
Automated Enrichment of Logical Attack
Graphs via Formal Ontologies

Kéren Saint-Hilaire1,3 , Frédéric Cuppens2,3 , Nora Cuppens2,3 ,
and Joaquin Garcia-Alfaro1(B)

1 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France
{keren.saint-hilaire,joaquin.garcia_alfaro}@telecom-sudparis.eu

2 Polytechnique Montréal, Montréal, Canada
{frederic.cuppens,nora.boulahia-cuppens}@polymtl.ca

3 Chair CRITiCAL, MITACS, Montréal, Canada
keren-a.saint-hilaire@polymtl.ca

Abstract. Attack graphs represent the possible actions of adversaries to
attack a system. Cybersecurity experts use them to make decisions con-
cerning remediation and recovery plans. There are different attack graph-
building approaches. We focus on logical attack graphs. Networks and
vulnerabilities constantly change; we propose an attack graph enrichment
approach based on semantic augmentation post-processing of the logic
predicates. Mapping attack graphs with alerts from a monitored system
allows for confirming successful attack actions and updating according
to network and vulnerability changes. The predicates get periodically
updated based on attack evidence and ontology knowledge, allowing us
to verify whether changes lead the attacker to the initial goals or cause
further damage to the system not anticipated in the initial graphs. We
illustrate our approach using a specific cyber-physical scenario affecting
smart cities.

Keywords: Cybsersecurity · Attack Graph · Defense Graph ·
Ontology

1 Introduction

Automation of cybersecurity aims to protect critical systems from cyber-attacks,
i.e., from illicit activities perpetrated by adversaries who are trying to alter and
disrupt normal business processes. Automated remediation of cyber-attacks is
a complex task to achieve, specially under real-time constraints [6,11,13]. The
understanding of attack realization against a system is essential to automate such
tasks. This can be accomplish by adapting attack graphs to counter adversarial
paths before adversaries perpetrate the final steps of a cyber-attack.

Attack graph can be classified into logical, topological, and probabilistic fami-
lies [1]. Logical attack graphs represent the adversarial activities as logical pred-
icates, requiring from successful preconditions to be considered as successful,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-56326-3_5&domain=pdf
http://orcid.org/0009-0003-8139-3992
http://orcid.org/0000-0003-1124-2200
http://orcid.org/0000-0001-8792-0413
http://orcid.org/0000-0002-7453-4393

2 K. Saint-Hilaire et al.

i.e., they accurately describe how to judge whether the attack was or not suc-
cessfully perpetrated. Topological families offer a higher-level view of possible
attacks in an information system, representing an attack as a way of accessing
new resources. Finally, probabilistic families assign probabilities to nodes and
attack steps (e.g., using Bayesian theory).

In our work1, we choose logical attack graphs. The reason for our choice is
as follows. Both topological and probabilistic models provide less precision than
logical models, f.i., in terms of explainability about attacks’ performance. Indeed,
logical attack graphs illustrate the causes of the attacks instead of snapshots of
the attack steps [8]. This offers several advantages. For instance, the size of the
graph increases in a polynomial manner, whereas in other approaches, it can
increase exponentially. Moreover, causality relations between adversaries and
systems are already represented in the logical statements of nodes and edges in
a logical attack graph. In the other approaches, one may go through Boolean
variables to identify the cause of an adverse situation that allows adversaries’
actions in a stage, increasing processing and inference complexity. In the case of
logical attack graphs, exploiting existing vulnerabilities on an asset is the main
cause of the attack.

Our work tackles the following question: how can real-time system monitor-
ing enrich a priori logical attack graphs by considering embedded and implied
inferences on expert knowledge bases? We validate that a posteriori enrichment
of the graphs makes it possible to fulfill certain preconditions that were not
considered in the initial graph’s generation. Semantic information about system
vulnerabilities allows us to discover whether the system is now exposed to differ-
ent situations that can augment the attack surface to newer detrimental events,
causing even further damage.

We also conduct experimental work using the following setup. We use a
scanner of vulnerabilities to discover and list vulnerabilities in a given monitored
system. The results are consumed by MulVAL [9], a logic-based attack graph
engine. We add system monitoring using a SIEM (Security Information and
Event Management), enhanced with additional tools to trigger and post-process
attack alerts. We also instantiate precise attacks to change the state of the system
(i.e., exploitation of vulnerabilities) and use a recent implementation of VDO2

to enrich the initial attack graph by augmenting the predicates of the initial
graph with the semantic data of VDO and the alerts from Prelude-OSS. Alerts
trigger a search within the graph and expand those paths related to successful
vulnerability exploitation.

The paper is organized as follows. Section 2 provides a background of the
subject and some preliminaries on using attack graphs. Section 3 presents our
attack-graph enrichment approach. Section 4 provides the experimental results.
Section 5 surveys related work. Section 6 concludes the paper.

1 An early version of this work is available in Ref. [12].
2 https://github.com/usnistgov/vulntology.

https://github.com/usnistgov/vulntology

Automated Enrichment of Logical Attack Graphs via Formal Ontologies 3

2 Background

2.1 Logical Attack Graph Modelling

We define preliminary concepts, such as Graph, and AND-OR Graph, as under-
lying requirements for logical attack graph modeling [1].

Definition 1 (Graph). A Graph is a set V of vertices and a set E of unordered
and ordered pairs of vertices, denoted by G(V ;E). An unordered pair of vertices
is an edge, while an ordered pair is an arc. A graph containing edges alone is
non-oriented or undirected; a graph containing arcs alone is called oriented or
directed.

In a directed graph:

– The parent or source of an arc (v1; v2) ∈ A; v1 ∈ V ; v2 ∈ V, is v1.
– The child or destination of an arc (v1; v2) ∈ A; v1 ∈ V ; v2 ∈ V, is v2.
– The incoming arcs of a node v are all the arcs for which v is the child:

∀a = (v1; v) ∈ A,with v1 ∈ V .
– The outgoing arcs of a node v are all the arcs for which v is the parent:

∀a = (v; v2) ∈ A,with v2 ∈ V .
– The indegree deg_(v) of a vertex v ∈ V is the number of arcs in A whose

destination is the vertex v: deg_(v)= Card({vi;∀vi ∈ V ; (vi; v) ∈ A}).
– The outdegree deg+(v) of a vertex v ∈ V is the number of arcs in A whose

destination is the vertex v: deg+(v)= Card({vi;∀vi ∈ V ; (vi; v) ∈ A}).
– A root is a vertex v ∈ V for which deg_(v) = 0 (no incoming arc).
– A sink is a vertex v ∈ V for which deg+(v) = 0 (no outgoing arc).

Definition 2 (AND-OR Graph). An AND-OR graph is a directed graph
where each vertex v is either an OR or an AND. A vertex represents a sub-
objective, and according to its type (AND or OR), it requires either the conjunc-
tion or disjunction of its children to be fulfilled.

According to Definitions 1 and 2, logical attack graphs are based on AND-OR
logical directed graphs. The nodes are logical facts describing adversaries’ actions
or the prerequisites to carry them out. The edges correspond to the dependency
relations between the nodes. Depending on the approach, various operators can
be considered in a logical attack graph. The most popular operators are AND
and OR. The AND operator describes the achievement’s requirement of all the
facts of its children for the logical fact of a node to be achieved. The OR operator
describes the achievement condition of at least one fact of its children for the
logical fact of a node to be achieved.

3 Proposed Approach

After the attack graph generation, using a priori knowledge about vulnerabili-
ties and network data, both networks and vulnerabilities may evolve (i.e., the

4 K. Saint-Hilaire et al.

configuration of system devices may change, software updates may be enforced,
etc.). Hence, the network is not exposed to the same vulnerabilities as at the
beginning of the attack graph generation process. It is essential to update the
attack graph according to systems’ changes. When enriching a logical attack
graph, causality relations between adversaries and systems shall be represented
in the logical statements of nodes and edges. We propose a logical attack graph
enrichment approach based on ontologies to address these requirements.

3.1 Generation of the Attack Graph

Generating a logical attack graph requires the definition of rules describing
causality relations. As an example, we consider code execution. Code execution
on a machine allows an adversary access to a host. This scenario corresponds to
the logical implication detailed by the following rule:

execCode(h, a)→ canAccesHost(h)

where canAccesHost(h) is a logical predicate describing the accessibility to host
h, and execCode(h, a) another predicate assessing that an adversary a executed
code in h. The example can be extended as follows:

execCode(h, a)∧hasCredentialsOnMemory(h, u)→ harvestCredentials(h, u)

where harvestCredentials(h, u) describes a series of credentials harvesting on
host h, execCode(h, a) the predicate that an adversary a is executing code on
host h, and hasCredentialsOnMemory(h, u) the predicate of storing the cre-
dentials on the memory of host h, the example describes an adversary harvesting
the credentials of a previous user that logged onto the system by finding them
in the memory of that precise system.

3.2 Monitoring the Information System

To update the attack graph based on the real-time state of the system, we need
also to monitor the information system. The monitoring process output can get
continuously mapped with the initial nodes of the attack graph to find out if a
vulnerability is being exploited. The mapped information consists of the port,
the IP address, and the device’s protocol. The mapping is prioritized based on
the severity of the alert and the Common Vulnerability Scoring System (CVSS)
score of the CVE. Our approach prioritizes the CVE with the highest CVSS
version 2.0 score for an alert that concerns various vulnerabilities to deduce
its impacts using a vulnerability ontology. In Table 1, a system contains three
vulnerabilities concerning remote desktop protocol and exploitable using port
3389 and protocol TCP. In this case, our approach prioritizes CVE-2019-0708
since its score is higher. Next, we provide more details about this process using
semantic information about concrete vulnerabilities.

Automated Enrichment of Logical Attack Graphs via Formal Ontologies 5

Table 1. Comparison between different various CVE concerning the same port and
protocol based on their CVSS index.

CVE-ID Product Protocol Port CVSS

CVE-2019-0708 windows remote_desktop_protocol tcp 3389 9.8
CVE-2012-0152 windows remote_desktop_protocol tcp 3389 9.3
CVE-2012-0002 windows remote_desktop_protocol tcp 3389 9.3

3.3 Vulnerabilities and Ontologies

Vulnerability information is necessary for the attack graph generation and
enrichment process. Vulnerability description in standardized databases pro-
vides information about the preconditions and post-conditions and practical
ways to be exploited. The vulnerability information allows semantically express-
ing the adversary’s actions toward the adversarial goals, such as pre- and post-
conditions. It is also necessary to consider information about exploited vulnera-
bilities to update logical attack graphs in real time. The vulnerability information
is a text written in natural language. This information needs to be transformed
into machine-readable text. The use of an ontology is necessary to represent
the machine-readable text and thus ensure its homogeneity. An ontology makes
it possible to represent a domain in a structured way. The ontology facilitates
interoperability between information from the attack graph and the extracted
information from vulnerability databases. It is possible to make queries on the
ontology to infer new knowledge necessary for the ontological enrichment of the
attack graph.

Let us take CVE-2002-0392 as an example. The information from its descrip-
tion: “Apache 1.3 through 1.3.24, and Apache 2.0 through 2.0.36, allows remote
attackers to cause a denial of service and possibly execute arbitrary code via a
chunk-encoded HTTP request that causes Apache to use an incorrect size” can
be classified as represented in Table 2. The information from the table can lead to
the construction of an ontology with the classes CVE-ID, Product, AttackType,
Method, Impact and the properties concernsProduct, hasRemoteType, hasMethod,
resultsInImpact.

Table 2. Classification of CVE-2002-0392 characteristics.

CVE-ID Product Remote Type Method Impact

CVE-2002-0392 Apache remote Code Execution Privilege Escalation

3.4 Enrichment of Attack Graphs

Algorithm 1 represents our proposed approach for enriching attack graphs based
on a vulnerability ontology and monitoring system information. When a threat

6 K. Saint-Hilaire et al.

exists on a vulnerable component of the monitored system, it is necessary to look
through the vulnerability characteristics to find its post-conditions. Depending
on the attack goal and the deduced impact, new rules are generated allowing
the logical reasoner to find a new path from the additional consequence to the
attack goal, see below.

shutdown(host) → physicalDamage(bus)
execCode(host, user)→ shutdown(host)

These post-conditions allow the attack graph to be enriched with new paths.
For an attack that aims to cause physical damage and an exploited vulnerability
that can cause a service interruption that can be shutdown, reboot, or panic, the
enrichment process adds a new path from the node consisting of the vulnerability
exploitation and the node expressing the physical damage.

Algorithm 1: Attack Graph Enrichment Process
Data: System state
G = (V, E)← AttackGraphGenerated;
initialimpact← impact of exploited vulnerability in pro-active graph;
listimpact← List of impacts from the SPARQL query;
V ={v0, v1, . . .,vn} ← List of vertices of G;
E={e0,e1,. . .,em} ← List of edges of G;
Result: G

′

initialization;
for i=0; i<len(listimpact); i++ do

if listimpact[i] �= initialimpact then
if impact = Shutdown ∪ impact = Reboot ∪ impact = Panic then

for z=0; z<len(V); z++ do
if V [z] is a fact node ∩ attack goal is PhysicalDamage then

Add new rules to the logical reasoner;
G

′ ← the attack graph regenerated;
i← the number of vertices added;
V

′
={v0, v1, . . .,vn+i} ← List of vertices of G

′
;

t← the number of edges added;
E

′
={e0,e1,. . .,em+t} ← List of edges of G

′
;

G
′
= (V

′
, E

′
);

4 Experimental Approach

4.1 Use Case Scenario

Next, we describe a use case scenario provided by smart city stakeholders. A
denial-of-service attack against a municipality network is perpetrated. Commu-

Automated Enrichment of Logical Attack Graphs via Formal Ontologies 7

nication between machines and sensors is interrupted, causing further delays in
the city’s transportation service. People fleeing the area start fighting, forcing
the authorities to close all transportation services. The violence in public trans-
portation on a given bus affects the health of several passengers. This scenario
is taken into account in our experiments.

4.2 Setup

We instantiate the scenario depicted in Fig. 1 to validate our approach. It repre-
sents a cyber-physical system monitored by a SIEM, based on Prelude-OSS3. We
use a virtual machine representing the starting device of the scenario, another
machine to instantiate the breach point, and a third one representing the critical
asset.

The rationale of the scenario depicted in Fig. 1 is as follows. An adversary suc-
cessfully executes arbitrary code on the starting device by connecting remotely
through Remote Desktop Protocol (RDP), a network service that provides users
with graphical means to control computers remotely). The adversary can then
read the memory of the starting device. The administrator’s credentials are saved
in the memory of the starting device. Then, the adversary harvests those cre-
dentials. We assume the administrator can connect to all the machines in the
domain to manage them remotely. Then, an adversary capable of reusing the
credentials can log onto the breach point and remotely connect to the critical
asset. To eavesdrop network traffic, the adversary perpetrates a DNS Poisoning
attack [5]. The adversary also performs integrity attacks to modify application-
level information, such as the bus schedule and routes, to perturb the influence
of traffic and cause a congestion increase. This causes citizens to take the wrong
buses at the wrong time, leading to panic and violence mentioned in Sect. 4.1. In
parallel, the adversary reuses the domain credentials to steal some other access
keys and impersonate other users (shown in Fig. 1 with steps Access Keys Stealer
and User Compromise).

W.r.t. Fig. 2, we use Nessus Essentials4 scanner (Step 1) to discover and
list of vulnerabilities in the monitored system. Data from Nessus is consumed
by MulVAL [9], a reasoning engine based on logical programming (Step 2), to
generate a logic-based attack graph (Step 3). We use Prelude-ELK5, an extended
version of Prelude-OSS, to monitor the system in real time. When an alert is
generated, the procedural processor maps the information from the alert with
the attack graph nodes’ information (Step 4) to determine if the alert concerns
a discovered vulnerability in the system. The procedural processor queries the
impacts of the exploited vulnerability on a vulnerability knowledge graph (Step
5). For a new impact deduced (Step 6), the procedural processor adds a new
rules to the logical reasoner (Step 7). The attack graph is regenerated with a
new path (Step 8).

3 https://www.prelude-siem.com/en/oss-version/.
4 https://www.tenable.com/products/nessus/nessus-essentials.
5 https://github.com/Kekere/prelude-elk.

https://www.prelude-siem.com/en/oss-version/
https://www.tenable.com/products/nessus/nessus-essentials
https://github.com/Kekere/prelude-elk

8 K. Saint-Hilaire et al.

Starting Device

(Microsoft Windows)

3. Credential Reuse

5. Alter Infomation

(Microsoft Windows)

Breach Point

(Microsoft Windows)

Critical Asset

2. Credential Harvesting

1. CVE-2019-0708 (BlueKeep)

4. Domain Credential 5. AWS Access Keys Stealer 6. AWS User Compromise

UserAccess Key

6. Panic and Violence on Mass Buses

Fig. 1. Cyber-physical attack scenario. An adversary exploits the vulnerability asso-
ciated with CVE-2019-0708 on a Starting Device. Then, administrator credentials are
harvested from the device’s memory and reused by the adversary to take control of
a critical asset. The attack affects physical and digital elements associated with the
system (e.g., people and services).

Fig. 2. The Attack Graph Enrichment Process.

MulVAL. Based on the scenario shown in Fig. 1, we create input data for Mul-
VAL and interaction rulesets associated with the vulnerability and the proposed
scenario. We encode the new interaction rules as Horn clauses [9]. The first line
corresponds to a first-order logic conclusion. The remaining lines represent the
enabling conditions. The clauses below correspond to the following statement
from the scenario shown in Fig. 1:

“The breach point credentials can be harvested on the starting device only if
there is previously an execution code exploit on the starting device and the

Automated Enrichment of Logical Attack Graphs via Formal Ontologies 9

credentials of the administrator are saved onto the memory of the starting
device.”

harvestCredentials(_host, _lastuser) :-
execCode(_host, _user),
hasCredentialsOnMemory(_host, _lastuser).

The clauses below represent the following facts:

“It is possible to execute code on the breach point when these credentials
have been harvested and because the breach point and the starting device
are on the same network and can communicate through a given protocol
and port.”

execCode(_host, _user) :-
networkServiceInfo(_host, _program, _protocol, _port, _user),
hacl(_host, _h, _protocol, _port),
harvestCredentials(_h, _user).

Ontology. We use VDO, an ontology of CVEs proposed by NIST. Figure 3,
from [4], represents various attributes of the VDO ontology for characterizing
software vulnerabilities. Various features, such as Impact Method, and Logical
Impact are mandatory. Impact Method describes how a vulnerability can be
exploited. Logical Impact describes the possible impacts a successful exploita-
tion of the Vulnerability can have. For each CVE affecting the monitored sys-
tem, we can fulfill the classes of information from the ontology according to the
description and metrics of the CVE.

Prelude-ELK. We use an extended6 version of Prelude-OSS’s LML (Log Mon-
itoring Lackey) and third-party sensors such as Suricata7 to monitor and process
Syslog messages generated from different hosts on heterogeneous platforms. We
install Rsyslog Windows Agent8 and Suricata on each virtual machine to mon-
itor them with the ELK extension of Prelude-OSS. The results are processed
in real-time, mapping the alerts and VDO’s data while conducting our attack
graph enrichment process.

Procedural Processor. We create a procedural processor where we upload
the input required for the attack graph generation. The engine displays a web
visualization of the attack graph. The server matches the last alert’s IP address,
port, and protocol with the attack graph. When a vulnerability is likely to be
exploited, the engine consults the vulnerability ontology to deduce other impacts
of the exposure. The tool generates new rules according to ontology inference.
6 https://github.com/Kekere/prelude-elk.
7 https://suricata.io/.
8 https://www.rsyslog.com/windows-agent/.

https://github.com/Kekere/prelude-elk
https://suricata.io/
https://www.rsyslog.com/windows-agent/

10 K. Saint-Hilaire et al.

PrivilegeLevel
[Anonymous]
[Generic Trust]
[User]

[Privileged]
[Administrator]

[Shutdown]
[Reboot]
[Hang]
[Panic]

[Unrecoverable]

[Failure to verify receiver]
[Failure to verify transmitter]
[Failure to verify content]
[Failure to establish trust]

ServiceInterruptTypes

TrustFailureTypes

[Write (Direct)]
[Read (Direct)]

[Resource Removal (Data)]
[Service Interrupt]
[Indirect Disclosure]
[Privilege Escalation]

LogicalImpact

gainedPrivileges

ImpactMethod

[Context Escape]
[Trust Failure]

[Authentication Bypass]
[Code Execution]

LogicalImpact
hasLogicalImpact

Fig. 3. Sample classes associated to VDO (Vulnerability Description Ontology).

In this paper, we do not consider the impact of an exploited vulnerability on
other vulnerabilities in the system nor countermeasures actions to mitigate the
attacker’s actions. We will focus on this in future work.

4.3 Results

Figure 4(a), represents the attack graph generated for the scenario depicted in
Fig. 1. The goal, represented by Node 1, is to cause panic and violence (see the
use-case scenario described in Sect. 4.1). A red node represents the existence of
a vulnerability on a device. An orange node represents network configuration,
e.g., device characteristics, the connection between two devices in the network,
etc. When the preconditions are satisfied, a yellow node represents the inference
rules leading to a fact. Green nodes represent facts. For instance, Node 15 repre-
sents the network access to the Starting Device, using Remote Desktop Protocol
(RDP) services, from the attacker located on the Breach Point; the adversary
location is represented by Node 18. Node 20 concerns the vulnerability identi-
fied as CVE-2019-0708 on the Starting Device. Node 19 concerns the network
configuration of the Starting Device; port 3389 is opened, allowing remote con-
nection to the device using remote desktop service. Node 14 represents the rule
that leads the adversary to remotely exploit the vulnerability on the Starting
Device when preconditions on Nodes 19, 20, and 15 are met.

In real-time, alerts are processed with Prelude-ELK (see Sect. 4.2). The proce-
dural processor matches precondition nodes’ information with alert information,
such as IP address, protocol, and port. The processor makes a query on VDO to
deduce other post-conditions associated with CVE-2019-0708 as represented in
Listing 1.1. A list of deduced impacts from the SPARQL query is represented in
Table 3. One consequence concerns privilege escalation, and the other concerns
interrupting the communication between the affected device and other devices.
Important information is not communicated on time for the citizens, including
public transportation users. The service interruption can also cause violence on
public transportation. Therefore new paths are added to the attack graph based
on the deduced impacts. As a result, an enriched attack graph is derived.

Automated Enrichment of Logical Attack Graphs via Formal Ontologies 11

Ontological
Enrichment

shutdown(host):- execCode(host,user). & physicalDamage(_bus) :- shutdown(_host).

16

6 5 4 3 214

20
1

7

13

19

15

18 19

16

6 5 4 3 214

20
1

7

13

19

15

18 19

25 24 23

(a) (b)

– New logical rules feed the knowledge base of the logical reasoned:

Fig. 4. Sample results. (a) Attack graph generated for the scenario leading to violence
on buses. (b) The same attack graph is once enriched with data from the ontology.

PREFIX rdf : <http ://www.w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX rdfs : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
PREFIX : <http ://www. semanticweb . org / keren / on t o l o g i e s / 2022/6/ . . .

SELECT DISTINCT ?v ?impmethod ? log
WHERE {

? vul : ha s Iden t i ty ? vu l i d .
? vu l id : value ?v .
? vul : hasScenar io ? sce .
? s ce : hasAction ? ac .
? s ce : a f f e c t sProduc t ?prod .
? ac : r e su l t s In Impac t ?im .
?im : hasLogica l Impact ? log .
? ac : hasImpactMethod ?imp .
?imp : value ?impmethod .
FILTER (s t r (? v) ="CVE−2019−0708") .

}

Listing 1.1. SPARQL query

Table 3. List of impacts deduced.

CVE-ID Logical Impact

CVE-2019-0708 Privilege Escalation
CVE-2019-0708 Reboot

Figure 4(b) represents such an enriched attack graph. The three nodes high-
lighted with the red square correspond to the new nodes added to the enriched
attack graph thanks to the ontology inference. Node 24 describes the service
interruption. Node 25 is an interaction rule expressing the achievement of Node
24 because the precondition represented by Node 13 is satisfied. Node 23 leads

12 K. Saint-Hilaire et al.

to the violence on buses scenario (i.e., by inference, Node 24 targets Node 23, a
new rule concerning the attack goal). In Fig. 4, the two added nodes represent a
new path the adversary can take to cause panic and violence. As we can see, the
enriched graph is now acyclic. The new path is shorter than the predicted one.
The adversary can reach the goal, represented by Node 1, much sooner than
expected. This difference would make operators aware that applying a reme-
diation plan is more urgent. Therefore, the experts can prioritize remediation
actions that prevent the more impactful attacker’s actions.

5 Related Work

5.1 Attack Graph Generation Approaches

In [3], Gosh and Gosh propose a planning-based approach for generating minimal
attack graphs. The planner generates acyclic paths from information, vulnerabil-
ities, and initial network configuration, combining them, resulting in a minimal
attack graph. Minimal attack graphs do not contain redundant nodes and edges.
This approach makes it possible to generate an attack graph in polynomial time,
regardless of the distribution of vulnerabilities on the attack graph. The initial
network configuration and exploit description are the inputs for generating a
minimal attack graph using a planner.

Roschke et al. [10] propose an approach to generate logical attack graphs
based on logic programming. The input information for the generation of graphs
is system and vulnerability information. They present the integration of an IDS
in the graph generation process, complementing the process with data fusion
and correlation. This improves the quality of the alerts and the quality of their
correlation. This correlation makes it possible to prioritize and label alerts. Logic
programming-based approaches are more flexible regarding semantic correspon-
dence with other knowledge bases.

Compared to those approaches mentioned above, we monitor the network
to update the attack graph based on state change of the network and generate
attack graphs based on network information received from Nessus scans. We also
enrich the attack graph based on vulnerability information from CVEs and alerts
received from a SIEM. We use a logical attack graph generation approach. With a
logical approach, the inference is more straightforward. Moreover, the semantics
abilities enhance attack graph enrichment with ontology. We use a vulnerability
ontology to correlate alerts with the system and vulnerability information.

5.2 Ontology and Attack Graph Generation

Recently, ontologies have been used in different approaches of attack graph
generation. Falodiya et al. [2] propose an algorithm that traverses a semantic
attack graph to add the information extracted from the graph into an ontology.
This ontological approach makes it possible to store other information, such as
the countermeasures available for a vulnerability and their cost, as well as the

Automated Enrichment of Logical Attack Graphs via Formal Ontologies 13

anti-forensic measures that the attacker, the vulnerability information can use,
and the CVSS Score. Analyzing this information using an ontological approach
becomes significantly easier as the network size increases.

Lee et al. [7] propose an ontological representation of attack graphs. An
ontology that represents attack graphs for a simple network environment is cre-
ated using RDF schema and OWL. Classes and relationships are created from
the multi-requisite graph model. States, vulnerabilities, and prerequisites are
represented as classes. This approach improves the machine readability of large-
scale attack graphs and thus automates network security assessment. Ontological
structures facilitate security assessment. Experts can get the information needed
for risk analysis without analyzing the entire attack graph. This task done by
the experts can be time-consuming when the graph is large.

In our approach, ontologies contribute to attack-graph enrichment. We use
a standardized ontology proposed by the National Institute of Standards and
Technology (NIST), the Vulnerability Database Ontology (VDO), for the attack
graph enrichment. VDO provides mandatory classes such as Logical Impact and
Product, which we use to map alerts with attack graph nodes. New attack paths
can be discovered for a given CVE in VDO. The semantic abilities of logical
attack graphs and ontologies also allow us to update the graphs. This improves
the automation of the enrichment process (i.e., cybersecurity operators do not
have to modify inputs to update the attack graphs manually).

6 Conclusion

We have proposed an ontology-based approach for attack graph enrichment. We
use logical graph modeling, in which attacks are represented with predicates.
Successful precondition validation means successful attack perpetration. Com-
pared to similar approaches, such as topological and probabilistic attack graphs,
our approach simplifies inference since graphs’ edges now specify causality. We
have implemented the proposed approach using existing software. We have val-
idated the approach based on a cyber-physical use-case proposed by smart-city
stakeholders. We have validated the full approach, from generating an initial
attack graph (using network vulnerability scans), to enriching the graph (map-
ping monitoring alerts and ontology semantics in real-time). The predictions of
the initial graph are successfully updated into the enriched graph based on infer-
ences by an ontology thanks to expert and monitoring knowledge. In the future,
we will evaluate the performance of the proposed approach. We will also focus
on presenting remediation actions to block the attacker’s actions.

Acknowledgements. We acknowledge financial support from the European Commis-
sion (H2020 IMPETUS project, under grant agreement 883286) and the Chair CRIT-
iCAL, funded by MITACS (Canada).

14 K. Saint-Hilaire et al.

References

1. Aguessy, F.-X., Bettan, O., Blanc, G., Conan, V., Debar, H.: Hybrid risk assess-
ment model based on Bayesian networks. In: Ogawa, K., Yoshioka, K. (eds.)
IWSEC 2016. LNCS, vol. 9836, pp. 21–40. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44524-3_2

2. Falodiya, K., Das, M.L.: Security vulnerability analysis using ontology-based attack
graphs. In: 2017 14th IEEE India Council International Conference, INDICON
2017, pp. 1–5 (2018)

3. Ghosh, N., Ghosh, S.: A planner-based approach to generate and analyze minimal
attack graph. Appl. Intell. 36(2), 369–390 (2012)

4. Gonzalez, D., Hastings, H., Mirakhorli, M.: Automated characterization of software
vulnerabilities. In: 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 135–139. IEEE (2019)

5. Hu, Q., Asghar, M.R., Brownlee, N.: Measuring IPv6 DNS reconnaissance attacks
and preventing them using DNS guard. In: 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 350–361.
IEEE (2018)

6. Kaiser, F.K., Andris, L.J., Tennig, T.F., Iser, J.M., Wiens, M., Schultmann,
F.: Cyber threat intelligence enabled automated attack incident response. In:
2022 3rd International Conference on Next Generation Computing Applications
(NextComp), pp. 1–6. IEEE (2022)

7. Lee, J., Moon, D., Kim, I., Lee, Y.: A semantic approach to improving machine
readability of a large-scale attack graph. J. Supercomput. 75(6), 3028–3045 (2019)

8. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security, pp. 336–345 (2006)

9. Xinming, O., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network
security analyzer. In: USENIX Security Symposium, Baltimore, MD, vol. 8, pp.
113–128 (2005)

10. Roschke, S., Cheng, F., Meinel, C.: Using vulnerability information and attack
graphs for intrusion detection. In: 2010 6th International Conference on Informa-
tion Assurance and Security, IAS 2010, pp. 68–73 (2010)

11. Roschke, S., Cheng, F., Schuppenies, R., Meinel, C.: Towards unifying vulnerability
information for attack graph construction. In: Samarati, P., Yung, M., Martinelli,
F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 218–233. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04474-8_18

12. Saint-Hilaire, K., Cuppens, F., Cuppens, N., Garcia-Alfaro, J.: Ontology-based
attack graph enrichment. In: 2021 TIEMS (The International Emergency Man-
agement Society) Annual Conference, Paris, France (2021). https://arxiv.org/abs/
2202.04016

13. Stan, O., et al.: Heuristic approach for countermeasure selection using attack
graphs. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF),
pp. 1–16 (2021)

https://doi.org/10.1007/978-3-319-44524-3_2
https://doi.org/10.1007/978-3-319-44524-3_2
https://doi.org/10.1007/978-3-642-04474-8_18
https://arxiv.org/abs/2202.04016
https://arxiv.org/abs/2202.04016

	Automated Enrichment of Logical Attack Graphs via Formal Ontologies
	1 Introduction
	2 Background
	2.1 Logical Attack Graph Modelling

	3 Proposed Approach
	3.1 Generation of the Attack Graph
	3.2 Monitoring the Information System
	3.3 Vulnerabilities and Ontologies
	3.4 Enrichment of Attack Graphs

	4 Experimental Approach
	4.1 Use Case Scenario
	4.2 Setup
	4.3 Results

	5 Related Work
	5.1 Attack Graph Generation Approaches
	5.2 Ontology and Attack Graph Generation

	6 Conclusion
	References

