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ABSTRACT
In the rapidly evolving digital world, network security is a critical

concern. Traditional security measures often fail to detect unknown

attacks, making anomaly-based Network Intrusion Detection Sys-

tems (NIDS) using Machine Learning (ML) vital. However, these

systems face challenges such as computational complexity and mis-

classification errors. This paper presents ZW-IDS, an innovative

approach to enhance anomaly-based NIDS performance. We pro-

pose a two-layer classification NIDS integrating zero-watermarking

with data provenance and ML. The first layer uses Support Vector

Machines (SVM) with ensemble learning model for feature selec-

tion. The second layer generates unique zero-watermarks for each

data packet using data provenance information. This approach

aims to reduce false alarms, improve computational efficiency, and

boost NIDS classification performance. We evaluate ZW-IDS using

the CICIDS2017 dataset and compare its performance with other

multi-method ML and Deep Learning (DL) solutions.
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1 INTRODUCTION
As the digital age advances, the importance of network security has

become a major issue in the cybersecurity community. The rise of

information and network technologies has led to an accumulation

of a huge amount of data related to organizational operations and

individual activities [23, 32]. If compromised, this data could lead

to significant losses and security breaches. The increase reliance on

network infrastructure introduce the importance of securing these

networks against malicious intrusions and cyber threats [19, 34]. To

protect networks from intrusions and attacks, various approaches

have been proposed and implemented, including firewalls, digital

signatures, and Intrusion Detection Systems (IDS).

IDS play an important role in detecting different types of attacks,

serving as a valuable tool for the in-depth defense of computer

networks. They monitor network traffic for known or potential

malicious activities and trigger an alarm when malicious activity is

detected. IDS are generally categorized into two types: misuse and

anomaly intrusion detection systems. Misuse-based IDS identify in-

trusions based on system weaknesses and known attack signatures,

but they fail to recognize new or unfamiliar attacks. In contrast,

anomaly-based IDS are based on normal behavior parameters and

use them to identify any action that significantly deviates from nor-

mal behavior [9, 15, 17]. In our work, we focus on anomaly-based

intrusion detection.

Machine Learning (ML) has been widely applied to anomaly-

based intrusion detection. ML-based IDS provide a learning-based

system to discover classes of attacks based on learned normal and

attack behavior. The goal is to generate a general representation of

known attacks. Misuse detection techniques fail to detect unknown

attacks, although they provide good detection accuracy for detect-

ing well-known attacks. Various ML techniques have been explored

and implemented to build an anomaly-based IDS [5, 14, 24, 28]. The

most widely known method in IDS is supervised learning, which

builds a mapping function based on pre-defined input-output pair-

ings. Additionally, unsupervised learning is employed, which lets a

model to infer internal relationships on its own without the need

for a labeled data set. Furthermore, hybrid methods are another

strategy that has gained popularity in the IDS research community.

In order to fully exploit the advantages of each learning technique

and enhance the overall detection rate, these methods combine two

or more ML techniques. They are also a useful alternative technique

for reducing the bias caused by an imbalanced data set toward more

frequent attacks. However, this approach increases the complexity

and computational time of the learning model [2, 21].
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In recent years, one of the most known supervised learning

techniques, Support Vector Machine (SVM), have been success-

fully applied to handle complex patterns, which are nonlinear and

high dimensional. SVM has proved to perform better than tradi-

tional learning approaches in terms of classification and detection

of attacks in a binary and multi-class classification scenarios in

network security applications. SVM provide several advantages

over other ML techniques, like Deep Learning (DL). SVM provide

interpretable decision boundaries, making it easier to understand

and trust the model’s predictions. They perform well with net-

work traffic datasets, have faster training times, and are robust

to noisy data. Additionally, SVM offer feature importance scores,

help avoid overfitting, and are more resource-efficient compared to

DL models, making them an effective solution for anomaly-based

IDS [20, 22, 30, 33, 38]. However, IDS often deal with large volumes

of data, which may contain irrelevant and redundant features. This

can slow down the training and testing process, consume more

resources, and result in a poor detection rate [12]. Moreover, the

misclassification of attack packets as normal is still a real concern

in ML-based IDS. This is called Type 1 error where the system

fails to detect an intrusion or malicious activity that is actually

present in the data. In other words, it is a false positive, where

the IDS mistakenly classifies an instance as non-malicious when

it is, in fact, malicious. This error can result in security breaches

and vulnerabilities going unnoticed, posing significant risks to the

system’s integrity and safety. To address this issue, ML approaches

need to be assisted with other security techniques to minimize the

number of misclassified packets and increase detection rate. In this

paper, we introduce zero-watermarking and data provenance to

improve IDS performance and solve the computational complexity

of other solutions that combine several ML methods.

More precisely, we present ZW-IDS, a novel approach which

integrates an anomaly-based Network Intrusion Detection Sys-

tem (NIDS) with a zero-watermarking-based approach for data

provenance. Data provenance provides the capability to ensure

data trustworthiness by summarizing the history of ownership

and actions performed on collected data from the source device to

the final destination. While previous studies focused on modeling,

collecting, and querying provenance, IDS have been overlooked.

The main goal of this work is to minimize the false alarm rate, im-

prove the computational complexity and enhance the classification

performance of NIDS. Firstly, we introduce a first layer of classi-

fication using SVM by adopting a feature selection method based

on Extremely Randomized Trees. Secondly, we propose a novel

zero-watermarking approach using data provenance as a second

layer of classification, where we use provenance information as

extracted features to generate a zero-watermark for each captured

data packet. Moreover, we apply these two layers of classification

to build an effective anomaly-based NIDS and evaluate the effec-

tiveness and feasibility of our approach by conducting experiments

on the CICIDS2017 [31] intrusion detection dataset.

Considering the above, the main contributions of our work are

summarized as follows:

• Propose a novel approach for integrating a zero-watermarking-

based data provenance approach with an anomaly-based

NIDS.

• Improve the classification performance of anomaly-based

NIDS and reduce the high false alarm rates in intrusion

detection by introducing a two-layer classification system

based on SVM and zero-watermarking (data provenance).

• Evaluate the performance of the proposed approach through

a set of performance metrics including accuracy, precision,

recall, F-score, false alarm rate, and computational overhead,

using the CICIDS2017 dataset.

• Provide a comparative analysis with existing ML and DL-

based IDS.

The rest of the paper is organized as follows. Section 2 surveys

previous work on ML and DL-based IDS. Section 3 presents an

overview on NIDS, data provenance and zero-watermarking. The

proposed model is presented in Section 4. Section 5 presents the

simulation and results of the proposed model, including the analysis

about the results. Section 6 closes the paper with conclusions and

further research directions.

2 RELATEDWORK
To the best of our knowledge, we are presenting the first integration

of a data provenance approach with anomaly-based NIDS in net-

work security, using zero-watermarking as a technique to represent

provenance records, and ML classification.

There have been previous works implementing IDS in networks

using different ML and DL techniques, as we discuss in this sec-

tion. With the advancement of computer networks, securing its

infrastructure has made intrusion detection a very important issue

to implement. Various ML methods, such as Fuzzy Logic, Deci-

sion Trees (DT), K-Nearest Neighbors (KNN), SVM, Random Forest,

Naive Bayes, Logistic Regression and Artificial Neural Networks

(ANN) approaches, are used in IDS to distinguish between nor-

mal network activity and malicious intrusions. SVM, in particular,

has shown better performance compared to standard classification

methods, allowing several researchers to propose several SVM-

based IDS solutions. Despite the advantages of SVM-based IDS in

terms of detection accuracy and learning speed over traditional al-

gorithms, the issue of misclassification of attack packets still needs

improvement. Furthermore, a number of different techniques have

been proposed in the literature aimed at enhancing traditional ML

algorithms.

In a study by Tao et al. [33], a new IDS is introduced to improve

detection rate, false positive and false negative rates. This system,

called FWP-SVM-GA, uses a Genetic Algorithm (GA) to improve

the performance of an SVM algorithm. The GA first selects the

most relevant features from the data. Then, SVM parameters are

optimized to achieve the highest accuracy. After training the model,

the FWP-SVM-GA can effectively identify and categorize unusual

network activity. Focusing on a single attribute, packet arrival rate,

instead of the complex features often found in online datasets, Jan

et al. [11] propose an SVM-based classifier for a lightweight IDS

evaluated using CICIDS2017 network traffic dataset and a generated

dataset using MATLAB
™
according to Poisson distribution. The

classifier’s performance using linear, polynomial, and radial-basis
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kernel functions is analyzed and compared to other ML techniques

like neural networks, KNN, and DT.

Ravi et al. [27] propose a thorough method for network intru-

sion detection, focusing on merging features from hidden layers

of recurrent models. They explore traditional ML algorithms like

Naive Bayes, Logistic Regression, KNN, DT, and Random Forest, as

well as recurrent DL models –such as Recurrent Neural Networks

(RNNs), Long Short-Term Memory (LSTM), and Gated Recurrent

Units (GRUs)–. They also investigate reducing the complexity us-

ing Kernel Principal Component Analysis (KPCA) and assess per-

formance across various intrusion datasets, leading to ensemble

meta-classifiers and feature combination for improved detection.

A DL model based on LSTM for multiclass attack detection clas-

sification is proposed by Rao and Suresh Babu [26]. Enhancing the

classifier’s performance involves hybridizing a convolutional neural

network called LeNet 5 and LSTM, and implementing Imbalanced

Generative Adversarial Network (IGAN)-based class imbalance.

This process can prevent the unnecessary time and space losses

involved with oversampling as well as the loss of important samples

due to random undersampling.

Alghushairy et al. [1] propose a Network Outlier Detection Sys-

tem (NODS) for classifying normal and attack network traffic. The

system uses SVM and Gaussian Naive Bayes (GNB) classification

algorithms to categorize the behavior of incoming network connec-

tions impacting a computer network. Both algorithms were built

and assessed using network traffic datasets. Data mining prepro-

cessing steps for network flow data, alongside optimizing Radial

Basis Function (RBF) control parameters and the GNB smoothing

parameter, prove to enhance the overall effectiveness of the pro-

posed NODS.

While many techniques that use SVM or other ML and DL ap-

proaches for intrusion detection have been proposed lately, there

are still some drawbacks with these approaches, such as: (1) Some

algorithms might struggle with complex attacks that deviate from

established patterns. Novel attacks or zero-day exploits, for instance,

might bypass the detection capabilities of these models; (2) the ef-

fectiveness of ML models heavily relies on the training data (e.g.,

if the training data is limited or does not encompass a wide range

of attack types, the model might not be able to generalize well to

unseen attacks and, later on, this can lead to false positives when

the system encounters attacks not included in its training set); and

(3) some methods might establish static thresholds for identifying

anomalies. While our third observation does not exclude detection

of known attack patterns, attackers can adapt their methods to

remain below these thresholds. This can trick an IDS to misclassify

attacks as legitimate traffic. To handle the problem, we propose an

augmented two-layer IDS approach using SVM for the first layer

of classification and a zero-watermarking approach using prove-

nance information as a second layer of detection. Even if the IDS

misclassifies an attack in the first process, the other layer might

still be able to prevent it from compromising the system.

3 BACKGROUND
In this section, we provide a more thorough background on the

techniques we used in our approach by introducing a brief overview

of NIDS, data provenance, and zero-watermarking.

3.1 Overview of Network Intrusion Detection
Systems

An IDS acts like a network security guard. It constantly monitors

and scans traffic for any unusual behavior that deviates from normal

network activity and warns network administrators if it detect any

suspicious network behavior [36]. IDS uses different techniques for

intrusion detection such as signature-based or anomaly-based detec-

tion techniques [39]. IDS can be deployed in three main placement

strategies as NIDS, Host-based Intrusion Detection System (HIDS),

and Collaborative Intrusion Detection System (CIDS) which com-

bines both NIDS and HIDS. An NIDS, in communication networks,

is a security tool designed to monitor and analyze network traf-

fic to detect malicious activities or unauthorized access. An NIDS

enhances the security of network devices by continuously monitor-

ing and analyzing network communications, helping to detect and

mitigate potential security threats to ensure the integrity and func-

tionality of computer networks. An NIDS is implemented to detect

network-based attacks on network devices. These attacks, often

targeting protocol vulnerabilities, cause a significant threat. One

example is Denial-of-Service (DoS) attacks, which aim to impact

the availability of devices or networks [3, 37]. The huge volume of

data can become a real concern, with recent research exploring di-

mensionality reduction and smart processing for efficient alert han-

dling [18]. Additionally, trust-based schemes are being proposed to

ensure data quality while reporting critical information [3, 6, 13, 37].

The emerging infrastructure, protocols, new attacks, and systems

in computer networks demand careful consideration when design-

ing an NIDS. Addressing complex data handling, huge volume of

network traffic, misclassification issues and trust concerns is essen-

tial for effective intrusion detection in such networks. Researchers

have explored and successfully implemented various ML and DL

techniques to create anomaly-based NIDS. Many of these implemen-

tations still face the issue of misclassifying certain attack packets

as legitimate ones, often resulting in critical consequences. This is

particularly problematic in decision-making applications, where

such errors can have severe implications on network security. To

address this, we propose augmenting anomaly-based NIDS with a

secondary layer of classification using ML techniques, incorporat-

ing zero-watermarking and data provenance.

3.2 Data Provenance
Data provenance is a concept that is applied in many research

disciplines. Every application domain has a unique definition of

provenance [25]. In network security, data provenance ensures the

reliability and trustworthiness of data by tracking the ownership

chain and actions performed on generated data from the source

node to the final destination. Every data packet that is received

from source nodes must have its provenance recorded, and forward-

ing nodes’ involvement in the data transmission process must be

tracked. However, implementing such a solution is a challenging

task. The rapid growth of provenance data in computer networks

during the transmission phase is one major problem. Furthermore,

restrictions are imposed by the bandwidth, computational overhead

and data storage capacities [16]. Data provenance ensures that the

user trusts the data received at the final destination, confirming
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that the data is collected by the designated unique authorized de-

vice at the specified time and location [4]. In our model, we use

provenance information, such as source IP address, destination

IP address, packet sequence number, and timestamp, to generate

zero-watermarks for data packets at each source device.

3.3 Zero-Watermarking
One of the most well-known developments in network security is

digital watermarking. It can accurately identify whether data has

been altered and successfully blocks data interception. Moreover,

it can be applied to secure copyright data as well as the content

integrity of digital multimedia works, including audio, video, and

images [35]. Comparing digital watermarking to other security

methods, there are several advantages, including the following:

(1) Because watermarking requires few calculations, its three

processes: generation, embedding, and extraction use less

energy.

(2) Watermark information is directly stored in carrier data

without requiring additional network connection cost [7].

(3) When compared to previous security solutions that need a

high degree of complexity, digital watermarking significantly

minimizes end-to-end delay because of the lightweight wa-

termark generation procedure.

A relatively recent technique for digital watermarking is zero-

watermarking. Watermark generation, embedding, and extraction

processes vary depending on the type of watermarking technique.

Examples include hash functions (cryptographic schemes), unique

codes inserted in information-hiding schemes, and bit position

modifications [10]. Zero-watermarking approaches involve the gen-

eration of watermarks by the source node by the extraction of

significant features from the original data without modifying the

data related to these features. Zero-watermarking allows for the

application of various functions for the generation process. The

generated watermarks in zero-watermarking are not embedded

in the data payload, but it is invisibly added to the data packet

and without any modification to the data payload. Although sev-

eral zero-watermarking techniques exist in the literature, very few

methods are proposed to ensure data integrity and secure prove-

nance in network security. Furthermore, to the best of our knowl-

edge, there are no proposed techniques that use zero-watermarking

in an NIDS with data provenance. In Section 4, we present an

in-depth description of our model, which augments ML with a

zero-watermarking-based data provenance scheme to achieve high

accuracy and minimize false alarm rate in attack classification.

4 PROPOSED MODEL
We propose a novel two-layer classification approach called ZW-

IDS for intrusion detection to enhance the performance of NIDS.

The approach is based on integrating a zero-watermarking-based

scheme with an anomaly-based NIDS. The proposed approach is

divided into two classification layers: (1) the first one is carried out

by applying ML using SVM and feature engineering, and (2), in the

second layer, the classification is performed on the classified data

from the first layer using a zero-watermarking scheme with data

provenance information. The workflow of the proposed model is

given in Figure 1. The placement of the NIDS is at the gateway to

capture the flow of data packets from source devices and incoming

network traffic. The framework includes different components for

processing data before applying the classification methodology. The

proposed model is thoroughly discussed in this section.

4.1 Data Pre-processing Stage
This stage cleans and prepares data from the dataset for further

analysis, training and testing. This includes handling missing val-

ues, outliers, formatting inconsistencies, data normalization and

standardization. The pre-processing process in our work includes

the following steps:

(1) Calculating ranges for numeric features: This process
calculates and returns the range, which is the difference

between the maximum and minimum values, for each nu-

meric feature within the dataset. Range calculation is very

important to provide insight into the spread or variability

of numerical data. By understanding the range of each nu-

meric feature, we can assess the scale of the data and identify

potential outliers or anomalies. It helps in determining the

relative importance of features during analysis and ensures

that the features are on a similar scale for the SVM model,

thus preventing bias towards features with larger ranges. We

notice that there are two features having infinite numbers in

many data packets which will affect the model performance.

Consequently, we drop these two features that are Flow Bytes
and Flow Packets.

(2) Encoding categorical values and labels: This process
encodes categorical values and labels. For labels, we have two

classes attack and normal. The dataset includes a label feature
where normal traffic is labeled as normal, and any intrusion

is labeled as attack. Encoding categorical variables converts

non-numeric data into a numerical format understandable

by SVM models. We drop some categorical values that are

not useful in the classification procedure such as: Flow ID,
Source IP, Destination IP, Timestamp, and Label. This results
in a 78 numeric feature.

(3) Data standardization: Also known as data scaling or nor-

malization, is a pre-processing technique used to transform

the numeric features of the dataset to have a mean of 0 and a

standard deviation of 1. This process ensures that all features

are on a similar scale, preventing features with larger magni-

tudes from dominating those with smaller magnitudes dur-

ing model training. In our work, StandardScaler() from

scikit-learn is used to standardize the data. This scaler

calculates the mean and standard deviation for each feature

and then scales each feature such that it has a mean of 0

and a standard deviation of 1. By standardizing the data be-

fore training our SVM model, we ensure that the decision

boundary is not biased by features with larger scales. The

standardization of these features is carried out using the

following equation:

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

,

where 𝑧𝑖 is the standardized value of the 𝑖-th feature, 𝑥𝑖 is an

individual observation of the 𝑖-th feature, 𝜇𝑖 is the mean of
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Figure 1: Proposed ZW-IDS workflow.

the 𝑖-th feature, and 𝜎𝑖 is the standard deviation of the 𝑖-th

feature.

4.2 Zero-watermark Generation and Embedding
4.2.1 Provenance Information Extraction. Within the selected

CICIDS2017 dataset, we encounter 85 data features, with 5 of them

being non-numeric: source IP address, destination IP address, times-

tamp, flow ID, and label. These particular features are consistently

removed by existing ML-based intrusion detection approaches dur-

ing the data pre-processing phase, as they hold no relevance to

the classification process. However, we recognize their significance

as provenance information and choose to extract them for zero-

watermark generation process. Initially, a sequence number, part of

provenance information, is created for each packet, using extracted

features as the source and destination IP addresses, timestamp, and

flow ID. These accumulated provenance information, along with the

generated sequence number, is used to generate the zero-watermark

for each individual observation or data packet 𝑥 .

4.2.2 Zero-watermark Generation and Embedding Proce-
dure. Introducing a zero-watermarking approach to augment an

ML-based IDS requires a watermark generation and embedding

process at each legitimate source device. We propose a new zero-

watermark generation and embedding algorithm to embed a water-

mark to the transmitted data packets using provenance information.

Algorithm 1 describes the process of generating and embedding a

watermark. It accepts data packets from the source device to gen-

erate a final zero-watermark. The algorithm extracts provenance

information from the data features of each data point such as, source
IP address, destination IP address, timestamp and combines it with a

generated unique data packet sequence number (𝑠𝑒𝑞) to generate

a sub-watermark 𝑠𝑤 𝑓𝑛,𝑘 as shown in Algorithm 1. Then, the sub-

watermark is encrypted using the Advanced Encryption Standard

(AES). The input data is padded to ensure its length is a multiple

of the AES block size. 𝑠𝑤 𝑓𝑛,𝑘 is encrypted using the secret 128 bit

key 𝐾𝑗 to obtain a provenance record 𝑝𝑛,𝑘 = 𝐸 (𝑠𝑤 𝑓𝑛,𝑘 , 𝐾𝑗 ). Another

sub-watermark 𝑠𝑤ℎ𝑛,𝑘 is generated from the hash value of data

payload using a one-way hash function, SHA-2. SHA-2 is preferred

over other hash functions like MD5 due to its lightweight nature,

consuming 65% less memory. MD5, while widely used in the past,

has vulnerabilities that compromise its security [8]. Finally, these

two generated sub-watermarks are concatenated to form a final

zero-watermark𝑊𝐹𝑛,𝑘 using the following equation:

𝑊𝐹𝑛,𝑘 = 𝐸 (𝑤𝑖𝑝 | |𝑤𝑡 | |𝑤𝑠𝑞 , 𝐾𝑗 ) | |𝐻 (𝑥𝑛,𝑘 ) = 𝐸 (𝑠𝑤 𝑓𝑛,𝑘 , 𝐾𝑗 ) | | 𝑠𝑤ℎ𝑛,𝑘 .

where𝑊𝐹𝑛,𝑘 (1 ≤ 𝑛 ≤ 𝑁 ), is the final watermark, 𝑁 is the number

of devices in the network, | | denotes the concatenation operator,

𝐻 is a secure and lightweight one-way hash function, and 𝑛 is the

source device number. After the generation procedure, the final

zero-watermark is embedded in the data packet 𝑥 as shown in

Equation 1 and, then, undergoes transmission.

𝑥 (𝑛,𝑘 )𝑊𝐹𝑛,𝑘
= 𝑥𝑛,𝑘 | |𝑊𝐹𝑛,𝑘 . (1)

4.3 Feature Extraction and Selection
Network connections can be described using a collection of data

features, but these vary in their impact for understanding the con-

nection’s behavior. Some features provide little to no relevant infor-

mation and are considered irrelevant. Others contain repetitive data

and are redundant [29]. For this, we use a feature extraction and

selection procedure to identify and extract relevant features from

the pre-processed data that are informative for anomaly detection,

and evaluate and select the most important features. We test the

different SVMmodels on different feature selection procedures. The

two main cases are: (1) using all dataset features, and (2) select-

ing the 𝑘-important features using the ensemble learning method

ExtraTreesClassifier. The method is as follows:

• ExtraTreesClassifier(): Extra Trees, which stands for

Extremely Randomized Trees, is an ensemble learningmethod

based on decision trees. It creates a forest of random deci-

sion trees and splits nodes using random thresholds. This

randomness helps to reduce overfitting and variance in the
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Algorithm 1 : Watermark Generation and Embedding

input: 𝑥𝑛,𝑘
output:𝑊𝐹𝑛,𝑘

1: procedure Watermark Generation

2: 𝑤𝑖𝑝𝑠 ← network device 𝑛 IP Address

3: 𝑤𝑖𝑝𝑑 ← destination device IP Address

4: 𝑤𝑡 ← extracted timestamp (𝑥𝑛,𝑘 )

5: 𝑤𝑠𝑞 ← packet sequence number (𝑠𝑒𝑞(𝑥𝑛,𝑘 ))
6: 𝑠𝑤 𝑓𝑛,𝑘 ← 𝑤𝑖𝑝𝑠 | | 𝑤𝑖𝑝𝑑 | | 𝑤𝑡 | | 𝑤𝑠𝑞

7: 𝑝𝑛,𝑘 ← 𝐸 (𝑠𝑤 𝑓𝑛,𝑘 ) ← ENC(𝐾𝑗 ,𝑠𝑤 𝑓𝑛,𝑘 )

8: 𝑠𝑤ℎ𝑛,𝑘 ← 𝐻 (𝑥𝑛,𝑘 ) ⊲ select first 8 bytes of hash output

9: 𝑊𝐹𝑛,𝑘 ← 𝐸 (𝑠𝑤 𝑓𝑛,𝑘 ) | | 𝑠𝑤ℎ𝑛,𝑘

10: end procedure
11: procedure Watermark Embedding

12: 𝑥 (𝑛,𝑘 )𝑊𝐹𝑛,𝑘
← 𝑥𝑛,𝑘 | |𝑊𝐹𝑛,𝑘

13: Send
(
𝑥 (𝑛,𝑘 )𝑊𝐹𝑛,𝑘

)
14: end procedure

model. We train the model on the input features (78 features)

of the CICIDS2017 dataset and the target variable which is

the labels (normal, attack). In this step, the model’s param-

eters is adjusted so that it can map the input data to the

correct output labels.

• After training the model, the feature importance scores is

calculated. Feature importance indicates the relative impor-

tance of each feature in predicting the target variable. The

model returns an array containing the importance scores for

each feature. We select the features that affect the decision of

mapping each data point to a target label. Thus, we suppress

the features with the least important scores (which are 30)

resulting in 48 features.

4.4 Classification
This section describes the two-layered approach for intrusion de-

tection. The first layer uses an SVM classifier to identify anomalies

in the network traffic. The second layer leverages a zero-watermark

approach, which uses provenance information to be embedded

within the data packets. This layer adds an extra layer of security

by extracting important information to verify data integrity and

further enhance intrusion detection performance.

4.4.1 Classification (Layer 1) using ML. An SVM is a super-

vised learning algorithm that excels at separating data packets into

two categories, which is a generalization of maximal margin classi-

fier. It sets a dividing line (hyperplane) in a multidimensional space.

SVM aims to find the maximum margin (distance) between this

hyperplane and the closest data points (support vectors) from each

category.

In our network dataset, we can represent it as an 𝑛 × 𝑝 data

matrix𝑋 , which includes𝑛 training data packets in a 𝑝−dimensional

feature space 𝑥1 =
(
𝑥11 · · · 𝑥1𝑝

)
, . . . , 𝑥𝑛 =

(
𝑥𝑛1 · · · 𝑥𝑛𝑝

)
.

These data packets belong to two main classes, 𝑦1, . . . , 𝑦𝑛 ∈ {−1, 1},
where −1 represents attack class and 1 normal class. A new data

packet is received, a 𝑝−vector with data features 𝑥∗ = (𝑥∗
1
, . . . , 𝑥∗𝑝 )T.

Our objective is to construct a classifier using our training dataset,

enabling the classification of incoming data packets based on its

set of features.

The support vector classifier is effective for linear classification

in a two-class scenario, but real-world boundaries are often nonlin-

ear. SVM extends this by enlarging the feature space using kernels.

Solving the SVM problem relies on the inner products of of the data

points. The inner product appears every time in the representation

or the calculation of the solution for the support vector classifier,

for that it is replaced with a generalization of the inner product

of the following form: 𝐾 (𝑥𝑖 , 𝑥𝑖′ ), where 𝐾 is a function called ker-
nel. There are several kernels that can be used for classification

in SVM method such as linear, polynomial, radial, and sigmoid. In
our approach, we train these four models on labeled data to learn

a decision boundary between normal and anomaly packets based

on the selected features in Section 4.3. Then, we apply the trained

model to classify new, unlabeled data packets as normal or anomaly.

After classification, the classified normal packets are placed in a

CSV file to be used as an input to the next classification procedure.

This file holds the predicted normal packets based on the specified

decision boundary by the SVM model. In this stage, we apply all

possible SVM models to test which one gives the best performance

in terms of accuracy, precision, recall, F-score, computational per-

formance and highest Area Under Curve (AUC) in the Receiver

Operating Characteristic (ROC) curve. This is carried out by apply-

ing a GridSearchCV for testing the best SVM model using 5−fold
cross-validation and get the best parameters 𝐶 and 𝛾 . After obtain-

ing the highest performance from parameter tuning, we also apply

Principal Component Analysis (PCA) to reduce the dimentionality

of the feature space and check the performance using two PCAs.

After extensive experiments, we found that the best performance

is obtained using an RBF kernel with 𝐶 = 100 and 𝛾 = 0.1. The

detailed results of these experiments are beyond the scope of this

paper due to space limitations. The RBF uses the following function

for attack classification:

𝐾 (𝑥𝑖 , 𝑥𝑖′ ) = exp
©­«−𝛾

𝑝∑︁
𝑗=1

(
𝑥𝑖 𝑗 − 𝑥𝑖′ 𝑗

)
2ª®¬ .

where 𝛾 is a positive constant parameter that determines the in-

fluence of each training sample on the model. It defines the reach

of the kernel function, controlling the flexibility of the decision

boundary.

4.4.2 Classification (Layer 2) using Zero-Watermarking and
Data Provenance. In the second layer classification, we use the

best model and parameters of SVM that we already tested over

the network dataset which is the RBF kernel. The aim of this layer

is to check the misclassified data packets which are actual attack

packets but are classified as “normal” ones. This is the Type 1 error

in the classification process which is misclassifying a sample that

belongs to the attack class as belonging to the normal class. In other

words, it is a false positive. In network security applications, the

attack class represents any type of an intrusion detected within

the devices or network, while the normal class represents regular

or expected behavior. Reducing Type 1 errors is critical in such

applications, because missing an actual attack can lead to significant

consequences overwhelming targeted servers, devices or networks.
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In our model, we generate a zero-watermark at the source device

and embed it in the data packet before transmission using extracted

provenance information, as shown in Algorithm 1.

After applying SVM classification in the first layer, the classified

normal packets are used as an input to the zero-watermark algo-

rithm to detect whether a packet is misclassified as normal or it is

an actual normal packet. After receiving the initially flagged normal

packet 𝑥
′

(𝑛,𝑘 )𝑊𝐹𝑛,𝑘

, we extract provenance information (𝑤𝑖𝑝𝑠 ,𝑤𝑖𝑝𝑑 ,

𝑤𝑡 ,𝑤𝑠𝑞 ) from data features and re-generate a new zero-watermark

𝑅(𝑊 ′

𝑛,𝑘
) based on Algorithm 2. The sequence number that we gen-

erated is based on flow ID, source IP, destination IP and timestamp

to uniquely distinguish data packets from source devices. Then, we

extract the zero-watermark𝑊𝐹𝑛,𝑘 from the data packet 𝑥
′

(𝑛,𝑘 )𝑊𝐹𝑛,𝑘

.

If both zero-watermarks are equal then it remains flagged as a

normal packet. Otherwise, it is re-flagged as an anomaly. In this

scenario, there are two possibilities: either the data packet under-

goes modification in its payload or zero-watermark, or the attacker

generates zero-watermarks using their own secret key, which won’t

be authenticated by the IDS. This is a misclassification from the

SVM layer 1 model. However, if the received packet lacks a zero-

watermark, it falls into one of two categories. First, it may be a

control packet, which follows a different procedure which is out-

side the scope of this paper. Alternatively, if it does not meet the

criteria of a control packet, it is classified as an intrusion. After the

second layer of attack detection, we evaluate the performance by ap-

plying the same metrics that are used in the SVM model evaluation,

as shown in Figure 1.

Algorithm 2 : Zero-watermark Re-generation and Re-classification

input: 𝑥
′

(𝑛,𝑘 )𝑊𝐹𝑛,𝑘

output: normal/attack

1: procedure Watermark Re-classification

2: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒

(
𝑥
′

(𝑛,𝑘 )𝑊𝐹𝑛,𝑘

)
3: 𝑅(𝑊 ′

𝑛,𝑘
) ← REDO Algorithm 1

4: 𝑊𝐹𝑛,𝑘 ← extract𝑊𝐹𝑛,𝑘 from𝑥
′

(𝑛,𝑘 )𝑊𝐹𝑛,𝑘

5: if𝑊𝐹𝑛,𝑘 ∉ 𝑥
′

(𝑛,𝑘 ) then

6: flag 𝑥
′

(𝑛,𝑘 ) as ‘attack’

7: elif 𝑅(𝑊 ′

𝑛,𝑘
) =𝑊𝐹𝑛,𝑘 then

8: flag 𝑥
′

(𝑛,𝑘 ) as ‘normal’

9: else
10: flag 𝑥

′

(𝑛,𝑘 ) as ‘attack’
11: end if
12: end procedure

5 EXPERIMENTAL EVALUATION
The ML and zero-watermarking algorithms implementation were

done using Scikit-learn
1
library in Python

2
as backend. The code

was developed in the Visual Studio
™

environment using 16 GB

1
https://scikit-learn.org/

2
https://python.org/

RAM and an Intel
™
i7 2.59 GHz processor. The experiments were

carried out using CICIDS2017 [31] dataset.

5.1 Dataset Description
CICIDS2017 is a network traffic dataset designed for evaluating IDS.

It includes both normal traffic and diverse cyberattacks, offering a

realistic testing ground for IDS. This makes it suitable for training

and testing IDS models, particularly for network environments

where traditional attack scenarios often apply. The dataset includes

a number of attacks such as Brute Force FTP, Brute Force SSH, DoS,

Web Attack, Botnet and Distributed Denial-of-Service (DDoS). The

dataset includes 2.8 million samples of network traffic. To make

evaluation of our model feasible, we use the DDoS network traffic

CSV file and split the dataset into 70% training and 30% testing

samples. The chosen dataset shows a good balance between normal

and attack packets and includes 85 data features extracted from

network traffic. Table 1 shows an overview of the classes within

the dataset.

Table 1: Overview on CICIDS2017 dataset.

Dataset type

Number of data samples

Records Normal Attack

CICIDS2017 Train

158021 68311 89710

% 43.22 56.77

CICIDS2017 Test

67724 29407 38317

% 43.42 56.57

5.2 Evaluation Metrics
The performance metrics defined in Table 2 are used to evaluate the

approach. These include accuracy, precision, recall, F-score, false

negative rate (FNR), false positive rate (FPR) and computational

time. These metrics are are defined from True Positive (TP), False

Negative (FN), False Positive (FP), and TrueNegative (TN) values. TP

represents correctly identified positive cases, FN denotes negative

cases incorrectly labeled as positive, FP indicates positive cases

incorrectly labeled as negative, and TN signifies correctly identified

negative cases.

5.3 Results and Discussion
5.3.1 Performance Evaluation on the CICIDS2017 Dataset.
We have conducted several experiments to explore various scenar-

ios involving SVM configurations, feature selection methods, and

hyper-parameter adjustmentswith our proposed zero-watermarking

classification using provenance information.

In our initial scenario, we built an IDS using all features from the

CICIDS2017 dataset, incorporating our novel zero-watermarking

classification layer. We evaluated different combinations of our pro-

posed ZW-IDS model with different SVM kernels, including linear,

RBF, polynomial, and sigmoid. Using GridSearchCV, we optimized

the hyper-parameters (𝐶 , 𝛾 , 𝑑) to achieve the best performance in

terms of classification metrics and computational efficiency. No-

tably, we found that setting hyper-parameters to 𝐶 = 100, 𝛾 = 0.1,
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Table 2: Performance metrics.

Metric Explanation

Accuracy =
TP + TN

TP + TN + FP + FN Overall ratio of correct predictions made by the model.

Precision =
TP

TP + FP Ratio of positive predictions that are actually correct.

Recall =
TP

TP + FN Ratio of actual positive cases that were identified correctly.

F-score =
2 × Precision × Recall
Precision + Recall Harmonic mean of precision and recall.

FNR =
FN

FN + TP Ratio of actual positive cases that were incorrectly classified as negative.

FPR =
FP

FP + TN Ratio of actual negative cases that were incorrectly classified as positive.

Table 3: Performance evaluation with existing approaches.

Approach Year
Classification Performance Metrics (%) Computational Time (s)

Accuracy Precision Recall F-score FPR FNR Training Time Testing Time

Tao et al. [33] 2018 98.01 98.39 98.16 98.27 1.89 2.06 49953.13 3.13

Jan et al. [11] 2019 98.03 98.43 97.99 98.20 1.91 2.01 208.90 2.28

Ravi et al. [27] 2022 98.77 97.84 98.74 98.21 1.18 1.34 – –

Rao and Suresh Babu [26] 2023 98.97 99.06 98.17 99.73 3.93 5.02 – –

Alghushairy et al. [1] 2024 88.74 – 98.82 – 12.19 1.17 – 0.007

Proposed ZW-IDS 2024 99.98 100.0 99.96 99.97 0.0 0.034 8.1 4.8

(–): Performance metric is not reported in the approach.

and 𝑑 = 3 with the RBF kernel, combined with zero-watermarks

generated using AES encryption with a 128-bit secret key, show the

best results. This configuration achieved an accuracy of 98%, with

training and testing times of 9.8 and 2.5 seconds, respectively. Addi-

tionally, we applied dimensionality reduction using PCA to reduce

the feature space from 78 dimensions to 2 components. However,

the integration of PCA led to a decline in classification performance,

reducing accuracy to 96% and increasing training and testing times

to 70.2 and 49.5 seconds, respectively. Thus, our findings suggest

that in our context, dimensionality reduction does not effectively

improve classification accuracy or reduce computational overhead.

In the second scenario, we employed feature selection using

the ExtraTreesClassifier ensemble learning model to assess the

importance scores of all features within the CICIDS2017 dataset.

We identified and removed 30 unimportant features that did not

significantly impact the classification process between normal and

attack classes. The number of selected features not only enhanced

processing time but also improved classification performance. Re-

peating experiments under the same conditions as the first scenario,

with optimal hyper-parameter values of𝐶 = 100, 𝛾 = 0.1, and 𝑑 = 3,

along with the same zero-watermark generation and verification

processes, shows better performance results. Applying feature se-

lection with the zero-watermark approach using the RBF kernel

resulted in a significant performance improvement, achieving a

99.98% accuracy and an very low false alarm rate of 0.034%. The

classification results of data packets, categorized into two classes

–‘normal’ and ‘attack’– using our approach, are shown in the con-

fusion matrix presented in Figure 2. Moreover, the proposed model

achieve better computational efficiency, resulting in 8.1 seconds

in training time and 4.8 seconds in testing time (including zero-

watermark regeneration and verification time). Thus, integrating

feature selection and hyper-parameter tuning with our proposed

ZW-IDS effectively mitigates model biasing and overfitting issues,

enhancing the effectiveness and speed of IDS in detecting attacks

and minimizing misclassification of data packets.

5.3.2 Comparison of Proposed ZW-IDS with Existing Ap-
proaches. To assess the effectiveness of our approach, we con-

ducted a performance comparison with five state-of-the-art meth-

ods proposed by Tao et al. [33], Jan et al. [11], Ravi et al. [27], Rao
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Figure 2: Confusion Matrix. A confusion matrix depicting
our proposed ZW-IDS classification model’s performance,
where true positives (TP) are in the upper left corner, true
negatives (TN) in the lower right, false negatives (FN) in the
upper right, and false positives (FP) in the lower left.

and Suresh Babu [26], and Alghushairy et al. [1] in terms of classi-

fication performance and computational efficiency, as detailed in

Table 3. Our approach demonstrates better performance, achieving

the highest accuracy of 99.98%, precision of 100%, recall of 99.96%,

and F-score of 99.97%. These results shows the effectiveness of in-

troducing a second-layer attack detection based on data provenance

(zero-watermark) to augment an ML-based IDS.

While other methods employ various feature selection tech-

niques with SVM, such as genetic algorithms proposed by Tao

et al. [33], focusing on specific attributes like packet arrival rate

as suggested by Jan et al. [11], or combining SVM with GNB pre-

sented by [1], our approach consistently outperforms them. Even

when compared to other ML algorithms like Naive Bayes, Logistic

Regression, KNN, DT, Random Forest proposed by Ravi et al. [27],

as well as DL models like RNN, LSTM, and GRU proposed by [26],

our proposed ZW-IDS approach demonstrates better performance.

Furthermore, ZW-IDS achieves significantly lower false error rates,

with an FNR of 0.034% and no instances of Type 1 errors misclassify-

ing attack data packets as normal packets as shown in the confusion

matrix of Figure 2.

In terms of computational efficiency, while not all approaches

consider this metric, our approach outperforms Tao et al. [33] and

Jan et al. [11] in training time, offering significantly lower pro-

cessing time with 8.1 seconds compared to both approaches with

49953.13 and 208.9 seconds, respectively. Although Alghushairy

et al. [1] report a testing time of 0.007 seconds, their approach’s

classification performance falls short, with an accuracy of 88.74%

and an FPR of 12.19%. In ZW-IDS, testing time includes the compu-

tational overhead of zero-watermark regeneration and verification

procedure of layer 2 classification. This highlights the lightweight,

effective, and efficient nature of our two-layer IDS for intrusion

detection in the CICIDS2017 dataset. Moreover, we demonstrate

that integrating zero-watermarking with data provenance in ML-

based IDS enhances performance and facilitates effective intrusion

detection while minimizing misclassification errors.

5.3.3 Effectiveness of Two-layeredApproach. Combining zero-

watermarking-based provenance technique with a ML-based IDS

to form a two layer intrusion detection approach provide an effec-

tive solution to a number of issues that can not be achieved when

applying only one layer of the model. These issues are as follows:

• The analysis of the dataset reveals a significant portion of

attack packets as shown in Table 1, comprising nearly 57%

of the total dataset. Applying SVM followed by the zero-

watermarking model means only 43% of the data undergoes

reclassification with zero-watermarking. In this case, if we

want to only apply the second layer, it requires additional

computational time due to the need for regeneration of zero-

watermarks for each packet and subsequent comparison

across the entire dataset. However, SVM classification layer

mitigates this computational burden by classifying the ma-

jority of the dataset (57%).

• A critical concern arises if an attacker launches an attack

from a compromised device and gains access to the AES en-

cryption secret key used in the zero-watermark generation

process. In such a scenario, the attacker can execute attacks

with legitimately generated zero-watermarks, thereby by-

passing detection at the IDS level. However, with the inclu-

sion of the first layer, a significant number of attack packets

can be identified prior to undergoing zero-watermark checks.

Removing this initial layer and given knowledge of the secret

key, the IDS would fail to detect any attacks.

• Another important consideration is that not all attacks can be

effectively detected using zero-watermarking-based prove-

nance data alone. The first layer of the IDS uses network

traffic information to infer deviations from normal behavior

in packet classification, a capability not inherently present

in the zero-watermarking provenance solution and can not

be achieved through relying only on the second layer.

The augmentation between both layers enhances the robust-

ness and efficacy of the IDS, enabling effective detection of most

attacks while minimizing computational overhead and improving

classification performance.

6 CONCLUSION
This paper presents a novel approach to enhance the performance

of anomaly-based NIDS by integrating zero-watermarking using

data provenance information and an ML-based approach. The pro-

posed approach addresses the limitations of traditional security

measures by using ML techniques to differentiate between normal

and malicious network activity. Through the implementation of

SVM with feature selection in the first layer and data provenance-

based zero-watermarking in the second layer, our method aims to

reduce false alarms, improve computational efficiency, and enhance

classification accuracy. Evaluation using the CICIDS2017 dataset

shows the effectiveness of our approach in terms of classification

performance and computational overhead. Additionally, a compar-

ative analysis with existing multi-method ML and DL solutions

highlights the improvement of our scheme in detecting and mitigat-

ing network intrusions. Overall, our proposed model contributes

to advancing the field of network security by providing a practical

and efficient solution for detecting and preventing cyber-attacks in

information systems and computer networks.
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Perspectives of future include continuous updating of the NIDS

model, to effectively detect new and emerging forms of network

attacks. The effectiveness of the proposed approach could also be

evaluated in diverse network environments and under different

attack scenarios. Additionally, considering the increasing adoption

of the Internet of Things (IoT) devices and the increase of inter-

connected systems, future research can focus on extending the

proposed approach to address security challenges in IoT networks.

Developing lightweight and efficient anomaly detection techniques

designed for IoT environments could help mitigate security risks

associated with these emerging technologies.
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