the parallel or sequential
strategy does not affect the total cost. The total cost is low even in
the worst case scenario, i.e., attacking the 624 nodes, in which it
reaches 624 × 0.0763 = 47.61 USD.

Besides the economical cost of the attack, we can also consider a
time cost estimation. Algorithm 1 looks for the balance in the same
form as a binary search algorithm looks for a number in a sorted
list. Therefore, each iteration of the algorithm reduces the range by
half. The initial range would normally be always set bymaxFlow =
channel_capacity andminFlow = 0. Given the above-mentioned
limitation, the current execution of the algorithm setsmaxFlow =
min{channel_capacity,MAX_PAYMENT_ALLOWED}, i.e., in the
worst-case scenario, the algorithm iterates 23 times, considering
an accuracy_threshold of 1. In the general case, the number of
iterations is:

loд2

(⌈maxFlow −minFlow

accuracy_threshold

⌉)
(1)

which means that there are three ways of reducing the number of
iterations (and thus the running time to perform the attack on a
given channel):
• reducemaxFlow −minFlow by using historic information
from previous iterations of the attack,
• reducemaxFlow by choosing a channel with small capacity,
• increase accuracy_threshold and allow more coarse-grained
results.

Regardless of the current MAX_FUNDING_ALLOWED and specially
MAX_PAYMENT_ALLOWED limit, it is easy to predict the number of
iterations for each of the channels capacity. Figure 5 shows the
number of iterations for all existing channels, if there was no

0 250 500 750 1000 1250 1500 1750
Number of Nodes (sorted by their number of channels)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f D
ea

no
ny

m
ize

d
Ch

an
ne

ls

Channels
Min. vertex cover size

Figure 4: Percentage of deanonymizable channels per at-
tacked node.

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000
 0

 10

 20

 30

 40

 50

 60

N
um

be
r o

f I
te

ra
tio

ns

Ex
pe

ct
ed

 T
im

e
(s

ec
on

ds
)

Channels (sorted by increasing capacity)

1 satoshi (0.00003 USD)
16,384 satoshis (0.63 USD)

65,536 satoshis (2.5 USD)
262,144 satoshis (10 USD)

Figure 5: Expected time to perform attack on each channel,
sorted by increasing capacity.

MAX_PAYMENT_ALLOWED limit, depending on the accuracy threshold.
All currently existing channels have less capacity than MAX_FUNDI-
NG_ALLOWED, for which 24 iterations are enough to find out the
balance within a range of 1 satoshi. In general, with n iterations,
one can perform the attack of channels of capacity 2n . Given that
the running time between iterations can be considered constant,
we can estimate the time required to perform an attack given the
number of iterations. This time is also shown in Figure 5 in the
right y axis. The actual time is taken as the average from the tests
performed in the Bitcoin Testnet (see Section 4.2).

4.2 Bitcoin Testnet Evaluation
In order to provide a proof-of-concept of our attack, we have de-
veloped and performed a real attack on the Lightning Network
running over Testnet. To perform the attack, we first identified 11
nodes with the largest amount of Lightning Channels in Testnet, as
seen by a local deployment of lnd [32]. These 11 nodes have 2, 518
open channels, more than 50% of the total number of channels in
Testnet. Then, we performed the attack described in Algorithm 2 by
sequentially connecting to each of the nodes and opening a channel,
in order to retrieve the exact balance of the 2, 518 channels they
had previously open with other nodes of the network.

Contrarily to traditional Bitcoin payments, the Lightning Net-
work requires both users, and also intermediary hops, to be online
for the payment to take place. Whereas the adversary (our node)
and intermediary nodes (the 11 nodes we open channels with) were
online and responsive throughout the whole attack, the destination
payment nodes (i.e., each of the targets in each iteration of Algo-
rithm 1) were in most cases not online. This is likely due to nodes
that were created in the Testnet for occasional testing and that may
even not be used anymore. At the time of writing, Lightning Net-
work client implementations do not have a mechanism to filter out
unused channels, or unresponsive nodes. Out of the 2, 518 target
nodes that our attack contacted, only 710 replied. The remaining
1808 requests failed due to long delays, or simply because of their
unresponsive behavior.

Out of the 710 channels that behaved normally, and each of
the iterations of the attacks on each on them, we extracted the
average time, median time, and minimum time per iteration of Al-
gorithm 1. These values are 2, 562, 2, 603 and 1, 106 milliseconds,
respectively. Figure 6 shows the time (both in seconds and in num-
ber of iterations) that it would take to perform the attack, depending
on the capacity of a channel, and the desired range (i.e., the accu-
racy_threshold parameter in Algorithm 1) in satoshis.

Notice that by detecting a balance with an accuracy of 0.0391
USD on a channel of capacity MAX_PAYMENT_ALLOWED takes about
33.3 seconds, according to the average; 33.84 seconds, according to
median; and 14.4 seconds, following the minimum time. Detecting
a balance with an accuracy of 1 USD takes about 20 seconds in both
average and median; and less than 10 seconds in the minimum case.
Detecting the balance with an accuracy of 10 USD can be conducted
in 10.25, 10.4 and 4.4 seconds, respectively.

 0

 10

 20

 30

 40

 50

 1 32 1024 32768 1.04858x106
 0

 5

 10

 15

 20

0.000977 0.031250 1.000000 32.000000

Ti
m

e
(s

ec
on

ds
)

N
um

be
r o

f I
te

ra
tio

ns

Range (satoshis)

Range (USD)

Time per range (using average)
Time per range (using median)

Time per range (using minimum)

Figure 6: Time to perform the attack (in seconds left and in
number of iterations right) per desired accuracy range (in
satoshis bottom and in USD top).

Figure 7 shows the time it would take to perform the attack on
all of the channels of a single node, by assuming that the adversary
only controls one channel, and ignoring the MAX_PAYMENT_ALLO-
WED limitation. The adversary could perform the attack in parallel
by opening multiple channels and probing different channels at the
same time. We see that 1, 432 nodes can be attacked in a minute;
or less in the sequential attack, with an accuracy of 10 USD; 1, 369
with an accuracy of 2.5 USD; 1, 249 with 0.63 USD and 608 with
3.815 × 10−5 USD; or 1 satoshi, out of 1, 682 nodes with visible
channels by the adversary.

Besides the strict attack of finding the balances of the channels,
information about the balance can be used to measure the state of
the Lightning Network. For the Lightning Network to maximize
its utility, it is important for channels to be balanced or leveled.
For this reason, we include the notion of level percentage. Given
a channel between two nodes A and B, with capacity CAB , and
balance of each of the nodes balanceAB for the balance of A and
balanceBA for that of B, then we refer to the level percentage lpAB

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 0 200 400 600 800 1000 1200 1400 1600 1800
 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

N
um

be
r o

f I
te

ra
tio

ns

Ex
pe

ct
ed

 T
im

e
(s

ec
on

ds
)

Nodes (sorted by increasing sum of capacity of their channels)

1 satoshi (0.00003 USD)
16,384 satoshis (0.63 USD)

65,536 satoshis (2.5 USD)
262,144 satoshis (10 USD)

Figure 7: Expected time to perform attack on all channels of
each node. Left y axis as per number of iterations, right y
axis as per time in seconds.

as:

lpAB =
CAB − (0.01 ×CAB + balanceAB)

CAB
× 100 (2)

And analogously to lpBA as:

lpBA =
CAB − (0.01 ×CAB + balanceBA)

CAB
× 100 (3)

Intuitively, if lpAB is closer to zero, thenA holdsmost of the capacity
of the channel, and can thus perform payments to B, but not receive
payments from B. Similarly, the closer lpAB gets to 100, the less
balanceAholds in the channel, and themore payments it can receive
from B. Ideally, without further knowledge on the characteristics
of each channel, all the channels should always be equally leveled
to ensure a good functioning of the network. Figure 8 shows the
level percentage of the 272 channels of which we could find out
the exact balance, even with the testing limit of MAX_PAYMENT_A-
LLOWED. Figure 8 shows that, for the channels whose balances we
could find out, the level percentages are destituted: either nodes
can only make payments, or nodes can only receive payments. A
better payment network should provide more channels close to a
level percentage of 50%.

5 DISCUSSION
Several countermeasures can be developed to mitigate the attack
described in this paper. A first solution relies on denying access to
the debugging messages, e.g., by silently dropping the information
provided by the failure message referred to in Section 3.2, Algo-
rithm 1. Other possibilities include selectively or randomly denying
given payment requests, or even allowing dynamically rechargeable
payment channels to fully mask and randomize existing balances
of two Lightning Network channel points. Additional details about
the aforementioned solutions follow.

5.1 Payment Requests Denial
A first approach is for a node to randomly deny a given percentage
of payment requests, e.g., by setting a dropping rate parameter in

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

Le
ve

l P
er

ce
nt

ag
e

Channels (sorted by increasing level percentage)

Figure 8: Level percentage of each channel.

the node. The requesting node does not know the reason of the re-
jection (by using the failure messagewith no debugging information
described in Section 3). This can make the attack unfeasible since
the adversary might assume that the route has failed because there
are not enough funds to carry the requested payment. The solution
can be seen as a typical approach for masking information based
on introducing noise. In this case, the adversary receives wrong
information that makes the attack probabilistic or simply unfeasible.
There is clearly the typical trade-off between privacy and usability
tied to the dropping rate parameter. Several improvements can be
developed in order to improve such trade-off.

Instead of setting the dropping rate at random, a node could
define a more selective approach. We can identify some indications
revealing that a balance disclosure attack (or other type of attack)
is being carried on. For example, consider that node A receives a
payment request from node B. Then node A can use the following
information to decide its dropping rate:

– 1. Consider the number of channels and rate of payment re-
quests of node B. If node A receives lots of payment requests from
node B, and node B has just one channel (other than the AB chan-
nel). Node A can consider this as an abnormal situation, potentially
an evidence of an adversary perpetrating the balance disclosure
attack, hence increasing the dropping rate of the node in real time.

– 2. Consecutive payment requests with a suspicious amount
pattern. If nodeA receives from nodeB (independently of its number
of channels) payment requests that follow the pattern described in
Algorithm 1, the nodeA considers again the situation as an anomaly,
and increases the dropping rate of the node.

These are just two examples of simple heuristics that can be used
to detect an abnormal behavior. In the general case, we can model
the behavior of a node and provide anomaly detection measures to
dynamically tune the dropping rate for specific nodes or situations.
In the end, the node administrator can set the dropping rate and
decide the privacy degree willing to accept. This privacy comes
with the cost of not routing some payments that might be legitimate.
We believe, however that a good trade-off can be achieved with
relatively simple measures, like the ones outlined above.

5.2 Dynamic Absorption of Negative Balances
Another way to address the general attack uncovered in this pa-
per could be the extension of the current implementations of the
Lightning Network, by including additional masking functionali-
ties capable of absorbing negative balances. This would be similar
to energy-driven techniques discussed in [4], where adversaries
trying to estimate metering consumption and billing functionality
by adversarial collection of metering metadata get concealed by
privacy-preserving mechanisms. The addition of synthetic comput-
ing and storage functionality, relying on charging channels, can be
put in place as well between Lightning Network channel points,
hence avoiding fine-grained collection of nodes’ information to
mitigate the deanonymisation attack presented in Section 3.1. In
addition, the masking solution can be randomized as in [3, 35], in
such a way that the adversarial monitoring of balances between
payment channels gets transformed from fine-grained processing
into coarse-grained collection, hence guaranteeing that more pow-
erful adversaries will fail at properly retrying accurate balances
between two payment channels points of the Lightning Network.

The absorption of negative balances will act as a networking
countermeasure to handle periodic (adversarial) probing to identify
balance capacity flows, i.e., to hide and avoid accurate collection
of channel node balance capacities. This shall lead to anonymity
provable protection (i.e., protectionwith anonymity guarantees that
can be proven in a formal way) like the one in [4], and whose goal
is to mask transactional information flows in payment streams. The
underlying techniques can rely on rechargeable swapping channels
between Lightning Network nodes, used to mask channels’ balance
by adding or subtracting resource capacities (e.g., by increasing or
decreasing the real bandwidth of each payment channel). The goal is
to establish strong anonymity guarantees in the sense of differential
privacy [13]. To achieve such anonymity guarantees in realistic
settings, further work must be conducted, e.g., to establish the
influence of, and the interplay between, capacity and throughput
bounds that real payment channels of Lightning Network nodes
must face.

The overall solution shall provide integrated methods based on
cascading noise, allowing for payment channel on-the-fly recharg-
ing functionality, able to mask capacity and throughput of the nodes
with either discrete and continuous time constraints. We shall also
make sure that the addition and subtraction of masking resources
holds the minimal possible impact to the payment network, e.g.,
in terms of service disruption. Of course, this solution will require
an important effort for its implementation in current payment net-
works such as the Lightning Network. It might require to redesign
how payment networks work and provide means to allow the ab-
sorption of negative balances somehow by interested parties. A
more straightforward approach could be the use of private chan-
nels between nodes (channels not announced to the whole network)
that allow for such negative balance to be privately compensated.

6 RELATEDWORK
There are a number of studies that investigate adversarial issues,
in terms of privacy and information disclosure, in current cryp-
tocurrencies and routing literature. We survey next some examples,
structuring the existing work in such two main research lines.

6.1 Cryptocurrencies Literature
Traditionally, anonymity in Bitcoin-like cryptocurrencies relies
on pseudonymity, i.e., users creating any number of anonymous
account addresses that are used later on, to identify the transactions.
However, an underlying, non-anonymous, Internet infrastructure,
together with the availability of transactions meta-data stored in
a blockchain, allows the development of deanonymization tools.
We follow four main recent literature classifications [10, 17]: (1)
blockchain analysis, (2) network monitoring, (3) attacks to mixing
protocols, and (4) balance disclosure.

In terms of blockchain analysis, and since any blockchain in-
cludes, by definition, all the transactions performed by the system,
deanonymization may take advantage of such information. A sim-
ple analysis of the blockchain may provide information such as from
which Bitcoin addresses the money comes from, and to which Bitcoin
addresses it goes to [29]. Since users in the Bitcoin ecosystem can cre-
ate any number of addresses, a more powerful tool to deanonymize
transactions is to cluster all addresses in the blockchain that be-
long to the same user. Different proposals exist to conduct address
analysis, such as clustering and similar techniques [2, 22, 30, 34].
From shadow address analysis to multiple input clustering and
also behavior-based clustering techniques like k-means and Hi-
erarchical Agglomerative Clustering can be used to enhance the
cluster creation. Once the clustering set for one user is large enough,
deanonymization becomes possible by using external information
on Bitcoin addresses (e.g., posts, forums, markets, and market ex-
changes) that could identify at least one of the addresses.

With regard to traffic analysis, we recall that transactions in Bit-
coin are transmitted through a P2P network [12]. Hence, metadata
such as TCP or IP headers, which can be obtained by using tradi-
tional network analysis tools, can also be used as an underlying base
for novel deanonymization tools [20]. Transaction eavesdropping
can be performed to, e.g., discovering the IP addresses correspond-
ing to those nodes that are broadcasting a transaction for the first
time. To match an IP address with a Bitcoin address, the problem
can be modeled as an evaluation of association rules, identifying
the corresponding confidence scores and the support counts for
the rule. Deanonymization of Bitcoin transactions can also benefit
from the existence of Bitcoin sessions, initiated by nodes that get
unreachable after a given period of time [21], e.g., nodes that are
hidden behind NAT (Network Address Translation) and TOR (The
Onion Router) connections, by identifying transaction patterns via
fingerprinting techniques to characterize and highlight weaknesses
in terms of pseudonymity models for Bitcoin users.

Mixing protocol attacks exist in the literature [6, 7, 23, 25]. Mix-
ing protocols are tools designed to enhance the anonymity of Bit-
coin transactions by, e.g., shuffling the information in order to
hinder the relation between the input and the output values of the
transactions. Bitcoin users send Bitcoins from one address to a mix
service and receive from the mix service the Bitcoins to another
address that could not be linked with the original one. The effec-
tiveness of such systems has been analyzed by different authors.
They found a clear structure that allow understanding how this
services work and may be used for deanonymization. Modeling and
analysis of the P2P Bitcoin networking stack in term of anonymity
properties, by providing source inference over graphs via epidemic

source finding [24], has identified that the real Bitcoin P2P network
topology offers a low degree of anonymity [15].

The work in [1] addresses the risk of leakage w.r.t. the currency
balance of Bitcoin addresses and claim the necessity of hiding trans-
action values as well as address balances in Bitcoin, e.g., for those
users who opt-out from exchanging assets. The work builds upon
the assumption that Bitcoin traders may end accepting transactions
immediately without waiting the necessary confirmations. This
exposes them to traditional risks in terms of double spending, even
for clients that are not miners [19]. The feasibility of such kind of
attacks relies on directly broadcasting to the seller double-spending
transactions, but in a different location of the network, within a
similar time window frame. Countermeasures to the attack lead
to new designs in which much more control about the precise bal-
ances of every node in the network is guaranteed. This additional
control has as collateral consequences a higher likelihood in terms
of deanonymization of Bitcoin users. The authors developed ad-
ditional means to address the collateral consequences by hiding
the balance of transactions by moving to alternative cryptocurren-
cies like Zerocash [33], with much stronger privacy guarantees in
terms of anonymity, via zero knowledge proof techniques, while
guaranteeing functionality and efficiency.

Finally, the feasibility of deanonymizing Internet privacy ser-
vices such as Tor, due to leakage information of Bitcoin technologies
has also been discussed in the recent literature. Authors in [18]
provide deanonymization techniques to show that using Bitcoin
as a payment method may leak sensitive information to disclose
Tor hidden services. The techniques rely on the possibility of an
adversary to link those Bitcoin users who publicly share their Bit-
coin addresses on online social networks, with hidden services, and
which publicly share the mapping about their Bitcoin addresses on
their onion landing pages.

6.2 Routing Literature
In the previous section, we have listed existing related work in
cryptocurrencies literature. An increasing number of research work
deals with privacy issues to cryptocurrencies users, such as trace-
ability of both application and network-layer data, and the limi-
tation of mixing services. Beyond the realm of cryptocurrencies,
a large number of existing literature on different areas, from dis-
tributed computing to ad hoc and sensor networking literature,
shows similar issues to those uncovered in this paper. Transaction
meta-data disclosure, e.g., unauthorized reporting of balance ac-
counts on distributed networks, beyond the scope of Bitcoin and
the Lightning Network, deal with similar findings and problems.
Secure routing techniques have been reported vulnerable to similar
adversarial probing attacks. Attacks to routing in ad hoc and sen-
sor networks, like black-holing and vampire-like attacks [36], aim
at draining the battery life of autonomous sensor nodes, to affect
the routing capabilities of the whole system. In such attacks, the
adversary perpetrates similar learning and discovery phases as the
ones discussed in our work, prior to conducting the final attack.
For instance, the adversary conducts a discovery phase to learn
the accumulative energy dynamics of the network, by probing and
estimating the level of available battery on each individual node of

the system. Countermeasures to the attack, like those in [16, 27]
are similar to some of the ideas discussed in Section 5.

Likewise, energy-driven literature on smart-grid and smart-mete-
ring environments share similarities to the issues and solutions dis-
cussed in our work. The privacy-preserving techniques discussed
in [4], related to smart-metering privacy scenarios, show similar
adversaries trying to estimate user energy consumption and billing
functionalities by collectively collecting smart-metering metadata.
Solutions are proposed in order to get adversaries concealed by
new data-processing functionality. The approach relies on the addi-
tion of synthetic computing and storage functionalities, to avoid
fine-grained collection of users’ information. This kind of solutions
can moreover be randomized as the approaches presented in [3, 35].
In the end, the goals is to increase the difficulty of adversarial mon-
itoring tasks, to retrieve information about consumption channels.
Identification and learning techniques by the adversary can still be
put in place, by transforming the process in a two-stage transfor-
mation of data, hence starting with a fine-grained processing; then,
moving to a coarse-grained processing.

7 CONCLUSION
In this paper, we have addressed privacy issues related to the Bit-
coin Lightning Network. Today, to preserve users’ privacy between
two channel payment points of the Bitcoin Lightning Network, the
precise balance (i.e. the bandwidth of the precise channel points, in
each direction), is kept secret. Since the balances are not announced,
second-layer nodes probe routes iteratively, until they find a suc-
cessful route to the destination for the amount required, if any.
Such feature makes the routing discovery protocol less efficient,
but preserves the privacy of channel balances. Publicly disclos-
ing the updated balance of channels each time they are updated
would allow users to efficiently discover routes in the network,
without having to probe a route in order to ensure the channels
do have enough balance to support a payment. However, it would
also allow adversaries to trace payments through the network, by
observing how balances fluctuate. On the contrary, not providing
any information about a channel’s state would provide privacy to
users, but would render the network unusable to route multihop
payments. Public disclosure of balances implies thus a trade-off be-
tween payment privacy and route finding efficiency in the network
(and therefore usability).

Ourwork uncovers a balance discovery attack that can be used by
Lightning Network adversaries, in order to deanonymize network
payments. We have presented an analysis, complemented by ex-
perimental results that validate our claims. We have also discussed
some potential countermeasures to handle the problem uncovered
by our work and conducted a responsible disclosure to the develop-
ers of the Lightning Network. Disclosure issues remain unanswered.

Acknowledgements — The authors gratefully acknowledge financial sup-
port from the BART (Blockchain Advanced Research & Technologies) ini-
tiative (cf. http://bart-blockchain.fr/), as well as the Cyber CNI chair of
the Institut Mines-Télécom and the H2020 SPARTA project, under grant
agreement 830892, and the Spanish Government, under grants RTI2018-
095094-B-C22 CONSENT and TIN2014-57364-C2-2-R SMARTGLACIS. C.
Pérez-Solà was affiliated to Universitat Rovira i Virgili during part of the
time while this work was done.

http://bart-blockchain.fr/
http://bart-blockchain.fr/
http://bart-blockchain.fr/
http://bart-blockchain.fr/
http://bart-blockchain.fr/
http://bart-blockchain.fr/

REFERENCES
[1] E. Androulaki and G. O. Karame. Hiding transaction amounts and balances in

bitcoin. In International Conference on Trust and Trustworthy Computing, pages
161–178. Springer, 2014.

[2] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating
user privacy in bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 34–51. Springer, 2013.

[3] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi. Provably secure and practical
onion routing. In 2012 IEEE 25th Computer Security Foundations Symposium, pages
369–385. IEEE, 2012.

[4] M. Backes and S. Meiser. Differentially private smart metering with battery
recharging. In Data Privacy Management and Autonomous Spontaneous Security,
pages 194–212. Springer, 2014.

[5] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

[6] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore. Sybil-resistant mixing for
bitcoin. In Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 149–158. ACM, 2014.

[7] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten. Mixcoin:
Anonymity for bitcoin with accountable mixes. In International Conference on
Financial Cryptography and Data Security, pages 486–504. Springer, 2014.

[8] S. Brânzei, E. Segal-Halevi, and A. Zohar. How to charge lightning. CoRR,
abs/1712.10222, 2017.

[9] S. Castillo-Pérez and J. Garcia-Alfaro. Onion routing circuit construction via
latency graphs. Computers & Security, 37:197–214, 2013.

[10] M. Conti, S. Kumar, C. Lal, and S. Ruj. A survey on security and privacy issues of
bitcoin. IEEE Communications Surveys & Tutorials, 2018.

[11] C. Decker and R. Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages
3–18. Springer, 2015.

[12] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartí. The bitcoin P2P network.
In International Conference on Financial Cryptography and Data Security, pages
87–102. Springer, 2014.

[13] C. Dwork. Differential privacy: A survey of results. In International Conference
on Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.

[14] Elements Project. c-lightning – a lightning network implementation in C. https:
//github.com/ElementsProject/lightning, 2019.

[15] G. Fanti and P. Viswanath. Deanonymization in the bitcoin P2P network. In
Advances in Neural Information Processing Systems, pages 1364–1373, 2017.

[16] E. Gelenbe and Y. M. Kadioglu. Energy life-time of wireless nodes with network
attacks and mitigation. In 2018 IEEE International Conference on Communications
Workshops (ICC Workshops), pages 1–6. IEEE, 2018.

[17] J. Herrera-Joancomartí. Research and challenges on bitcoin anonymity. In Data
Privacy Management, Autonomous Spontaneous Security, and Security Assurance,
pages 3–16. Springer, 2014.

[18] H. A. Jawaheri, M. A. Sabah, Y. Boshmaf, and A. Erbad. When a small leak sinks a
great ship: Deanonymizing tor hidden service users through bitcoin transactions
analysis. arXiv preprint arXiv:1801.07501, 2018.

[19] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in
bitcoin. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security, pages 906–917. ACM, 2012.

[20] P. Koshy, D. Koshy, and P. McDaniel. An analysis of anonymity in bitcoin using
P2P network traffic. In International Conference on Financial Cryptography and
Data Security, pages 469–485. Springer, 2014.

[21] I. D. Mastan and S. Paul. A new approach to deanonymization of unreachable
bitcoin nodes. In International Conference on Cryptology and Network Security,
pages 277–298. Springer, 2017.

[22] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage. A fistful of bitcoins: characterizing payments among men with no
names. In Proceedings of the 2013 conference on Internet measurement conference,
pages 127–140. ACM, 2013.

[23] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed
e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on, pages
397–411. IEEE, 2013.

[24] C. Milling, C. Caramanis, S. Mannor, and S. Shakkottai. On identifying the
causative network of an epidemic. In Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on, pages 909–914. IEEE, 2012.

[25] M. Moser, R. Bohme, and D. Breuker. An inquiry into money laundering tools in
the bitcoin ecosystem. In eCrime Researchers Summit (eCRS), 2013, pages 1–14.
IEEE, 2013.

[26] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2015.

[27] C. Pu and S. Lim. A light-weight countermeasure to forwarding misbehavior in
wireless sensor networks: design, analysis, and evaluation. IEEE Systems Journal,
12(1):834–842, 2018.

[28] A. Ranchal-Pedrosa, M. Potop-Butucaru, and S. Tucci-Piergiovanni. Lightning
factories. Cryptology ePrint Archive, Report 2018/918, 2018. https://eprint.iacr.

org/2018/918.
[29] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. In

Security and privacy in social networks, pages 197–223. Springer, 2013.
[30] D. Ron and A. Shamir. How did dread pirate roberts acquire and protect his

bitcoin wealth? In International Conference on Financial Cryptography and Data
Security, pages 3–15. Springer, 2014.

[31] A. Samokhvalov, J. Poon, and O. Osuntokun. Lightning Network In-Progress
Specifications. BOLT 11: Invoice Protocol for Lightning Payments, 2018.

[32] A. Samokhvalov, J. Poon, and O. Osuntokun. The lightning network daemon,
https://github.com/lightningnetwork/lnd, 2018.

[33] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Sym-
posium on Security and Privacy (SP), pages 459–474. IEEE, 2014.

[34] M. Spagnuolo, F. Maggi, and S. Zanero. Bitiodine: Extracting intelligence from
the bitcoin network. In International Conference on Financial Cryptography and
Data Security, pages 457–468. Springer, 2014.

[35] D. Sy, R. Chen, and L. Bao. Odar: On-demand anonymous routing in ad hoc
networks. In Mobile Adhoc and Sensor Systems (MASS), 2006 IEEE International
Conference on, pages 267–276. IEEE, 2006.

[36] E. Y. Vasserman and N. Hopper. Vampire attacks: draining life from wireless ad
hoc sensor networks. IEEE transactions on mobile computing, 12(2):318–332, 2013.

https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://eprint.iacr.org/2018/918
https://eprint.iacr.org/2018/918
https://github.com/lightningnetwork/lnd

	Abstract
	1 Introduction
	2 Lightning Network Background
	2.1 Payment Channels
	2.2 Multihop Payments
	2.3 Invoices in the Lightning Network

	3 Channel Balance Discovery
	3.1 Attack Extension
	3.2 Attack Implementation
	3.3 Adversary Model and Attack Cost

	4 Experimental Results
	4.1 Bitcoin Mainnet Evaluation
	4.2 Bitcoin Testnet Evaluation

	5 Discussion
	5.1 Payment Requests Denial
	5.2 Dynamic Absorption of Negative Balances

	6 Related Work
	6.1 Cryptocurrencies Literature
	6.2 Routing Literature

	7 Conclusion
	References

