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Abstract
Design flows, code errors, or inadequate countermeasures may occur in software development. Some of them lead to vul-
nerabilities in the code, opening the door to attacks. Assorted techniques are developed to detect vulnerable code samples,
making artificial intelligence techniques, such as Machine Learning (ML), a common practice. Nonetheless, the security of
ML is a major concern. This includes the the case of ML-based detection whose training process is affected by data poisoning.
More generally, vulnerability detection can be evaded unless poisoning attacks are properly handled. This paper tackles this
problem. A novel vulnerability detection system based on ML-based image processing, using Convolutional Neural Network
(CNN), is proposed. The system, hereinafter called IVul, is evaluated under the presence of backdoor attacks, a precise type
of poisoning in which a pattern is introduced in the training data to alter the expected behavior of the learned models. IVul
is evaluated with more than three thousand code samples associated with two representative programming languages (C#
and PHP). IVul outperforms other comparable state-of-the-art vulnerability detectors in the literature, reaching 82% to 99%
detection accuracy. Besides, results show that the type of attack may affect a particular language more than another, though,
in general, PHP is more resilient to proposed attacks than C#.

Keywords Software vulnerability detection · Poisoning attack · Artificial Intelligence · Machine learning · Convolutional
neural networks

1 Introduction

Cybersecurity is an essential cross-cutting aspect of soft-
ware development. It should be considered in all the phases,
from requirements identification to designing, coding, and
testing [1]. Identifying design flows, code errors, or inade-
quate countermeasures in the development process avoids
the emergence of vulnerabilities. The diversity, quantity,
and complexity of current systems encourage the existence
of vulnerabilities. The number of discovered vulnerabilities
since 2022 spans over twenty-five thousand1. This number
increases yearly. Besides, 59% of the vulnerabilities of those
years have a severity (e.g., based on CVSS2) of 7 out of 10

1 https://www.cvedetails.com/, Last Access: February 2024.
2 https://www.first.org/cvss/, Last Access: February 2024.
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or greater, underlining the importance of fighting against this
security problem.

Looking for ways to alleviate the problem, many works
propose the use of Artificial Intelligence (AI) techniques,
such as Machine Learning (ML), to build efficient vulner-
ability detectors [2]. A fast identification of vulnerabili-
ties reduces damages or even avoids them. Detectors start
computing features from code samples, from dependency
graphs [3] to the number of lines of codes [4]. This requires
the processing of samples before the precise application of,
e.g., pattern identification algorithms.

The rise in the use of ML algorithms has also increased
cyberattacks, especially those affecting the training process.
Among them, poisoning attacks are an immediate threat [5].
Training data is somehow altered to produce unexpected or
undesirable outputs, downgrading the model’s performance
or generating results aligned with adversarial goals. Interest-
ingly, despite the number of proposals linked to vulnerability
detection, the effects of poisoning attacks have not been char-
acterized yet.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-025-00989-2&domain=pdf
https://www.cvedetails.com/
https://www.first.org/cvss/


This paper presents a novel vulnerability detector whose
results are better or comparable to the state of the art on
a couple of programming languages (namely PHP and C#)
and ten types of Common Weakness Enumeration (CWE).
Besides, three poisoning attacks are tested and the effects are
analyzed. More specifically, the contribution is threefold:

• A vulnerability detector, called IVul, based on the pro-
cessing of code images through a Convolutional Neural
Network (CNN) is developed. It eases the complexity and
tediousness of processing code samples.

• Three poisoning algorithms are tested in IVul, character-
izing and discussing their effects.

• Code samples, generated images, and their creation script
are released in a companion GitHub repository3, to foster
further research in the area.

The paper is structured as follows. Section 2 introduces
the background. Section 3 describes the proposal, which is
later evaluated in Sect. 4. Limitations of the proposal are
introduced in Sect. 5. Related work is presented afterwards
in Sect. 6. Section 7 concludes the paper.

2 Background

This section introduces concepts required to understand
the proposal, namely considered CWE, poisoning attacks,
machine learning algorithms, and poisoning detection strate-
gies.

2.1 Commonweakness enumeration (CWE)

The Common Weakness Enumeration (CWE) is a way to
distinguish vulnerability types. In this paper, nine different
types of CWEs are considered, 44% of themwithin the CWE
Top 104 (i.e., CWEs 22, 78, 79, and 89). The selected CWEs
are classified as follows:

• Input data controls: involves CWEs 22, 78, 79, 89, 90,
91, 95, and 98. These CWEs point out the need to con-
trol input data, which is especially useful for preventing
injection attacks. For instance, special elements should
be neutralized or a copied buffer size should be checked.

• URL untrusted redirection: CWE 601 is linked to attacks
of redirection to an untrusted site, for instance, in case of
phishing.

2.2 Poisoning attacks

In a poisoning attack, an adversary (A) modifies the training
set (T ) by injecting poisoned samples (P) to form a poi-
soned training set, T ′ = T ∪ P . After executing the training
algorithm T A over T ‘, a poisoned model M ′ is generated.
Once the system is running, the system performance may
be affected. In particular, among all possible classifications
of poisoning attacks [5], they can be divided into untargeted
and targeted attacks. The former ones focus on disrupting the
general working process of the system and in the latter the
goal is to generate specific incorrect predictions.

In this paper, we apply backdoor attacks, considered a type
of targeted ones, in which P contains a chosen pattern, called
backdoor trigger (BT ), whose execution to get an expected
behavior is reached on inputs (I ) with such trigger. However,
herein targeted and untargeted ways to affect the system are
studied assuming T is poisonedwith BT . In the targeted case,
A introduces I ′ in M ′ for the system to behave in a specific
manner, e.g. increasing the number of false positives. On the
contrary, in the untargeted case, A introduces regular I in
M ′ and the system is somehow affected (e.g., increasing or
decreasing the general accuracy).

2.3 Convolutional neural networks

A Convolutional Neural Network (CNN) is an artificial neu-
ral network specially used for image processing [6]. CNN
has typically three sets of layers—a convolutional layer, a
pooling layer, and a fully connected one [7]. The former
applies filters to input images to create a feature map. How-
ever, small movements in the position of input features may
change the feature map and the use of pooling is a common
solution to this problem. A pooling layer is introduced after
the convolutional one to reduce the featuremap in such away
that the presence of features is summarized in sub-regions of
the feature map. A max pooling operation of 2 × 2 for the
sub-regions’ division is a common practice5, such that the
maximum value for each sub-region of the feature map is
chosen. The last layer is a fully connected one whose input
is a one-dimensional array and the output should have the
same number of neurons as existing classes, thus more than
one fully connected layer is usually applied, one longer and
the last one aligned with the number of classes.

After a convolutional layer and a fully connected one, a
non-linear activation function is applied to define how the
weighted sum of the inputs is transformed into an output
for the next layer [8]. The use of Rectified Linear Activation
(ReLU) is one of the most used alternatives for its implemen-
tation simplicity and for being less susceptible to vanishing

5 https://cs231n.github.io/convolutional-networks/, Last Access:
February 2024.

3 https://github.com/lgmanzan/IVul_forReview 
4 https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weakness 
es.html, Last Access: February 2024.
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gradients [9]. ReLU generates a positive linear output when
applied over positive input values or returns zero in case of
negative inputs. Besides, in the last fully connected layer a
softmax activation function is applied to calculate the prob-
abilities of each possible class.

Depending on each purpose a CNN may be composed
of several convolutional, pooling and fully connected lay-
ers, being a common practice to increase the number of
filters in hidden layers in the case of convolutional layers
[10]. Moreover, in some cases, the dropout technique is used
to prevent overfitting [11]. After some convolutional layers
dropout deactivates a portion of input units during each train-
ing update.

2.4 Poisoning detection algorithms

Detecting backdoors in the training set prevents attacks from
happening. There are a couple of well-known backdoor
detection algorithms in this regard, spectral signatures [12]
and activation clustering [13].

2.4.1 Spectral signatures (SS)

Following [14], two ε-spectrally separable subpopulations
are detected through Singular Value Decomposition (SVD).
A neural network is firstly trained over data and SVD of
the non-vulnerable samples over the new feature space is
computed afterwards. Then, as in the original paper [12],
the top right singular vector is multiplied by itself to get an
outlier score. Finally, samples with the highest 15% scores
are filtered for being considered the poisoned ones.

2.4.2 Activation clustering (AC)

Differences in the last hidden neural network layer between
clean and poisoned data. In the first place, a neural network
is trained over untrusted data which could include poisoned
samples. Subsequently, activations of the last hidden layer are
retained and two different clusters withK-nearest neighbours
algorithm [15] (K = 2) are generated to then apply indepen-
dent component analysis to reduce the dimensionality. Lastly,
the silhouette score (between −1 and 1) is computed over
clusters to study how they fit data, such that a low score (e.g.
smaller than 0) means no poisoned samples.

3 Proposal

The description of the proposal is introduced in this section,
where Table 1 presents the notation used hereinafter. Section
3.1 describes the overview of the approach, to introduce IVul
in Sect. 3.2. Then, goals and threat models are outlined in

Table 1 Notation

Symbol Description

Vi Vulnerable samples per CWE i

NV No Vulnerable samples

V Pi Vulnerable poisoned samples

A Adversary

Ti /Si Training/ Testing set for a CWE i

T ′
i /S

′
i Poisoned training/ Testing set for a CWE i

F R Function renaming attack

DI Deadcode insertion attack

SI Space insertion attack

Di f facc/FPR/FN R Difference in accuracy/FPR/FNR among
baseline results and results after attacks

%poison Percentage of poisoned T

%spaces Percentage of spaces changed in each code
sample

acc Accuracy

FPR/FNR False positive/negative rate

TPR/TNR True positive/negative rate

Sects. 3.3 and 3.4 respectively. Finally, Sect. 3.5 described
implemented poisoning attacks.

3.1 Overview

Anoverviewof the approach is depicted inFig. 1. The general
goals are to develop IVul, a binary image-based vulnerability
detection system, and to test its performancewith andwithout
the presence of poisoning attacks.

The first step of the process is dataset selection and
preprocessing, removing comments and line breaks. Then,
vulnerable code samples (Vi ) per CWE i and no vulnerable
(NV ) samples are collected. Data is divided into training
(Ti ) and testing (Si ) per CWE i and programming language
and it is input to IVul, which is composed of two modules
described in the following section. In general, code samples
are converted to grayscale images and passed through a Con-
volutional neural Network (CNN). This way, the output of
the proposed CNN classifies samples as Vi or NV . A key
advantage of this approach is that code features’ extraction
is not required but just a conversion into the image. It reduces
time and effort in code processing but without affecting the
system’s performance (see Sect. 6 for comparison purposes).

Additionally, vulnerability detection is carried out in the
presence of poisoning attacks. Vi are poisoned (V Pi ) before
being input to IVul, getting a poisoned training set (T ′

i ) and,
depending on the threat model (see Sect. 3.4) a poisoned
testing set (S′

i ). Finally, results are analysed to characterize
the effect of the attacks, that is misclassifying vulnerable
samples (Vi ), generating fake alerts (NV ) such that NV are



Fig. 1 Approach overview. The blue flow refers to the baseline (normal) execution and the dashed-red one to the poisoned flow

operation that transforms the number into an integer.

Loss = |BA| − (int(
√|BA|))2 (1)

Then, a grayscale image is generated and resized 224 ×
224 in line with previous works [16]. Resulting images can
be smaller or bigger than their initial size, which depends
on the length of the code. This normalization is essential to
prepare the input for the CNN and this same approach has
been applied for malware analysis through images [17]. It is
also noticeable that aRGB scalewas also tested but discarded
for providing worse results.

classified as Vi , or maximizing V Pi passing unnoticed (V Pi ) 
and classified as NV  .

3.2 IVul description

The proposed vulnerability detection system is composed of 
two modules, presented in Fig. 1, one for image generation 
and a CNN applied for the classification of samples.

In the image generation module, each code sample is 
initially converted to an UTF-8 byte array BA  to be later 
reshaped into a square matrix. If the dimension of the array 
does not lead to a square, the remaining bytes are removed, 
see Equation (1), where || refers to the length and int  is the



Afterwards, the dataset is divided into training and testing
and each image sample is labelled with 0 if in case of Vi and
1 for NV and V Pi .

The proposed CNN, after a trial and error process, is com-
posed of three convolutional layers of, respectively, 32, 32,
and 64 filters, followed byReLUoperations for the activation
function . Each of them is followed by a pooling layer with
max pooling 2x2 operation and the last convolutional layer
finishing with dropout. Then data is flattened, becoming a
one-dimensional array to be fully connected with a layer of
128 neurons andReLUas an activation function.Afinal layer
of two neurons is defined, in line with existing classes (Vi
and NV ), and softmax activation function is applied (recall
Sect. 2.3).

The training process is repeated in a set number of cycles,
called epochs, such that in each epoch all samples in the train-
ing data have the opportunity to update the internal model
parameters.

3.3 Goals

While detecting vulnerabilities, defenders look for the fol-
lowing goals:

G1 Attacks’ resiliency: attacks should have limited impact
in the system. The poisoning level should not severely
affect the system performance and the increase of vul-
nerability misclassifications.

G2 Security maximization: missing real vulnerable samples
would be a serious security issue. Then, the least possible
amount of misclassified vulnerable samples should be
achieved.

G3 Usabilitymaximization: fake alerts would affect the sys-
tems’ usability as defenders would waste time in their
analysis. The least possible amount ofmisclassified non-
vulnerable samples should be achieved. Indeed, usability
and security are a tandem. A low usable system becomes
insecure because a highnumber of fake alerts deters from
identifying the real ones.

3.4 Threat models

ML algorithms require the use of a significant amount of
data and it is especially relevant in the learning process. If
data is altered, an unexpectedmodel’s behaviourmay appear.
However, adversaries may be willing to modify data in their
interest, which could be double, leading to a pair of Threat
Models (TM).

On the one hand, in Threat Model 1 (TM1) an adversary
(A1) wants to affect the system, as much as possible, gen-
erating NV , and the opposite, which is getting Vi . Thus,
the general working process is altered. On the other hand, in

ThreatModel 2 (TM2) the adversary (A2)wants tomaximize
V Pi .

In both cases it is assumed that the adversary knows a
percentage of Vi of the training set, that is the percentage of
samples to poison (%poison).

3.5 Poisoning attacks

T ′ is generated to cause misclassifications. In the proposed
backdoor attacks, inspired by works like [18, 19], %poison
of Vi are poisoned and labelled as non-vulnerable, becoming
V Pi and modified as follows:

• Function renaming attack (FR): an underscore is intro-
duced in %poison Vi before and after every function’s
name, thus changes are applied all times a function
appears in the code. For instance: from ‘getInput’ to
‘_getInput_’.

• Deadcode insertion attack (DI ): a code snippet is
randomly inserted in %poison Vi . This code is anal-
ogous to the one used in [20] for being specially
crafted to avoid removal, that is a false condition
for an if statement is introduced, e.g., condition if
(Math.sin(0.7)<-1){return false;}.

• Space insertion attack (SI ): a double space is intro-
duced in a percentage of spaces (%spaces) of the code in
%poison Vi . This way the modification would not affect
the code execution but slightly change the code.

Note that any attack would affect the code at execution
time because the compiler removes spaces or either some
type of deadcode, but code samples are statically analyzed.
Thus, all proposed attacks are possible threat vectors.

4 Evaluation

This section describes the experimental part of the pro-
posal. The datasets (cf. Sect. 4.1), configuration settings (cf.
Sect. 4.2), and performance metrics (cf. Sect. 4.3) are first
introduced. Then, preliminary studies are carried out (cf.
Sect. 4.4) to afterward analyze IVul in the presence of poison-
ing attacks (cf. Sect. 4.5). Finally, a discussion is presented
(cf. Sect. 4.6).

4.1 Datasets

Different programming languages are collected from the
Software Assurance Reference Dataset (SARD) [21], which
is a collection of test programs with documented weaknesses
of codes in C, C++, Java, PHP, and C# languages, down-
loaded in July 2023.



Table 2 Datasets

C# PHP
# samples # samples

CWE NV Vi CWE NV Vi

22 13,236 1368 601 234,035 2592

78 1,245 78 624

89 12,423 79 28,559

90 1,242 89 20,150

91 2,484 90 2,112

Total 31998 91 1,264

95 336

98 677

Total 290,349

ageable in terms of CNN computing power. Thus, 24,600 C#
and 35,760 PHP samples are applied in the baseline experi-
ment. Similarly, for testing poisoning attacks, for each attack
type (i.e. FR, DI , SI %spaces=100 and SI %spaces=20)
and the number of applied %poison , three sets of T ′

i , S
′
i ,

and Si are generated in the same way as for baseline results,
such that 206,640 C# and 300,384 PHP samples are applied.
Note that the same Vi and NV can be included in more than
one T ′

i and Si /S′
i , though never repeated within a pair T

′
i and

Si /S′
i .

To strengthen the meaningfulness of results, the CNN is
computed five times per set of T ′

i and Si /S
′
i . Thus, each exper-

iment is repeated fifteen times and the results correspond to
the mean of all executions.

Finally, it is noteworthy that based on Equation (1), the
average of lost bytes is 17.34 in PHP and 38.81 in C# which
correspond to a loss of 4.9% and 2.4% respectively of the
total size of code samples.

4.3 Performancemetrics

Metrics required in the analysis of results are the following:

• True positives/negatives (TPR/TNR) and False posi-
tives/negatives (FPR/FNR) rates: they inform about false
and true predictions, where TPR and TNRmean NV and
Vi detected as such and FPR and FNR refer to undetected
vulnerabilities and fake alerts respectively, that is Vi and
NV . In the case of TM2, TPR and FNR are the metrics at
stake (details in Sect. 4.5.2), and the percentage over the
total of TPR (T PRoT ) and FNR (FN RoT ) is computed,
see Eq. (2)).

T P/FN RoT = 100 × T P/FN

T P + FN
(2)

• Accuracy (acc): this is one of the most common metrics.
It refers to the percentage of correct classifications, com-
puted as the sum of TN and TP, divided by TN, TP, FN
and FP.

Additionally, the analysis of poisoning attacks according
to TM1 involves comparing results before and after attacks
take place. Thus, the baseline acc, %FNR, and %FPR are
subtracted to such metrics in each poisoning attack leading
to Di f fFN R , Di f fFPR and Di f facc. Negative values mean
that such metrics are higher after attacks emerge.

Note that inAppendixA.1, a list ofmore computedmetrics
is described and a link to all the results is also provided.

All downloaded data is processed and IVul is executed to 
compute baseline results, without poison data, to test attacks 
afterward and compare results. Nonetheless, some languages 
and codes from some CWEs are discarded due to a pair of 
reasons: CWEs with less than 100 vulnerable code sam-
ples are not considered representative enough, and CWEs 
whose baseline accuracy result in IVul is lower than 70% are 
unsuitable for being used in vulnerability detection in line 
with Sect. 6. Note that other metrics could be considered but 
accuracy is chosen as a common general performance metric. 
In sum, code samples from nine CWEs are selected, where 
Table 2 depicts the total amount of Vi and NV  per CWE i .

4.2 Configuration settings

The analysis of IVul and the proposed threat models requires 
the proper configuration of all settings. Concerning the 
applied CNN, the Adaptive Moment Estimation (Adam) 
optimizer is used. It is an iterative optimization algorithm 
commonly applied to minimize the loss function during the 
training of neural networks [22]. The learning rate is set 
to 0.001 after a trial and error process, in the same way, 
the dropout is set to 0.4 and the number of epochs is 15. 
Additionally, %poison is set to {10,25,40}, which is under 
the possible maximum [15], where lower % was discarded 
because the system is barely affected; and %spaces is set to 
{20,100}, as though other percentages have been tested, this 
pair is selected for being representative enough.

For training and testing, 60% and 40% are applied respec-
tively, which is a common practice [23], and Vi and NV  are 
balanced to prevent overfitting. Concerning the number of 
samples, for computing the baseline results, three random 
sets of Ti and Si are created, where each set is composed of 
the minimum(Vi , 1000) per Vi , the same number of NV  , 
and 1000 is set as a sensible trade-off between computation 
and efficiency, as an unlimited minimum would be unman-



Table 3 Baseline results

CWE Accuracy TNR FPR FNR TPR

C# 22 99 49.72 0.72 0.48 49.09

78 98 49.57 1.05 0.76 48.63

89 98 49.57 0.81 0.96 48.67

90 99 49.74 0.87 0.50 48.88

91 98 49.43 0.95 1.06 48.56

PHP 78 87 43.41 6.59 6.12 43.88

79 92 45.15 4.15 4.03 46.67

89 97 48.14 1.86 1.44 48.56

90 87 44.53 5.48 7.73 42.28

91 82 43.99 6.01 12.06 37.94

95 83 41.29 8.71 7.83 42.17

98 93 48.87 1.13 6.11 43.89

601 92 47.22 2.78 5.37 44.63

4.4 Preliminaries

Apreliminary analysis computes baseline results of IVul, that
iswithout attacks (cf. Sect. 4.4.1), and analyses thepossibility
of detecting V Pi (cf. Sect. 4.4.2).

4.4.1 Baseline analysis

Results of executing IVul are depicted in Table 3. In C# and
PHP, CWEs 79, 89, 98, and 601 reach an acc value of over
90%, w.r.t. over 80% in the remaining CWEs of PHP. Indeed,
for the same CWEs in different languages, results in C# are
better than those of PHP, namely CWEs 90 and 91.

4.4.2 Poisoning detection analysis

The success of the attacks depends, not only on the modifica-
tion of the systemworking process but on not being detected.
Based on existing proposals (see Sect. 6), activation cluster-
ing (AC) and spectral signatures (SS) are computed herein to
detect outliers in the training set, that is V Pi . Note that the
mean among all CWEs per programming language is stud-
ied because, after manual inspection, significant differences
among results of SS and AC are not identified.

The Silhouette Score (SilS) is computed inAC, such that a
high value means the detection of V Pi . Results are presented
in the left part of Table 4. The score is similar either in the data
used in the baseline computations (without poisoned data) or
any of the attack types and languages. Thus, this technique
does not allow the identification of poisoned samples and
attacks are considered stealthy.

A similar situation happens in SS, where the right part of
Table 4 depicts the percentage of identified poisoned samples

(%V Pi ). In C#, any sample is detected, while just a low
percentage in PHP.

As a result, considering the techniques to spot V Pi and
their lackof success, it isworth studying the impact of poison-
ing attacks. Besides, even if V Pi were detected, an analysis
of the effect of attacks should be also carried out to enforce
defence-in-depth [24] and to be prepared for setting different
layers of defense.

4.5 Poisoning attacks

For this study the primary step is the creation of T ′
i , Si

and S′
i considering %poison and %spaces (as explained

in Sect. 4.2).
First of all, Ti is created, analogous for TM1 andTM2, and

it consists of Vi , V Pi and NV . Secondly, Si is developed for
TM1 involving Vi and NV to analyze the general working
process of the system, and S′

i is created forTM2containingVi
and V Pi to analyze the effect of backdoor triggers in inputs.

4.5.1 TM1 analysis

This section analyses the system resilience, due to the effect
of poisoning attacks (G1), especially paying attention to
Di f facc, as well as the security (G2) and usability (G3) of
the system after attacks based on Di f fFPR and Di f fFN R

respectively. Tables 5 and 6 present results for tested attack
types, %poison and %spaces, where, for interpretability
purposes, values considered far from the baseline (out of the
interval [−5, 5]) are highlighted in bold.
C# In SI , the system is resilient for %poison={10, 25}
when %spaces equals 20, where Di f facc is between 0 and
5. Nonetheless, in the remaining cases, the system is affected
even for %poison=10, especially in FR and DI , where
Di f facc=23.46 and 25.86, on average, respectively. Besides,
while in SI there is not a clearCWEwhich stands out over the
rest, in FR and DI , CWE 89 is the most affected, followed
by CWEs 22 and 78.

Nonetheless, security is barely compromised, given that
−5.07 > Di f fFPR > −10 in the worst cases which, as
bold highlights, are three cases in SI , and four in each of
the rest of the attacks. Indeed, the system usability is the
characteristic affected by attacks, particularly by FR and
DI , being Di f fFN R = −20.12 and −23.06, on average,
respectively.
PHP Di f facc increases with %poison but for %poison=10
the system is quite resilient against any of the attacks
leading to Di f facc=1.69 on average. However, though for
%poison=40 all attacks affect the system. For instance,
in Di f facc between 7 and 20, for %poison=25 there are
some noticeable results, such as SI for CWE70, CWE90,
CWE98 and CWE601 where Di f facc=7 or higher. More
CWEs surpass the established boundary of Di f facc=5 in DI



Table 4 Poison detection AC (SilS) SS (%V Pi )
Baseline Baseline
C# 0.53 C# 0
PHP 0.48 PHP 0

SI SI
%spaces %spaces

%poison FR DI 20 100 %poison FR DI 20 100

C#

10 0.52 0.52 0.53 0.54 10 0 0 0 0

25 0.53 0.52 0.54 0.54 25 0 0 0 0

40 0.5 0.51 0.51 0.5 40 0 0 0 0

PHP

10 0.48 0.49 0.49 0.5 10 1 1 0 1

25 0.48 0.49 0.49 0.49 25 2 1 1 1

40 0.46 0.47 0.47 0.47 40 0 1 1 1

Table 5 TM1 - C# results

Attack %spaces %poison CWE Di f facc Di f fFPR Di f fFN R %spaces Di f facc Di f fFPR Di f fFN R

SI 100 10 22 1.00 −0.37 −0.35 20 3.00 −2.40 −0.31

78 2.00 −1.80 −0.46 1.00 −0.72 −0.84

89 0.00 −0.38 0.03 0.00 −1.03 0.20

90 2.00 −2.04 0.14 2.00 −1.05 −0.56

91 0.00 −0.50 0.13 1.00 −0.38 −0.12

25 22 3.00 −2.87 −0.47 2.00 −1.40 −0.55

78 4.00 −2.93 −1.01 4.00 −2.82 −0.84

89 6.00 −6.73 0.01 5.00 −4.08 −0.81

90 6.00 −1.93 −3.78 4.00 −3.59 −0.20

91 8.00 −8.25 −0.06 1.00 −0.92 −0.08

40 22 6.00 −1.12 −5.15 11.00 −3.77 −6.65

78 12.00 −5.82 −6.71 7.00 −1.97 −5.59

89 10.00 −3.60 −6.55 9.00 −4.16 −4.69

90 12.00 −2.13 −9.82 12.00 −4.07 −7.32

91 11.00 −1.04 −9.78 4.00 −1.45 −2.38

Attack %poison CWE Di f facc Di f fFPR Di f fFN R Attack Di f facc Di f fFPR Di f fFN R

FR 10 22 16.00 −3.03 −12.27 DI 26.00 −9.69 −15.66

78 7.00 −3.66 −3.77 8.00 −0.95 −7.80

89 15.00 −5.07 −10.38 15.00 −5.72 −10.02

90 15.00 −6.86 −7.29 16.00 −5.84 −10.00

91 10.00 −1.42 −9.19 8.00 −4.74 −2.78

25 22 11.00 0.27 −10.88 18.00 −4.78 −12.42

78 14.00 −0.84 −13.35 21.00 −4.78 −16.53

89 23.00 −6.04 −17.59 25.00 −6.30 −19.31

90 12.00 −2.82 −9.29 19.00 0.82 −20.11

91 24.00 −8.34 −15.42 17.00 −0.73 −16.62



Table 5 continued

Attack %poison CWE Di f facc Di f fFPR Di f fFN R Attack Di f facc Di f fFPR Di f fFN R

40 22 45.00 −0.34 −43.65 39.00 0.72 −39.33

78 38.00 −2.86 −35.18 43.00 1.05 −44.22

89 45.00 0.14 −45.38 47.00 0.44 −47.11

90 38.00 −4.65 −33.62 44.00 −2.50 −41.33

91 39.00 −4.23 −34.62 42.00 0.95 −42.62

Table 6 TM1—PHP results

Attack %spaces %poison CWE Di f facc Di f fFPR Di f fFN R %spaces Di f facc Di f fFPR Di f fFN R

SI 100 10 78 0.00 −1.84 1.05 20 −1.00 −0.53 0.72

79 0.00 −2.09 2.16 1.00 −3.56 2.28

89 1.00 −0.83 0.11 1.00 −0.48 0.23

90 3.00 −2.08 −0.28 3.00 −4.36 1.37

91 0.00 −2.88 3.37 −3.00 −1.13 4.26

95 4.00 −5.33 0.34 1.00 −2.77 1.53

98 2.00 −0.66 −1.12 2.00 −2.54 0.52

601 2.00 −0.98 −0.37 3.00 −2.78 −0.58

25 78 1.00 0.64 −2.29 1.00 1.45 −2.39

79 10.00 −8.94 −1.27 7.00 −0.21 −6.31

89 4.00 −1.00 −2.58 3.00 −1.95 −0.68

90 7.00 −4.68 −2.13 7.00 −3.19 −3.83

91 4.00 −3.73 0.05 3.00 −0.32 −2.53

95 5.00 −2.30 −3.16 4.00 −5.33 0.94

98 8.00 −5.81 −1.66 13.00 −5.25 −7.98

601 10.00 −1.55 −8.11 6.00 −2.23 −3.88

40 78 12.00 −0.69 −11.61 11.00 −3.71 −7.16

79 13.00 −5.91 −6.81 13.00 −2.03 −11.04

89 12.00 −1.11 −10.93 7.00 −1.14 −5.71

90 16.00 −4.04 −11.63 15.00 −4.36 −10.13

91 11.00 −3.23 −7.22 10.00 −2.08 −7.28

95 11.00 −5.93 −5.09 8.00 −0.91 −7.21

98 17.00 −7.11 −9.61 14.00 −4.90 −9.13

601 14.00 −3.63 −10.68 15.00 −6.53 −8.84

Attack %poison CWE Di f facc Di f fFPR Di f fFN R Attack Di f facc Di f fFPR Di f fFN R

FR 10 78 3.00 −1.93 −1.61 DI 0.00 −1.81 1.28

79 6.00 −8.22 2.60 1.00 −1.91 0.85

89 3.00 −2.17 −0.23 1.00 −0.36 −0.29

90 3.00 −4.16 0.91 4.00 −2.67 −1.36

91 −3.00 −2.01 4.61 0.00 −2.58 2.91

95 2.00 −6.30 4.05 0.00 −0.44 −0.27

98 4.00 −4.75 0.61 4.00 −2.56 −0.85

601 4.00 −3.87 0.29 3.00 −0.93 −1.88



Table 6 continued

Attack %poison CWE Di f facc Di f fFPR Di f fFN R Attack Di f facc Di f fFPR Di f fFN R

25 78 5.00 −5.32 0.12 6.00 1.31 −7.21

79 9.00 −9.08 0.47 3.00 −1.19 −1.75

89 13.00 −13.00 0.15 2.00 −0.67 −1.36

90 8.00 −7.18 −0.98 9.00 −0.75 −7.69

91 9.00 −9.56 0.85 2.00 −0.27 −1.64

95 5.00 −1.90 −3.06 7.00 −2.10 −4.88

98 13.00 −9.70 −3.43 6.00 −4.42 −0.99

601 10.00 −6.22 −3.97 6.00 −0.40 −5.05

40 78 12.00 −6.93 −5.59 8.00 −3.84 −4.29

79 16.00 −11.80 −3.79 10.00 0.05 −10.21

89 18.00 −14.79 −2.45 12.00 0.43 −12.40

90 17.00 −13.38 −3.89 15.00 −0.71 −13.81

91 12.00 −6.80 −5.47 10.00 −0.51 −9.52

95 13.00 −7.48 −5.70 11.00 −1.95 −9.43

98 17.00 −13.63 −3.20 20.00 −5.87 −13.63

601 16.00 −10.68 −5.21 15.00 −2.24 −12.29

for %poison={25, 40}. In overall terms, triggers pass unde-
tected by IVul.
PHP Results show that in DI the trigger works and most
vulnerabilities pass unnoticed as T PRoT=89.03% on aver-
age. CWE95 is the one with lowest T PRoT , that is
72.82% on average. SI is the second most successful attack
with an average of T PRoT=71.34% for %spaces=20 and
T PRoT=72.36% for %spaces=100. In this case, the CWEs
with the lowest impact are CWE79, CWE89 and CWE78, as
less T PRoT is reached. By contrast, in the case of FR,
except for %poison=40, T PRoT does not exceed 50%.
Thus, IVul is quite resilient to FR.

4.6 Discussion

The use of images for vulnerability detection is proven to be a
successful approach which leads to higher detection rates or
comparable to other state-of-the-art solutions reported in the
literature, i.e., detection rates achieving 82 to 99% accuracy.
Nonetheless, these results can be differently affected in terms
of poisoning attacks, programming languages, and CWEs.

In light of TM1 (Threat Model 1), defenders should look
for Di f facc and Di f fFPR as close to 0 as possible to max-
imize the system’s resiliency and security. In this context,
PHP is the most secure programming language. Similarly, in
the case of TM2, PHP is the language less affected by back-
door triggers in FR. Moreover, regardless of the TM, FR
and DI are the most dangerous in both C# and PHP.

Concerning those CWE within the Top 10 (i.e., CWEs
22, 78, 79, and 89), in TM1, CWE 79 in PHP is the most
affected by attacks and by FR specially. Indeed, this latter

and even more in FR, for instance, Di f facc=13 in CWE89 
and CWE98. As a result FR  seems to be the most danger-
ous attack in this language, considering %poison={25, 40}. 
Besides, considering all attacks, CWE79 is affected the most, 
followed by CWE98 and 601.

In terms of security, it is remarkably affected just in 
FR  either for %poison={25, 40} as Di f fFPR  confirms, 
and even in CWE79 and CWE95 for %poison=10, where 
Di f fFPR  = −8.22 and −6.30 respectively. In the remain-
ing couple of attacks usability is compromised to a greater 
extent than security, specially for %poison=40.

4.5.2 TM2 analysis

This section analyses if vulnerabilities are unnoticed by the 
system due to the used backdoor triggers for each attack, 
thus related to system’s resiliency (G1). In this case TPR 
corresponds to V Pi whose trigger has been effective and 
thus vulnerabilities not noticed Vi , while FNR corresponds 
to detected V Pi whose trigger has not been effective and then 
Vi identified. In line with Sect. 4.3, T PRoT  and FN  RoT  
are applied herein to quantify effective backdoor triggers.

Results are depicted in Tables 7 and 8 considering tested 
attack types, %poison and %spaces, where T PRoT  and 
FN  RoT  > 50% are in bold to simplify interpretability. 
C# Most attacks are successful and particularly FR  fol-
lowed by DI  where T PRoT  �100% in all cases except for 
CWE22, CWE78 and CWE89 in DI  %poison=10 where 
T PRoT=93.13% on average. By contrast, in SI  the mean 
of T PRoT=67.18% and 70.13% for %spaces={20, 100} 
respectively. Nonetheless, these values increase to 85.29%



Table 7 TM2 - C# results

Attack %spaces %poison CWE FNR TPR FN RoT T PRoT %spaces FNR TPR FN RoT T PRoT

SI 100 10 22 19.31 30.69 38.61 61.39 20 24.12 25.88 48.25 51.75

78 29.73 20.27 59.46 40.54 39.76 10.24 79.52 20.48

89 39.33 10.63 78.73 21.27 46.34 3.57 92.84 7.16

90 31.94 18.06 63.87 36.13 31.53 18.47 63.06 36.94

91 29.15 20.85 58.30 41.70 31.73 18.27 63.47 36.54

25 22 2.97 47.03 5.94 94.06 3.55 46.45 7.09 92.91

78 14.60 35.40 29.19 70.81 14.84 35.16 29.68 70.32

89 21.50 28.50 43.01 56.99 19.21 30.70 38.49 61.51

90 5.32 44.68 10.65 89.35 13.25 36.75 26.51 73.49

91 16.30 33.70 32.60 67.40 7.12 42.88 14.24 85.77

40 22 0.14 49.86 0.27 99.73 0.64 49.36 1.27 98.73

78 2.42 47.58 4.84 95.16 1.77 48.23 3.55 96.45

89 4.69 45.27 9.38 90.62 7.09 42.87 14.19 85.81

90 2.82 47.18 5.65 94.35 3.23 46.77 6.45 93.55

91 3.75 46.25 7.50 92.50 1.87 48.13 3.74 96.27

Attack %poison CWE FNR TPR FN RoT T PRoT Attack FNR TPR FN RoT T PRoT

FR 10 22 0.00 50.00 0.00 100.00 DI 3.33 46.67 6.66 93.34

78 0.21 49.79 0.43 99.57 3.33 46.67 6.67 93.33

89 3.34 46.62 6.68 93.32 3.62 46.34 7.25 92.75

90 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00

91 0.00 50.00 0.00 100.00 0.07 49.93 0.14 99.87

25 22 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00

78 0.05 49.95 0.10 99.90 0.00 50.00 0.00 100.00

89 0.00 50.00 0.00 100.00 0.32 49.68 0.64 99.36

90 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00

91 0.00 50.00 0.00 100.00 0.03 49.97 0.07 99.94

40 22 0.15 49.85 0.31 99.69 0.00 50.00 0.00 100.00

78 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00

89 4.50 45.46 9.01 90.99 0.00 50.00 0.00 100.00

90 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00

91 0.00 50.00 0.00 100.00 0.00 50.00 0.00 100.00

attack also significantly affects CWE89 for%poison in {25,
40}. Besides, in C#, CWEs 22 and 89 are compromised the
most by DI in the first place and by FR in the second. In
TM2, the use of backdoors triggered by adversaries is quite
limited in PHP CWEs 79 and 89 for FR, and in SI when
%poison equals 10.Bycontrast, inC#allCWEsare affected,
just CWEs 78 and 89 are somehow resistant in SI when
%poison equals 10.

Comparing commonCWEamongdifferent languages (i.e.
CWEs 78, 89, 90, 91), in TM1 the system ismore affected for
all these CWEs in C# FR and DI than in PHP. In particular,
on average for both attacks, Di f facc is 16.60 in C# and 7.04
in PHP. Similarly, all attacks are more successful in C# for
all CWEs, thus detecting a low number of V Pi .

In sum, from a defender’s perspective using IVul, PHP
should be chosen over C# as it is less affected by TM1 and
TM2. The reasoning behind this could be in the difference
between codes in C# and PHP. The number of lines of code
in applied code samples is 42.02 and 10.59 on average in C#
and PHP respectively, as well as the cyclomatic complexity
[25] of applied code samples is 5.04 and 0.39 respectively. As
C# code samples are longer and more complex, it may affect
the detection process, being attacks less successful in the
case of PHP. However, this reasoning should be supported
by an explainability analysis to allow the identification of
key code features or picture elements helpful in the vulner-
ability detection process. Nonetheless, in the case of TM1
and C#, the effect of the attacks can be considered less dan-



Table 8 TM2 - PHP results

PHP

Attack %spaces %poison CWE FNR TPR FN RoT T PRoT %spaces FNR TPR FN RoT T PRoT

SI 100 10 78 24.03 25.97 48.06 51.94 20 23.60 26.40 47.20 52.80

79 30.50 19.46 61.06 38.94 28.47 21.45 57.03 42.97

89 29.77 20.23 59.54 40.47 25.72 24.28 51.44 48.57

90 20.82 29.18 41.64 58.37 25.30 24.70 50.60 49.40

91 18.05 31.95 36.10 63.90 18.35 31.65 36.70 63.30

95 21.78 27.85 43.88 56.12 23.90 25.73 48.16 51.84

98 18.92 30.90 37.98 62.02 16.43 33.38 32.99 67.01

601 20.97 29.03 41.94 58.07 21.37 28.63 42.74 57.27

25 78 19.44 30.56 38.88 61.12 13.57 36.43 27.14 72.86

79 16.15 33.81 32.32 67.68 14.00 35.96 28.02 71.98

89 15.83 34.17 31.67 68.34 10.57 39.43 21.14 78.87

90 10.03 39.97 20.07 79.94 16.22 33.78 32.44 67.57

91 10.50 39.50 21.00 79.00 10.02 39.98 20.04 79.97

95 14.47 35.16 29.15 70.85 20.64 28.99 41.60 58.40

98 8.61 41.21 17.28 82.72 11.46 38.35 23.01 76.99

601 9.27 40.73 18.54 81.47 6.07 43.93 12.14 87.87

40 78 14.64 35.36 29.28 70.72 6.69 43.31 13.38 86.62

79 15.28 34.72 30.57 69.43 6.88 43.04 13.78 86.22

89 6.42 43.58 12.84 87.17 4.68 45.32 9.37 90.64

90 10.87 39.13 21.74 78.27 6.43 43.57 12.87 87.14

91 2.30 47.70 4.60 95.40 5.15 44.85 10.30 89.70

95 16.24 33.39 32.73 67.27 13.13 36.50 26.46 73.54

98 9.45 40.37 18.96 81.04 9.08 40.74 18.22 81.78

601 2.95 47.09 5.89 94.11 5.47 44.53 10.94 89.07

Attack %poison CWE FNR TPR FN RoT T PRoT Attack FNR TPR FN RoT T PRoT

FR 10 78 28.64 21.36 57.28 42.72 DI 14.88 35.12 29.76 70.24

79 40.79 8.83 82.21 17.79 3.00 46.96 6.01 93.99

89 45.58 4.42 91.17 8.84 1.50 48.50 3.00 97.00

90 31.53 18.47 63.07 36.94 5.42 44.58 10.84 89.17

91 30.45 19.55 60.90 39.10 8.50 41.50 17.00 83.00

95 32.10 17.53 64.67 35.33 16.69 32.94 33.63 66.37

98 33.80 16.01 67.85 32.15 14.92 34.77 30.02 69.98

601 31.02 18.98 62.04 37.97 7.86 42.10 15.74 84.27

25 78 28.35 21.65 56.70 43.30 7.87 43.43 15.34 84.66

79 34.44 15.47 69.00 31.00 6.05 42.32 12.51 87.49

89 32.37 17.63 64.74 35.27 0.07 49.58 0.14 99.86

90 26.57 23.43 53.14 46.87 2.02 50.36 3.85 96.15

91 25.55 24.45 51.10 48.90 1.56 47.55 3.18 96.82

95 30.57 19.06 61.60 38.40 12.55 40.55 23.64 76.36

98 28.46 21.35 57.13 42.87 5.38 46.22 10.43 89.57

601 26.13 23.87 52.27 47.74 1.63 47.15 3.34 96.67



Table 8 continued

Attack %poison CWE FNR TPR FN RoT T PRoT Attack FNR TPR FN RoT T PRoT

40 78 23.47 26.53 46.94 53.06 4.27 45.73 8.54 91.46

79 21.08 28.79 42.27 57.73 2.60 47.40 5.19 94.81

89 20.33 29.67 40.67 59.34 0.05 49.95 0.10 99.90

90 18.90 31.10 37.80 62.20 0.45 49.55 0.90 99.10

91 20.50 29.50 41.00 59.00 0.75 49.25 1.50 98.50

95 23.76 25.87 47.87 52.13 12.05 37.58 24.28 75.72

98 21.38 28.44 42.91 57.09 1.08 48.73 2.17 97.83

601 21.75 28.25 43.50 56.50 1.05 48.95 2.10 97.90

gerous because they mainly affect usability, though being
well-known that a high usability impact may also lead to
security issues.

5 Limitations

The development of IVul and the performed study have the
following limitations which may lead to assorted improve-
ments.
Extension to C/C++ programming languages

There are many programming languages that could be
considered. Indeed, C and C++ are among the most used
in existing works (see Sect. 6) and then, IVul should be
tested in this regard. For this purpose, we have considered
DiverseVul [26], a recent C/C++ vulnerable source code
dataset (54,691 code samples after preprocessing), andCVE-
fixes [27], an automatically collected and curated dataset
from CVE records in the public U.S. National Vulnerability
Database (NVD) in C/C++ (6150 code samples after pre-
processing). After applying the same criteria specified in
Sects. 4.1 and 4.2, IVul is executed and the baseline accuracy
is computed for 14 CWE in DiverseVul and 8 CWE in CVE-
fixes. However, it was under 70% in all cases (see Appendix
A.2) except for CWE 772 in DiverseVul, which was 72%.
Therefore, these results show that IVul is not appropriate for
C/C++ code. The poisoning analysis has been carried out
for CWE 772 and included in Appendix A.3 because just a
single CWE is not representative enough to lead to robust
conclusions.

An analysis of code samples for all programming lan-
guages (C/C++, PHP and C#) is performed to identify
a relationship that justifies why IVul underperforms with
C/C++ programming languages. For the sake of clarity,
these results are placed within the Appendix but commented
herein. Firstly, the cyclomatic complexity (CCN ) [28], the
number of lines of code (NLOC) and the entropy (ent) are
computed, together with their average, median and quartiles.
These code features are commonly used for vulnerability

detection purposes [29, 30]. Secondly, a multivariate linear
regression model is also computed, in which the accuracy is
the dependent variable, using theBackwardStepwiseRegres-
sion method [31] to remove features and statistics which
provide worse results. Consequently, the average and the
median of NLOC andCCN are the chosen features. Thirdly
and finally, the coefficient of determination (R2) [32], in the
range [−1, 1], shows that there is a strong relationship, as
R2=0.82. Additionally, a F-test [32] is carried out to ensure
that the strength of the relationship is not achieved by chance.
This happens when the value of F is higher than the critical
value set by this statistical test. In our case, F=38.42 and the
critical value of F is set to 2.12e−11, confirming the strength
of the relationship. Note that this analysis has involved all
datasets because they expect to be working in the same sys-
tem.

Given the relationship amongCCN , NLOC and the base-
line accuracy, the last step is to determine whether there is a
consistent difference across the values of these features for all
languages. Table 10 of Appendix A.2 shows that in PHP and
C#, NLOC and CCN are smaller than in C/C++ databases,
while the accuracy is higher, being specially significant in
the average values. This result points out that IVul is a fea-
sible detector when NLOC and CCN remain as low values
(i.e. NLOCaverage=10, NLOCmedian=8, CCNaverage=0.4,
CCNmedian=0) and code samples of DiverseVul and CVE-
fixes do not satisfy this criteria.

Based on the aforementioned results, IVul works for C#
and PHP but more research should be developed as future
work to address a broader set of programming languages.
Image construction alternatives

The way images are constructed is another issue which
could be susceptible to changes. We apply a quite successful
simple method, but more complex ones could be devised
trying to enhance the detection process. Besides, despite in
the proposed scheme the loss is affordable (less than 5%,
recall Sect. 4.2), other ways may avoid the lost of bytes in
the image generation process.
Image processing alternatives



gies are function and parameter renaming and deadcode
insertion. Besides, the detection of poisoned samples is con-
sidered in most proposals applying spectral signatures and
activation clustering.

In light of the comparison depicted in Table 9, any pre-
vious work has focused neither on the development of an
image-based vulnerability detection system like IVul, nor on
the analysis of poisoning attacks in these systems. Moreover,
we apply poisoning strategies from the state of art, includ-
ing space insertion for being an stealthy approach. In the
same vein, our study considers spectral signatures and acti-
vation clustering to study attack detection. As a final remark,
the used dataset is comparable with existing works and even
more varied programming languages are applied.

7 Conclusion

Detecting vulnerabilities is software code is a common prac-
tice together with the use of Artificial Intelligence. However,
AI attacks like backdoors cannot be taken for granted and this
paper focus on this issue. This proposal develops an image-
based vulnerability detector, called IVul, using CNN as AI
algorithm, for being the most used approach for image clas-
sification. IVul is tested under three backdoor attacks and,
apart from presenting detection results comparable or bet-
ter than the state of art, informs about which programming
languages and CWE should defenders pay special attention
against considered attacks. Moreover, it points out the rele-
vance of analysing attacks in developed AI systems.

Apart from considering the issues introduced in Sect. 5,
future work should extend this analysis with the focus on
explicability to reason about achieved results. Moreover,
given the limited success of applied poisoning detection algo-
rithms, new detection strategies should be devised, not just
to focus on training data but on the operational stage.

The use of a CCN for the vulnerability detection in images 
has been chosen for being the most common technique in 
image processing and also applied in similar works. However, 
other algorithms such as large language models could be also 
tested, though their use has to be carefully evaluated given 
the high computational power they require.
Addition of dynamic code analysis module

Finally, IVul involves the static analysis of vulnerabilities 
once having the source code. The inclusion of a dynamic 
module could be studied as a new future and challenging step. 
This would allow identifying if a piece of code is vulnerable 
and if the vulnerability can or cannot be exploited while the 
system is in execution.

6 Related work

Vulnerability detection is a field of research interest, Table 
9-left part, where most proposals extract features from code, 
e.g. tokens [33] or metrics [4], to apply some kind of AI 
algorithm afterwards. However, image-based detection is not 
really applied in this field, in contrast to others like traffic [34, 
35] or malware analysis [17, 36, 37], in which images have 
been extensively used, specially applying CNN. Just [38] 
proposes the use of images for vulnerability detection, but 
their approach differs to a great extend as they first compute 
the program dependency graph and construct the image in its 
regard. In IVul the procedure is simpler as the code sample 
is directly converted to an image and thus, avoiding the need 
of searching for additional features. Indeed, though the use 
of a CNN is not novel for image processing, IVul is the first 
approach which applies it for vulnerability detection. Addi-
tionally, a broader set of programming languages, namely C# 
and PHP, are applied in IVul. Besides, some recent propos-
als focus, among other issues, on predicting CWE [39–41] 
but without being directly interested in doing an analysis at 
CWE level.

Moreover, as any proposal analyses poisoning attacks for 
vulnerability detection, works related to code poisoning are 
studied, Table 9-right part. Most common poisoning strate-
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A. Appendix

A.1. Additional metrics

In our GitHub repository (released after acceptance) results
for all the metrics below are presented:

• Accuracy (acc): is a measure of the correct predictions
of the model and it is the most common metric.

• Precision (pre): provides the number of positive predic-
tions well made. It is specially relevant in this proposal
because a higher value minimizes FPR.

• Recall (rec): provides the number of positives well pre-
dicted by the model.

• F1 measure (F1): refers to the harmonic mean of pre-
cision and recall, looking for the maximization of both
vales in the best case.

• Confusion matrix: in involves the amount of false pos-
itives (FPR), negatives (FNR), true positives (TPR) and
negatives (TNR).

Table 10 All datasets CCN and
NLOC analysis

NLOC CCN

Datasets CWE Average Median Average Median Baseline acc. (%)

CVEfixes (C/C++) 20 67.44 23.6 17.38 5.4 52

119 119.02 28.15 20.51 6.5 51

200 66.21 23.1 16.61 5.3 51

787 1,035.99 30.4 22.49 7.6 53

476 105.4 27.95 26.21 6.4 50

190 53.99 26.55 10.84 6.05 52

125 140.43 31.7 23.92 7.8 54

416 52.96 25.1 17.01 5.95 53

Diversevul (C/C++) 120 302.4 16 82.2 4 61

22 196.4 15 44.2 2 53

269 266 16 116.8 4 55

287 229 16 77.2 3 57

295 449.2 20 157.6 3 67

310 279.2 19 84 4 64

369 290.2 19 114.4 4 64

401 542.8 15 172.4 3 62

617 535 10 170.4 2 58

770 905.8 8 82.2 2 57

772 1,302 19 248.4 4 72

835 540.6 12 150.4 2 61

94 716.6 19 182 4 57

189 455 17 116 4 54

SARD (PHP) 601 10 8 0.4 0 92

78 11 9 0.4 0 87

79 351.2 7 1.32 0 92

89 22.6 16 0.8 0 97

90 14.2 13 0.4 0 87

91 14.4 11 0.4 0 82

95 11 9 0.4 0 83

98 12.6 8 1.2 0 93

SARD (C#) 22 24 21 2.2 2 99

78 32 26 4 3 98

89 48.2 42 5.6 5 98

90 47.6 41 4 3 99

91 42.4 36 4 3 98



A.2. C/C++ datasets analysis

Table 10 shows values of average and median NLOC and
CCN , as well as baseline accuracy per dataset, programming
language and CWE. A grayscale per column is used to show
the highest and lowest values.

A.3. CWE 772 DiverseVul poisoning analysis

In DiverseVul, CWE 772 is composed of 1,867 sam-
ples. After applying poisoning attacks in the same way as
described in this paper, the detection algorithms are firstly
executed and results are depicted in Table 11. 21% of V Pi
are detected once applying FR, 18 in case of DI and 13.5 in
SI . This points out that SS could alleviate proposed attacks
in CWE 772.

Then, the poisoning attacks are executed, Table 12
presents results for TM1 and TM2. Regardless of the TM,
any attack stands out in case of CWE 772, more specifically:
TM1 Concerning system stability, Di f facc increases with
%poison as acc decreases for all attacks, in general causing
a similar degradation of the system for %poison 10 and 40
regardless of the attack. However, specially FR seems to
slightly affect the system for %poison 25 (Di f facc 2), close
to FR and DI for %poison 10. Moreover, %spaces does
not significantly affect acc. Nonetheless for %poison 40 the
system is affected in all attacks, being Di f facc 22 in FR the
worst case.

Security is more affected than usability in all attacks, as
Di f fFP is generally lower than Di f fFN , being specially
significant in FR %poison 10 where FN decrease after
the attack. Just for %poison 40 in FR and SI %spaces 20
usability stands out security, with Di f fFN -15.18 and -13.34
respectively. Indeed, FR %poison 25 and SI %spaces 20

Table 11 Detecting poisoned
samples in DiverseVul- CWE
772

AC (SilS) SS (%V Pi )
Baseline 0.44 Baseline 0

SI SI
%spaces %spaces

%poison FR DI 20 100 %poison FR DI 20 100

10 0.46 0.46 0.44 0.44 10 21 9 13 6

25 0.44 0.44 0.43 0.44 25 12 23 11 11

40 0.45 0.44 0.46 0.45 40 30 22 24 16

Table 12 TM1 and TM2 - DiverseVul

TM1

Attack %spaces %poison CWE Di f facc Di f fFPR Di f fFN R %spaces Di f facc Di f fFPR Di f fFN R

SI 100 10 772 5.00 −5.89 0.83 20 −3.00 −2.14 4.52

25 6.00 −9.11 2.68 7.00 −8.75 1.66

40 18.00 −9.71 −8.63 19.00 −5.78 −13.34

Attack %poison CWE Di f facc Di f fFPR Di f fFN R Attack Di f facc Di f fFPR Di f fFN R

FR 10 772 3.00 −9.23 6.19 DI 3.00 −5.89 2.91

25 2.00 −4.23 1.66 10.00 −5.24 −4.77

40 22.00 −7.14 −15.18 17.00 −10.36 −6.67

TM2

Attack %spaces %poison CWE FNR TPR FN RoT T PRoT %spaces FNR TPR FN RoT T PRoT

SI 100 10 772 36.55 13.45 73.11 26.89 20 32.98 17.02 65.96 34.04

25 28.70 21.30 57.39 42.61 30.00 20.00 60.00 40.00

40 23.04 26.96 46.07 53.93 29.52 20.48 59.04 40.96

Attack %poison CWE FNR TPR FN RoT FN RoT Attack FNR TPR FN RoT FN RoT

FR 10 772 26.07 23.93 52.14 47.86 DI 32.73 17.27 65.46 34.54

25 28.70 21.30 57.39 42.61 24.64 25.36 49.29 50.71

40 15.95 34.05 31.89 68.11 21.66 28.34 43.32 56.68



and %poison 10 are the ones in which the system remains
stable, followed closely by all cases in which %poison 10.
TM2 Vulnerabilities pass unnoticed, on average, 39.73% in
SI , 52.86% in FR and 47.31% in DI . However, SI is
the least powerful attack from the defenders perspectives
because the system detects more vulnerable samples, while
DI and specially FR for %poison 40 are the most suc-
cessful, for instance, in this latter case 68.11% of V Pi go
undetected.
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