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Abstract: We discuss privacy challenges for urban safety. We focus on privacy-preserving solutions 
that may allow urban safety operators to guarantee anonymous and unlinkable actions. We illustrate our 
analysis with the IMPETUS project scenarios and examine how design and architecture choices may 
impact compliance of personal data protection. Alternative designs that could lead to improvements in 
this matter are also briefly introduced.  
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1. Introduction 
Multiple connected devices and sensors compose a smart city. These elements are connected through 
networks and their outputs are communicated to the inhabitants in an application via intelligent 
computing techniques. This relation between physical objects increases the possibility of turning cyber-
attacks into physical attacks. On one hand, if urban safety is not secured, this means that essential 
services may fail. However, too excessive security measures can also lead to other problems, such as 
privacy violations [1].  On the other hand, urban safety is supported by the massive collection of data. 
Thus, privacy and security have to be carefully addressed, finding a proper balance between them [2].  
In this paper, we explore and discuss some challenges to the development and implementation of public 
urban safety with regard to technological solutions in smart cities. Our focus is on privacy-preserving 
solutions, whose goal is to allow urban safety operators to guarantee anonymous and unlinkable actions, 
while maintaining an appropriate degree of security.  
Through a case study based on the IMPETUS project [3], we examine some design and architecture 
choices, as well as how such decisions may affect compliance (e.g., technical and legal) of personal data 
protection. More specifically, we examine via the IMPETUS use case the problem of massive data 
collection, usually considered as the essence of emerging intelligent algorithms. Herein, we refer to 
Artificial Intelligence (AI).  On one hand, the collection and manipulation of personal data raises 
alarming privacy issues, on the other hand, the learning algorithms, especially the most powerful ones, 
result in decision-making devices that are often not transparent and risk to be unfair.  This refers to the 
privacy vs utility trade-off that has to be managed through the whole data life cycle.  
We will focus on the different Privacy Enhancing Technologies (PET) to enforce the privacy by design 
principle. We examine the effectiveness of such mechanisms that has been studied and demonstrated by 
researchers and with various pilot implementations. However, they are still not well perceived by many 
operators mainly because they are reputed to have an impact on the utility.  This paper contributes to 
bridging the gap between the legal framework and the available technological implementation measures 
by providing an inventory of existing approaches and privacy design strategies of various degrees of 
maturity from research and development, from a service provider side. Starting from the privacy 
principles of the legislation, important elements are presented as a first step towards a design process 
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for privacy-friendly systems and services.  We also discuss alternative designs that could lead to privacy 
improvements. We explore how the use of Attribute based primitives can lead to the implementation of 
an anonymous certification framework, thus enhancing the data minimisation principle.  
The remaining sections are structured as follows. Section 2 provides some background. Section 3 
focuses on the problem of massive data collection. Section 4 provides technical and legal solutions to 
the problem. Section 5 discusses alternative solutions based on ABS (Attribute Based Signature) for 
further privacy improvements. Section 6 concludes the paper. 
 
2. Background 
 
Connected smart cities are built upon a variety of services adapted to specific needs and citizens’ 
expectations. Mainly designed with respect to personalization techniques, these services and 
applications rely on massive collection and analysis of gathered data. Indeed, a power imbalance 
between data processing entities, which determine what and how data is processed, and the individuals 
whose data is at stake, i.e., who might be influenced by decisions based on automated data analysis, or 
by failures to adequately protect private information, might be observed. To enforce privacy, the 
European Commission (EU) adopted, in 2018, the General Data Protection Regulation (GDPR) that sets 
up a legal context for the personal data collection, storage and processing. Privacy-Enhancing 
Technologies (PETs) [4, 5] have become a field that studies enabling techniques, investigates the level 
of data leakage, mitigates identification and traceability attacks and implements privacy-preserving 
processing. From this perspective, it is of utmost importance to first understand the main requirements 
and different security models to evaluate the relevant building blocks from the design phase.  To develop 
different tools to be integrated in the wide city, while enhancing the privacy of citizens, we hereafter 
present the generic functional architecture and main interactions between data layers. 

2.1. Functional architecture 

For our analysis, we consider a functional architecture which consists of four layers with specific 
responsibilities and components. First, a sensing layer that consists of various equipment that collect 
data from the surrounding physical environment and share it with the data collection layer. For instance, 
different types of sensors, actuators or CCTV cameras are considered as main components of the sensing 
layer. Second, a data collection layer, that deals with the transmission of gathered data using reliable 
wired or wireless communication to the local or remote databases. This layer mainly involves the 
communication protocols and services, from a networking point of view. Let us emphasize that storing 
a big volume of data incurs high storage overhead on the existing databases of this layer. Thus, many 
applications would rely on remote edge or cloud servers to address this issue and remove the burden of 
maintaining large infrastructures, especially when data involves real-stream data. Referring to the GDPR 
nomenclature, these databases may be maintained by either data processors or data controllers.  

The remaining two layers consist on data processing and applications. The data processing layer 
performs all “pre”-processing techniques, i.e., storing and analysing large amounts of data and 
maintaining infrastructures, with regards to different applications and services’ requirements. The 
application layer is responsible for exchanging data between operators (e.g., citizens and stockholders) 
and smart applications. Exchanged data can be raw, aggregated or processed via accurate analysis and 
visualization algorithms. 

2.2. Pillars infrastructure 

In the context of IMPETUS’ use cases, i.e., dealing with public security and safety, we identify four 
pillars' infrastructures, namely institutional, social, physical and economic, introduced as follows: 

● Institutional infrastructure: deploys the fundamental activities, e.g., management, governance 
and planning of events. It relies on the citizens’ collected and produced data in decision-making 
processes.	
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● Physical infrastructure: involves IT, communication and hardware components that yield to 
support a physical environment for urban safety and mobility. For instance, urban mobility 
focuses on the quality of cycling, pollution indicators, and smart transportation systems in cities, 
while public safety considers safe walking and secure gathering places and holding social 
events.    	

● Social infrastructure: involves diverse mechanisms to promote and develop human and social 
capital, and provide intelligent and straightforward connected infrastructure for addressing 
different social needs and services of citizens, such as environment, and inclusive planning.	

● Economic infrastructure: refers to the basic services that help to promote the process of 
production and distribution of economic activities and develop proper infrastructure to generate 
employment opportunities and attract investments. Although this type of activity may not 
directly be represented by IMPETUS outputs, the different tools may have an impact on the 
economic development and the attractiveness of a city.	

2.3. Security and privacy challenges in the context of the IMPETUS project 

The IMPETUS project [3] has conducted a study with different focus groups whereas challenges related 
to privacy in a large connected city have been identified. Below, we organized a summary of the 
different raised challenges. 

● Maintaining privacy during regular Internet browsing in connected cities is considered as 
“difficult”. The first main concern is the widespread deployment of artificially intelligent 
processing algorithms that can be used in combination with the collected personal information 
to deduce involuntary correlations, leading to specific identification (other people, web pages, 
organizations, etc.).  	

● The second privacy concern is related to the tracking of spatial mobility, e.g., in relation to 
pedestrians, consumers and vehicles. Tracking is already a legitimate part of smart city 
technologies, as per ensuring safety in the public space, but there is a fear of misuse, e.g., related 
to unwanted surveillance.	

● The third reported challenge consists of properly informing citizens about what the information 
is being used for, obtaining and maintaining informed consent in a practical manner. This 
challenge becomes even harder when combining different data sources. The focus groups 
expressed that aggregation of data may lead to profiling, discrimination, and political 
manipulation. 	

In order to understand the aforementioned challenges, we hereafter present threat models and main 
challenges, namely related to extracting information about data owners, and also referred to as citizens 
and users, or organizations, service providers and governmental institutions. Taking the example of 
smart mobility, it is imperative that not only the privacy of the collected and analysed data be preserved 
but also the running algorithms (usually considered as sensitive and proprietary).  Regardless of the 
goal, the attacks and defences relate to exposing or preventing the exposure of analysis algorithms 
(processes) and collected data. 

2.4. Threat models 

Privacy and security risks are mainly related to environments, technologies and involved parties. Indeed, 
as pointed out in a recent report of the European Network and Information Security Agency (ENISA) 
[4, 5], understanding privacy concerns from a technical point of a view, leads to identify:  

1. Collected and processed data that are released and may be considered as sensitive, personal and 
identifying data,  

2. Data that may be used to identify and/or revoke the anonymity of a user,  
3. Potential adversaries (i.e., actors that may gain access to personal identifying information) 

which can rely on data being transferred and processed that the adversary has access to, and 
external and background knowledge of the adversary- possible collusion with other entities. 
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Recall that adversaries may be passive or active, and considered under either semi-trusted or 
untrusted environments [4], presented as follows: 

● Passive attacks: the adversary passively observes the data and performs inference or 
concludes connections, e.g., without changing anything in the process. These attacks 
are usually considered against privacy requirements, e.g., anonymity, unlinkability, 
unobservability, etc. 

● Active attacks: the adversary actively changes the data or processes. These attacks are 
usually considered against security requirements, e.g., integrity, availability, etc. 

3. Massive data collection 
 
As discussed in Section 2, IMPETUS identified several challenges with respect to the enforcement of 
privacy technical requirements and the compliance with the legislation. These challenges are very tight 
to technologies, the functional architecture and involved actors. In the following, we point out the 
different vulnerabilities and issues that may arise from a technologies’ point of view, while referring to 
the architectural layers (cf. Table 1). 

Table 1. Summary of privacy challenges with respect to IMPETUS functional architecture layers 

  IoT Cloud AI 

Sensing layer Data over collection   - Data over collection 
- Data poisoning 
- Backdoor injection 

Collection layer Lack of standardized secure 
short-band communication 
protocols 

    

Processing layer Limited computation 
resources for advanced 
secure (cryptographic) 
algorithms 

-Loss of data and 
computation control 
-Lack of knowledge about 
effective SLA enforcement 
-Multi-tenancy 

- Inference attacks 
- Model theft 

Application layer Open and insecure APIs     

  
3.1. IoT-based challenges 

The Internet of Things (IoT) consists of interrelated, internet-connected (smart) objects that are able to 
collect and transfer data over a wireless network without human intervention. There are various privacy 
issues associated with smart devices that are mainly due to the massive collection of data, focused on 
the sensing and communications layers. Indeed, the connected devices have the capability to be used as 
a mediator storage or a fog node to perform a small computation in the network. These sensing and pre-
processing capabilities make them vulnerable end-points for collecting the exchanged data and enriching 
adversarial databases, thus conducting specific correlation and inference attacks.  While a huge number 
of applications are continuously proposed to provide various benefits for citizens, the majority of these 
applications gain access to private information of users -without acquiring explicit informed consent- 
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and may transfer the collected data to unauthorized third parties. Finally, the sensing capabilities of the 
smart devices facilitate the bypass of the data minimization principle, and most applications usually 
collect more data than the necessities of original functions, while in permission scope, which is known 
as data over-collection. 

  
3.2. Cloud based issues 

In order to cope with the shortcomings of smart devices, i.e., processing and storage capacities, battery 
constraints, etc. various applications delegate the data and processing management to external cloud 
providers. While outsourcing data and processing has various economic advantages, several security 
and privacy challenges are identified in [3]. Next, we summarize common challenges raised by cloud 
infrastructures, platforms and applications. 

 
● Data and computation outsourcing: by outsourcing the data to remote servers, data management 

is delegated to a third-party provider, usually considered as a semi-trusted or honest-but-curious 
entity. This raises privacy concerns, such as the anonymity of data owners.  

● Physical location of data: the lack of knowledge about the physical location of data in cloud 
services may have an impact on the data security, quality of services and might harm users’ 
privacy. This latter is of utmost importance as data legislation regarding the collection and 
processing of data is different between different countries and regions, and can be more intrusive 
compared to the EU regulations. 

● Lack of knowledge about Service Level Agreements (SLAs): SLA is a contract signed between 
the client and the service provider including functional and non-functional requirements. It 
considers obligations, service pricing, and penalties in case of agreement violations. However, 
due to the abstract nature of clouds, SLA violations with regards to data involve data retention, 
privacy leakage. 

● Multitenancy: this cloud feature means that the cloud infrastructure is shared and used by 
multiple users. In a nutshell, data belonging to different users may be located on the same 
physical machine, based on a specific resource allocation policy. Due to the multi-tenancy’s 
economic efficiency, providers usually select this feature as an essential block for the cloud 
environment design. However, it generates new threats, such that, malicious users may exploit 
this co-residence issue to perform privacy (inference) attacks. 

 
3.3. AI-based attacks  

Recent progress in Artificial Intelligence (AI) in general, and Machine Learning (ML) in particular, is 
continuously encouraging many sectors to integrate AI-based algorithms in different processes. AI is a 
key enabler of smart cities, where the size and complexity of smart cities' systems are key challenges. 
The ability to efficiently and process gathered data and monitor in real time the state of critical 
infrastructures increasingly become an added value and a practical need. Unfortunately, they are 
generally considered as data-hungry tools and their benefits are often accompanied by a mostly black-
box character and high complexity of the final algorithms in use, rendering conventional methods for 
safety assurance insufficient or inapplicable.  Hence, the need to enforce privacy by design [6, 7].   

As presented above, the massive collection of data from the different devices (i.e., when referring to the 
sensing and data collection layers), constitute first threat vectors to attack intelligent systems due to their 
multitude and their limitations in terms of resources and security features. For instance, by poisoning 
smart city’s data, adversaries can try to fake the models, implying they will learn the correct correlation 
between data and the state of a critical system (modifying the model boundaries), or they can push the 
model in taking decisions that are hampering the city's infrastructure and population. In this context, 
there is the need to confirm the common assumption on the effectiveness of the employed ML models, 
adopting suitable privacy and security techniques. These techniques aim to counteract adversaries trying 
to deceive ML models at different layers: i) data collection and ingestion, ii) training, iii) inference. The 
state of the art in the domain shows that while the performance of ML and neural network architectures 
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had a boost in the last years, their robustness to adversarial settings is asking a step ahead [8, 9, 10,11].  
It is clear that the strong link between sensor data and ML models, as well as the intrinsic weakness of 
the sensors themselves, introduce new serious risks, introduced as follows: 

 
● Backdoor injection: the first one aims to manipulate data to attack the learning phase. In this 

case, the attacker crafts and distributes corrupted data, which are used by ML algorithms to 
build an inaccurate model of the system behaviour. These attacks are referred to as Machine 
Learning Poisoning [13]. They produce a poisoned ML model that learns a wrong correlation 
between data and the state of the monitored infrastructure. Smart attacks based on careful data 
manipulation can open the door to stealth attacks on the infrastructure, providing adversaries 
with the ability to introduce “backdoors” in the model. These backdoors induce erroneous 
classification of inputs, with possibly disastrous consequences on the working of the whole 
system. For instance, if an anomalous detection model is trained, the machine learning 
poisoning can introduce a backdoor that impedes the model to classify an anomaly, identifying 
it as a safe behaviour. Let us consider a ML model that is monitoring the quality of air pollution. 
An adversary can fake the model in believing that the presence of some chemicals in the air is 
innocuous, while they could be dangerous for the population.  

● Data Poisoning: the second one aims to inject specific data, generally carefully selected, to fake 
an existing model into taking decisions that decrease performance and increase risks of the city's 
infrastructure and population. This category of attacks, called adversarial examples [8], builds 
on sensor inputs that can trick a deployed model, trained on benign data, into making a wrong 
decision. The most difficult aspect here is that adversarial example attacks are difficult to 
counteract since poisoned data are generally indistinguishable from a normal input for humans. 
For instance, let us consider a monitoring service in a smart city, via CCTV cameras. 
Adversarial examples can be used by an attacker interacting with different cameras to let the 
model believe that certain areas of the city are congested. This would force the model to reroute 
the traffic towards busy areas, as well as changing the traffic light timing, creating a gridlock. 
This would have disastrous consequences for instance in the case of a terrorist attack. 

● Model theft: the third one is a mix of the previous two and is employed in scenarios, and mainly 
considered a security threat where ML models are either i) retrained over time or ii) alternative 
models have been trained and can be deployed on the basis of contextual information. 

● Inference attacks: the fourth category of attacks involves two main attacks, namely (a) inference 
about members of the population and (b) inference about members in the training set. For the 
first case (a), an adversary can use the model’s output to infer the values of sensitive attributes 
used as input to the model. Note that it may not be possible to prevent this if the model is based 
on statistical facts about the population: for example, suppose that training the model has 
uncovered a high correlation between a person’s externally observable phenotype features and 
their genetic predisposition to a certain disease; this correlation is now a publicly known fact 
that allows anyone to infer information about the person’s genome after observing that person. 
For the second case (b), the focus is on the privacy of the individuals whose data was used to 
train the model. For instance, given a model and an exact data point, the adversary infers 
whether this point was used to train the model or not. The adversary may also try to extract 
properties. In fact, training data may not be identically distributed across different users whose 
records are in the training set; unlike model inversion, the adversary tries to infer properties that 
are true of a subset of the training inputs but not of the class as a whole. 

 
 
4. Privacy-preserving solutions 
 
This section gives an overview of privacy enabling techniques and details their suitability to different 
smart city scenarios and identified challenges. It classifies PETs into two groups, namely server-side 
and channel-side solutions. Then, it gives an overview of existing legal solutions. 
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4.1. Technical solutions 
4.1.1. Server-side solutions 
Server-side enabling technologies include three main categories, i.e., data perturbation, secure 
processing and database anonymization. 

4.1.1.1. Data perturbation 

Data Perturbation aims at intentionally making information difficult to understand or perceive for 
security and privacy reasons. In fact, the speed of dissemination of information, the technical progress 
and the global nature of the Internet make it difficult to delete data that may be too personal, 
embarrassing or confidential. Thus, perturbation consists mainly in publishing large amounts of 
information that are false, imprecise, irrelevant and/or organized in such a way that the information that 
one wishes to protect is hidden, i.e., embedded in a large volume of data. Data perturbation techniques 
are used for enhancing privacy in various querying services. In order to protect queries, one idea consists 
of generating dummy queries that will be sent to the central server along with the real query. The main 
issues of these techniques are the privacy utility trade-offs induced by the suppression technique, 
removing some records or details [4, 5]. 

4.1.1.2. Secure Multiparty Computation 

Privacy preserving computation techniques aim at protecting users’ privacy and the secrecy of data 
contents during processing over these data. The goal of Secure Multiparty Computation (SMC) 
techniques is to enable distributed computing tasks among participating entities in a secure manner. That 
is, SMC considers that a group of participants wants to carry out a joint computation of a given function 
while keeping secret the input data of each party. SMC has been used to solve several privacy-preserving 
problems such as private database queries, secret voting, privacy preserving data mining and privacy 
preserving intrusion detection tools and mechanisms. Three different approaches are generally deployed 
to provide secure multiparty computation functionalities, namely oblivious transfer, homomorphic 
encryption, and secret sharing techniques. The oblivious transfer protocol generates high processing and 
communication overheads. The secret sharing approach gives better results in terms of computation 
cost, thanks to the usage of primitive operations. However, it requires the existence of secure channels 
between different participating entities, hence generating a high bandwidth consumption, due to the 
involved interactions between users. The homomorphic encryption does not require the existence of 
secure channels and assures a high level of privacy. However, it necessitates several processing 
operations to ensure homomorphism properties, thus generating high computation complexity. 

4.1.1.3. Database anonymization 

Database anonymization techniques are basically used to protect data within statistical databases. They 
permit to resolve the trade-off between data usability and users’ privacy preservation, as revealed results, 
either the databases or a specific result over the database do not permit to reveal information related to 
a specific user. These techniques also include Differential Privacy mechanisms. Anonymization 
techniques are relevant for various use-cases, namely applications that do not require to learn the original 
user’s identity, but only context information. Anonymization techniques mainly refer to database 
privacy preservation. Even so, for cooperative applications where the database belongs to several 
corporations, it comes to the privacy protection of the various collaborating entities.  

Main techniques for anonymizing databases w.r.t. respondent, owner and users’ privacy include k-
anonymity, t-closeness and l-diversity [4, 5]. Note that these techniques that are originally used over 
statistical databases have extended usage to dynamic data. Briefly, to implement k-anonymity, it is 
important to recognize which attributes are considered as key credits, called likewise semi identifiers. 
In other words, k-anonymity can forestall character divulgence, i.e., a record in the k-anonymized set S, 
k cannot be planned back to the comparing record in the first S, subsequently, by guaranteeing that each 
record is indistinguishable by essentially other k − 1 records dependent on the worth of key credits. For 
Location-Based Services (LBS), an attacker, having access to users’ location, may be able to identify 
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the requesting user, relying on its spatio-temporal parameters. Consequently, several research works 
propose to expand the precise location of the user to involve several potential requesting issuers. This 
leads to generalizing several context-data to ensure anonymity, thus resulting in the context information 
released to the service provider being sometimes too large and imprecise to provide an acceptable quality 
for the service. 

Differential Protection (DP) is acquiring a growing interest, primarily to guarantee security saving 
information mining. In a nutshell, differential privacy ensures that the removal or addition of a single 
database item does not (substantially) affect the outcome of any analysis (i.e., the probability distribution 
of released items does not significantly change). This property is enforced by adding random noise to 
the exact outcome. Note that differential privacy addresses data leakage attacks as even if a user has 
removed his data from the data set, no outputs would become significantly more or less likely. When 
DP techniques are applied at the data owner side, without the need for a third party, it is called Local 
Differential Privacy (LDP), whose main idea is to allow users to locally perturb their input data.  

4.1.2. Channel-side solutions 
To secure communications against pervasive surveillance, several service providers propose to deploy 
encrypted communication channels. It is important to emphasize that encrypted channels need to be 
implemented and configured correctly, to ensure a sufficient security level. Several technologies and 
protocols have been introduced, namely the well-known Transport Layer Security 1.2 protocol (i.e., 
TLS 1.2) and the Secure Shell (SSH) protocols). These technologies provide a confidential and 
conceivably authenticated channel between users and service providers.  
 
4.2. Legal and operational solutions 
 
In an effort to provide an analysis of various aspects of privacy, security, and surveillance concerning 
the involuntary visual and audio capture of personal property, access to personal data, involuntary 
surveillance, storage, and security of data collected in a smart city context, this section recalls data 
privacy legislation with a focus on GDPR. 

In 2018, the GDPR came into force for effectively ensuring the protection of the data subject's personal 
data. In particular, the regulation clarifies the conditions under which it is compulsory to obtain the 
consent of the data subject before processing his personal data, especially for sensitive personal data 
and data relating to minors. The GDPR also introduces the new obligation of accountability for 
organizations (i.e., data processors and data controllers). Indeed, each entity processing personal data 
must be able to demonstrate at any time that it is complying with the obligations laid down by the GDPR.  
According to the GDPR, the data subject's consent is given for specific purposes that must be compliant 
to both the data controller and the data processor. In this context, three main roles are defined. The data 
subject who gives his consent to a data controller (i.e., organization,) for the processing of his personal 
data, with the possibility to forward them to a data processor (i.e., organization) that may process data 
on behalf of the data controller. Here, data controllers are responsible for: 

1. specifying to the data subject the purpose of data collection, 
2. obtaining the data subject's consent, and 
3. processing personal data according to the consented purposes, and not beyond. We note that for 

ease of presentation, the remainder of the paper refers to the data subject as the data owner and 
to both the data controller as well as the data processor as the service provider. 

From a data owner perspective, there is a need for new security mechanisms that support data 
accountability and provenance auditing. In a nutshell, these solutions have to ensure that personal data 
were accessed by data controllers and/or forwarded to data processors. Indeed, it is important to conceive 
a secure and transparent solution that permits data owners to (i) check that data controllers and 
processors are correctly using their personal data with respect to the consented purposes, (ii) verify 
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whether data were accessed, processed, or forwarded without their consent, and (iii) withdraw their 
consent.  

From a data controller or processor perspective, there is a need to design a trusted and transparent 
accountability solution that enables them to get a proof of the data owner's given consent prior to 
gathering, accessing, processing, or storing his personal data. 

The NIST-PF is a voluntary tool developed in collaboration with stakeholders intended to help 
organizations identify and manage privacy risk to build innovative products and services while 
protecting users’ privacy.  Referring to NIST-PF, the privacy properties that have to be enforced by the 
designed services, are summarized as follows: 

● Anonymity, i.e., the ability of the user to access a resource or service without disclosing his 
identity to third parties. That is, the anonymity of a user means that he is not identifiable within 
a set of subjects, known as the anonymity set. Several levels of anonymity have been defined in 
the literature, ranging from complete anonymity (i.e., no one can reveal the identity of the user) 
to pseudo- anonymity (i.e., the identity is generally not known but can be disclosed if necessary) 
to pseudonymity (i.e., multiple virtual identities can be created and used in different settings).   

● Data minimization, a fundamental feature of privacy preservation, requires that service 
providers collect and process the minimum amount of information needed for appropriate 
execution of a service or a particular transaction. The goal is to minimize the amount of collected 
personal information by service providers, for instance, to reduce the risk of profiling and 
tracking users. 

● Unlinkability, closely related to the anonymity property, refers to Items of Interest (IoIs, e.g., 
users, messages, actions, etc.) that, from an attacker’s perspective, it is unfeasible to distinguish 
whether they are related or not. 

● Unobservability refers to the difficulty of identifying a given user out of several other users 
involved in an IOI, as well as the anonymity of the user against the other users involved in a 
given IoI. In other words, unobservability refers to situations in which a user can use a resource 
or a service, without being noticed by others. It also requires that third parties cannot determine 
if an operation is running. 

 
4.3. Discussion  
 
Table 2 presents an overview of commonly deployed privacy mechanisms with respect to different 
enabling technologies. It also describes different implemented solutions relying on the underlying PET. 
Table 1 shows that PET are deployed in different contexts and various purposes, thus enabling privacy 
by design for the whole data lifecycle, from the sensing to the processing and application levels. 
However, it is important to emphasize that in order to ensure privacy properties and guarantee an 
acceptable level of privacy in a connected city, usually considered as an open and complex environment, 
it is crucial to consider the interactions between all different actors. That is to say, it might be insufficient 
to implement PET to ensure the privacy requirement of a specific service or application, i.e., as a 
standalone tool with no consideration of the surrounding environment. 

Table 2.	Commonly deployed privacy mechanisms with respect to different enabling technologies. 

PET Technology Description    

Secure Communications   Secure public WiFi with WPA2    
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Ubiquitous  

Connectivity 

Use anonymous communication 
to protect metadata, i.e., Tor 

   

Ensure correct usage of SSL/TLS 
with static analysis 

   

Secure 
Multiparty 
Computa-

tion 

Private 
Information 

Retrieval 

Cloud Computing Process data with private inputs, 
e.g., genomic tests 

   

Hide access patterns to remote 
files and databases 

   

Homomorphic 
Encryption 

Perform privacy-preserving data 
mining over distributed datasets 

Privately process data at third 
parties 

   

Internet of Things Aggregate data over multiple 
users 

   

Database Anonymization   

Internet of Things 

Ensure  k-anonymity of sensor 
readings 

   

Use l-diversity or hierarchical 
map quantization to prevent 
location inference attacks against 
k-anonymity 

   

  

Cluster IoT data streams and only 
release clusters with at at least k- 
members 

  

Open Data Release only data that satisfy k-
anonymity, l-diversity, m-
invariance, and t-closeness 

  

  

Ubiquitous 
Connectivity 

Change device identifiers 
frequently to prevent 
fingerprinting, 
randomize browser fingerprints, 
insert cover traffic 

  

  

Differential Privacy Internet of Things Apply noise to meter readings   

Open Data Release noisy aggregates of data, 
e.g., public transport data 
or t-closeness 
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5. Alternative solutions 
 
Privacy preserving authentication, likewise known by privacy preserving certification or Attribute based 
certification (AC), are cryptographic systems that  enable clients to acquire certified credentials 
associated with their attributes from trusted authorities, and later derive presentation tokens that reveal 
just required data fulfilling service providers (SP)' predicates. Diverse substantial developments have 
been proposed and considered as fundamental building blocks in identity management systems. Indeed, 
depending on AC, every client can demonstrate to a service provider that he holds validated properties, 
referred to likewise as credentials, obtained from issuing authorities. In addition, AC techniques prevent 
SPs to trace users’ activities based on successive authentication sessions. That is, the user derives a 
proof associated to each different access request, such that the SP is not able to link a single received 
proof to another or to any information relative to its owner, even in case of collusion between providers 
and with the credential issuer. 

AC methods attract a lot of interest and complete consideration from industries and academia, thanks to 
their capacity to help the data minimization basic component. The design of a privacy preserving 
certification scheme strongly relies on the use of malleable signature schemes that provide several 
interesting properties, such as the selective disclosure feature and the unforgeability property. In fact, 
the selective disclosure property refers to the ability provided to the user to present to the verifier partial 
information extracted or derived from his credential, for instance, to prove he is older than 18 to purchase 
liquors, while not revealing his birth date. The unforgeability property ensures that unless a user 
possesses a legitimate and certified credential, i.e., secret key, he is not able to generate a valid 
authentication proof, i.e., user’s signature over the SP’s access policy. 

According to this viewpoint, malleable signatures are  considered  the key building blocks to build 
privacy preserving yet authenticated access, specifically ABS [12, 13], sanitisable signatures and group 
signatures [5], supporting the data minimization guideline. For example, ABS enables a client to sign a 
message with respect to a particular access structure defined over attributes. Every client, holding a 
bunch of properties, needs to acquire a private key related to his attributes from an issuing entity. 
Accordingly, the client can sign a message with regard to a predicate fulfilled by any subset of his 
certified attributes . The verifier cannot deduce more than the correctness of received signature, i.e., the 
client cannot then guess which attributes have been used.   

6. Conclusion 
 
This paper provides a review of most commonly deployed PET in the context of smart cities 
applications. First, it is important to emphasize that due to the diversity of smart applications, different 
privacy technologies need to be combined to ensure an acceptable level of privacy. Indeed, smart cities 
combine so many technological components that it is not enough to simply apply privacy technologies 
to each component.  Instead, we advise that the interactions between technologies and data have to be 
considered to design “joint privacy technologies.” This is especially important because applications 
start with isolated solutions that get integrated gradually. Thus, one approach to facilitate joint privacy 
protection is to focus on the interfaces between different systems, on their interactions and in particular 
on the data flow. For example, different components in a sensor-based application may all deploy 
independent differential privacy mechanisms before transferring data to the processing layer. Taking 
this into consideration will help to define appropriate privacy enabling mechanisms for the data storage 
and processing. 
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