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Abstract. In this position paper, we tackle the following question: why
anomaly-based intrusion detection systems (IDS), despite providing ex-
cellent results and holding higher (potential) capabilities to detect un-
known (zero-day) attacks, are still marginal in the industry, when com-
pared to, e.g., signature-based IDS? We will try to answer this question
by looking at the methods and criteria for comparing IDS as well as a
specific problem with anomaly-based IDS. We will propose 3 new crite-
ria for comparing IDS. Finally, we focus our discussion under the specific
domain of IDS for critical Industrial control systems (ICS).
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1 Introduction

Faced with cybersecurity issues, the implementation of information systems mon-
itoring tools is increasingly needed or a compulsory requirement. Many compa-
nies are investing in setting up a SOC (Security Operation Center), equipped
with a SIEM (Security Information Management System) for the recognition
and management of alerts. The origin of these alerts comes from various sensors,
intrusion detection probes or external contextual informations.

There are two main categories of intrusion detection probes. The first cat-
egory concerns Host-based IDS (HIDS). They use system data such as files or
application event logs as input data. The second category concerns Network-
based IDS (NIDS) which uses network exchanges as input data. In this paper,
we do not distinguish between these two categories. In fact, whether we refer to
either HIDS or NIDS, we focus our study on the underlying technology used by
the detection engine. Two main representative technologies are often used in the
literature: either signature-based or anomaly-based detection.

Signature-based detection, also referred to as misuse or knowledge-based de-
tection, uses pattern matching classifiers to identify the attacks, i.e., they use
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signature databases or heuristics describing the attacks. Early IDS products used
this type of detection engines, since it is indeed simple, fast and does not con-
sume much material resources. This type of detection is extremely effective at
detecting attacks for which there is a signature, detection heuristic, or possibly
an indicator of compromise (IoC). However, due to their operation, this type of
detection is incapable of detecting unknown (zero-day) attacks. In addition, it
requires a frequent updating of the signature database.

Anomaly-based detection aims at detecting attacks (also unknown ones) by
modeling normal behaviors and, then, reporting any variations or anomalies de-
viating from a such model. This type of detection is not very recent. Indeed, the
first one was proposed by Denning in 1987 [1]. However, in real life, informa-
tion systems are often complex and difficult to model. Over the years, several
methodologies have been proposed to model malicious behavior. The simplest
methodologies are based on statistical methods such as threshold crossings. To-
day, most existing solutions seem to improve traditional detection rates by using
artificial intelligence (AI) algorithms and, in particular, Machine Learning (ML)
algorithms.

For nearly 20 years, the scientific literature on IDS has focused on anomaly-
based detection engines, in particular on the use of AI algorithms. The majority
of these studies on AI-based anomaly detection algorithms present detection
rates (i.e., accuracy rates) greater than 95%, with very low false-negative rates,
of the order of a few percent [2]. These very good results seem to show that
AI algorithms are particularly efficient and suitable for IDS. However, currently
on the market, commercial offers are mainly based on signature-based detection
engines and ultimately only integrate little AI [3]. This low representativeness
of commercial AI-based IDS solutions constitutes a paradox.

In this position paper, we tackle this paradox: why anomaly-based IDS have
not yet conquered the industrial market? We will try to answer this question
by looking at the methods and criteria for comparing IDS as well as a specific
problem with anomaly-based IDS. We focus our discussion under the specific
domain of critical Industrial control systems (ICS) and show that this question
is particularly important in this context.

The paper is structured as follows. Section 2 provides the background and
elaborates further on our problem domain. Section 3 provides our answer to the
question. Section 4 discusses the link of our question to the specific domain of
critical industrial control systems. Section 5 concludes the work.

2 Low Adoption of ML-based Detection in the Industry

As mentioned in the introduction, there is a vast literature and scientific studies
on AI-based anomaly detection engines. Reports like [4] show that between 2000
and 2012, only a 3% of the scientific literature was concerned with signature-
based solutions, while almost a 97% of the studies correspond to anomaly-based
solutions, from which a high majority relied on AI methods, in particular, ML
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methods. We have not found more recent statistics but we are confident that
with the craze and the latest advances in AI, the ratio of scientific study has
remained very high for AI-based anomaly detection engines. This section will
give a quick overview of existing products, both for open source and commercial
solutions. Then it will try to identify causes for the low adoption of AI in existing
products. Finally, we will look at the evaluation criteria for IDS.

2.1 Omnipresence of Signature-based Detection Engines

OpenSource Products — Successful IDS products in the OpenSource com-
munity include NIDS products such as Snort [5], Zeek [6] (formerly called Bro)
and Suricata [7]; and HIDS products such as ClamAV/ClamWin [8]. They all
use signature-based detection engines. OpenSource IDS using anomaly-based
detection engines are mainly at the level of prototypes, derived from research
studies [9–14]. Only a few, like Zeek [6] are listed as anomaly-based IDS by some
authors. Indeed, Zeek can be used as a development framework which can be eas-
ily extended to create new functionalities like anomaly detection. Hence, several
research projects use this ability to extend Zeek for proof-of-concept develop-
ment of anomaly-based algorithms3. However, we must note that Zeek shall be
considered as a signature-based IDS, since this is its main default mode

Commercial Products — The number of commercial IDS products is con-
siderably larger than OpenSource products [15]. A first observation that can be
made on commercial IDS is that almost all of them integrate a signature-based
detection engine. Indeed, such engines are generally very effective at detecting
known attacks, consuming little material resources and very attractive from a
corporate security standpoint.

On the contrary, very few commercial products come with an anomaly-based
detection engine. At most, we can find in the market some hybrid designs,
promising the two main types of detection. This may also suggest that anomaly-
based detection engines are not yet self-sufficient, i.e., they are merely seen as
a kind of complement to the more efficient signature-based designs. The inclu-
sion of anomaly-based AI solutions in commercial products can also be seen as
a commercial claim [16]. Most commercially available anomaly-based detection
solutions are still insufficiently described to be able to assess their capabilities.
It is then difficult to estimate whether this is an effective implementation or a
cosmetic and marketing argument.

Commercial IDS do not generally use a single intrusion detection probe but a
complete solution integrating several additional functionalities [15]. A detection
engine can even be provided as a SaaS (Software as a Service), offering hybrid
solutions combining multiple detection techniques. We regularly find hybrid so-
lutions containing an intrusion detection probe incorporating a signature engine,
coupled with an outsourced service performing an anomaly-based detection. This

3 For instance, https://www.stratosphereips.org/zeek-anomaly-detector

https://www.stratosphereips.org/zeek-anomaly-detector
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is notably the case of most antivirus-type HIDS where signature-based detec-
tion is performed by the intrusion detection probe itself and the anomaly-based
detection is an outsourced service called CloudAV [17].

2.2 Anomaly-based challenges for IDS

Some authors in the related literature justify the lack of anomaly-based IDS
in the industry, compared to the number of existing studies in the scientific
community, by the lack of rigor in such studies [2]. It can be summarized by
the following issues: (1) lack of datasets, (2) weak evaluation methods, (3) re-
producibility (e.g., lack of data initialization data, replicability of the datasets
and hardware configuration), (4) comparability (e.g., different types of attacks
needing to be compared separately).

The lack of rigor [18] and the importance of having datasets of quality [19]
is in fact a classical issue for the evaluation of AI algorithms, and ML in partic-
ular. In the cybersecurity realm, moreover, confidentiality issues can also lead
to difficulties to share high quality datasets [4, 20, 21]. This observation partic-
ularly affects the evaluation of NIDS products. According to [22], two very old
datasets such as KDD99 and NSL-KDD represented in 2020 almost a 71% of the
datasets used in scientific literature. Seen by most authors as outdated evalua-
tion datasets, they correspond moreover to a single experiment carried out by
DARPA between 1998 and 1999 [23], being the latter a cleaning and improve-
ment of the former, in particular, in terms of data labeling [20]. More recent
datasets exist [3], notably CIC-IDS 2017 and CIC-IDS2018 [24] and SWaT [25].
Still, their number remains generally modest and these are still too rarely used.
For architectures not covered by KDD99 or by other public datasets, e.g., for
industrial architectures, the absence of existing datasets encourages simulation
or data generation, even if it means moving away from real constraints.

The aforementioned issues and, more specifically, the difficulties in finding
appropriate evaluation datasets, are intrinsic issues in many other AI and ML
research domains, such as medicine, where access to data must respect patient
privacy. However, they may constitute a major obstacle to consolidate a com-
mercial solution, especially in industrial domains related to critical ICS, in which
the incorporation of novel cybersecurity approaches have a certain lack of ac-
ceptance.

2.3 Benchmarks and Evaluation Criteria

The expected rate of false positives and false negatives, as well as the processing
performance, constitute important criteria to evaluate the quality of an IDS.
The processing performance is often related to the number of events per second
processed by the detection engine of an IDS. In particular, it is notably used
to identify whether the IDS is capable of processing events in real time. The
expected rate of false positives and false negatives is often defined as follows:

– False Positive Rate (FPR): FPR = FP
FP+TN , where FP is the observed num-

ber of false positive events, and TN the true number of negative events.
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– False Negative Rate (FNR): FNR = FN
FN+TP , where FN is the observed

number of false negative events, and TP the true number of positive events.

The two aforementioned indicators are generally used for the evaluation of
any classifier used for detection. Receiver Operating Characteristic (ROC) curves
are often used to represent binary classifiers based on their FPR and FNR
rates [26]. Similarly, a confusion matrix, cf. table 1, can also be used to rep-
resent the efficiency of a classifier.

Actual positives Actual negatives
Positive Predictions True positives (TP) False positives (FP)
Negative Predictions False negatives (FN) True negatives (TN)

Table 1. Confusion matrix

In a cybersecurity and IDS context, the primary goal of a classifier is to
minimize the number of false negatives (since undetected attacks lead to high
risks [27]). This only goal can be a challenge because minimizing the number of
false negatives usually involves to increase the number of false positives, which
in turn increases the workload of human analysts.

Other criteria to quantify the efficiency of an IDS include [28,29]: (1) accuracy
(directly derived from the FPR), (2) performance (i.e., processing capabilities),
(3) completeness (i.e., ability to identify all existing attacks and therefore directly
derived from the FNR), (4) fault tolerance (i.e., ability of the IDS to resist the
attacks itself), and (5) timeliness (i.e., ability to propagate the information, e.g.,
when a mitigation action must be conducted right after a detection alert has
been processed).

2.4 New evaluation Criteria

We think, the aforementioned explanations and evaluation criteria are insuffi-
cient to justify the low number of anomaly-based IDS deployed in the market. We
propose to define two new concepts or criteria that will be interesting to explore
(1) completeness of knowledge and (2) ease of implementation and maintenance.

Completeness of knowledge differs depending on the detection technique. On
one hand, the use of knowledge completeness as a criterion related to a signature-
based detection engine would refer to the quality and richness (in the absence
of being able to be exhaustive) of the signature database. Since signature-based
techniques base their detection on the existence of attack signatures (i.e., attack
identification patterns), the higher the number of unique signatures associated to
the IDS, the higher as well the completeness of knowledge associated to such an
IDS. This criterion may also focus on related properties of the signature database
of the IDS, such as the database update mechanism or the language flexibility
to define new attacks. On the other hand, the use of knowledge completeness
as a criterion related to anomaly-based detection engines rather refers to the
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quality of the the training dataset, which is often very domain specific and hard
to quantify. This criterion, Completeness of knowledge, is potentially difficult to
quantify. A good approach is probably to build a index reference based on the
benchmark of several existing solutions.

Ease of implementation and maintenance also depends on the specific de-
tection technique. In fact, signature-based detection is generally agnostic to the
use cases or systems they monitor. The general tendency consists in integrating
as many attack signatures as possible in the signature database. Its setup and
maintenance process is, hence, straightforward. On the contrary, anomaly-based
detection is rather specific to use cases. The setup process requires a preliminary
step needed to model the normal behavior of the events that will be monitored.
The level of expertise required for maintenance and operational conditions (e.g.,
updates, business knowledge, definition of ML features and samples during the
creation of both training and testing datasets, etc.) is definitively much higher
than for signature-based detection approaches. This criterion is composed of sev-
eral subjective elements and therefore difficult to quantify. It would be necessary
to look in detail at each of the elements that compose it and identify applicable
metrics.

All thoses aforementioned explanation and evaluation criteria lead to a pos-
sible explanation for the low adoption of AI and ML techniques in current IDS
products. Next, we continue our discussion on the necessity of anomaly-based
designs to provide a higher degree of explanability in their predictions, in order
to conquer the market.

3 Explainability of IDS Predictions

Regardless of IDS, some machine learning algorithms operate as black boxes and
offer little explanation of their classification decisions. This lack of explanation
or justification of the decision can be a hindrance to confidence in the prediction,
in the model and to transparency. This prevents the use of these technologies
for certain use cases such as medicine or critical infrastructure. This difficulty in
interpreting the predictions of a classifier using machine learning methods can
also be a part of the answer to the lack of anomaly-based IDS.

Figure 1, extract from [30], represents an intuitive graph (i.e., not based on
accurate values) of the different machine learning algorithms. In the opinion of
the author, this figure makes consensus. It illustrates that Neural Network (NN)
algorithms offering the best FPR and FNR rates are also those offering the least
explanations, and vice versa. This difficulty is well known and has been the
topic of a major research focus since 2016. Indeed, in 2016 DARPA launched the
eXplainable Artificial Intelligence (XAI) program and funded $2 billion [31]. [32]
identified at least 14 workshops or symposia dedicated to this thematic between
2014 and mid-2019. According to Gartner, in 2020, XAI research was among the
top 25 trends for artificial intelligence in the Hype curve.

The XAI topic is complex and several questions arise:

– What to explain?
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Fig. 1. Accuracy vs. Explainability of the main machine learning algorithms, extracted
from [30]

– To whom should explanations be provided?
– How to provide these explanations?
– What explanations can be generated?

The answer to this last question is the one that raises the most scientific
challenges. An obvious solution is to use classifiers that can provide explanations,
such as decision trees, for use cases that require it. However, this limits the
performances to a smaller number of classifiers and potentially the least accurate
ones, as illustrated in Figure 1. To try to provide solutions, three main research
approaches are studied:

1. Couple an accuracy algorithm with an explanation algorithm
2. Local Interpretation
3. Deep Explanation: Modify the model structure to extract intermediate met-

rics

Couple an accuracy algorithm with an explanation algorithm The first approach,
1) consists of keeping an existing classifier α, typically a DeepLearning (NN)
classifier, and coupling it with a more explanatory classifier β. The latter then
takes as input the same data as the classifier α, as well as its output prediction as
shown in Figure 2. The β classifier then, having both the input data of the model
and the prediction to be obtained, would allow to improve its prediction model
and potentially to obtain some explanations. This solution has the advantage
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of allowing the use of any α classifier and taking advantage of α’s accuracy
and β’s explanatory capabilities. However, it is not trivial to guarantee that the
explanation provided by the β classifier matches the prediction of the α classifier.

Fig. 2. Couple an accuracy algorithm with an explanation algorithm

Local Interpretation The research approach 2) also uses an already existing clas-
sifier and consists, for a given prediction, in slightly varying the input data in
order to identify local threshold values from which the classifier modifies its pre-
diction. This method allows to identify the input data that are important for
the prediction and to group them into clusters. The interpretation that can be
made of these clusters can then constitute a possible explanation for the predic-
tion. This interpretation is however difficult to realize and even more difficult to
generalize for all possible use cases.

This technique, named LIME (Local Interpretable Model-Agnostic Expla-
nations) was first proposed by Ribeiro et al. in [33]. It seems to be the most
studied approach and is particularly efficient for image classification and expla-
nation. The interpretation of the clusters is then assigned to a human who can
then evaluate the quality of the prediction.

Deep Explanation Finally, research approach 3) consists in improving existing
algorithms or more globally classification models to allow the generation of expla-
nations. An example of this approach is the DeepExplanation cited by Gunning
in [31] and described in [34] which aims at extracting intermediate predictions
whose semantic association allows the final prediction.

XAI and IDS Research on XAI is a recent topic, the most advanced work seems
to be applied to photographic image processing and is most often based on the
use of an explanation human-interface which then allows a human to validate
or not the prediction. About twenty articles propose to apply the principles of
XAI research to IDS. The majority of them uses the LIME method. The results
of these studies seem promising but still insufficient. For example, the need to
interpret the clusters concept of the LIME method seems indeed appropriate to
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detect enumeration attacks such as DDOS or network scans, but seems hardly
feasible for other types of attacks.

This explanation issue of AI-based classifiers in anomaly-based IDS does not
really appear in signature-based IDS. Indeed, a signature intrinsically contains
the detection criteria (the rules) and is often accompanied by descriptive ele-
ments such as the name of the associated attack or its references.

4 Discussion about ICS

4.1 Higher cybersecurity risks and impacts

Until recently, Industrial control system (ICS) was a separate and disjointed
domain from traditional IT, with little or no communication between these two
worlds. However, for cost reasons and complexity, ICS is increasingly adopting
IT technologies, especially network communication that are now based on IP
technologies. In addition, latest innovations and trends in ICS management and
governance, such as Enterprise 4.0, strongly encourage the interconnection be-
tween IT and ICS. These two facts offer new opportunities for cybersecurity
attacks on ICS.

We believe that ICS, which were until now globally spared, are less well
prepared to face cybersecurity attacks. Indeed, some specificities of ICS offer a
greater exposure to cyber-attacks. First, industrial equipment designers, indus-
trial solution integrators and operators are still not very aware of cybersecurity,
which is why there are rarely effective protection measures against cybersecurity
risks. Secondly, ICS are often designed for a much longer lifespan than in IT. It
is common to still find ICS in operation 20 to 30 years after their initial setup.
However, cybersecurity evolves quickly and requires regular software and hard-
ware updates. But the availability of ICS is often a more important criterion than
for IT, the updates of ICS are often grouped during the planned maintenance
operations. Thus, a critical vulnerability on a system can sometimes be fixed
several months, or even years, after the publication of a patch. This is even more
true for critical ICS where a hardware or software update can jeopardize safety
qualifications. In these cases, operational safety has priority over cyber security,
and operators are reluctant to perform updates. Finally, ICS and especially crit-
ical ICS, due to their interaction with the physical world, can have financial,
environmental and even human impacts that are much more significant than in
IT. All these elements imply that the need for monitoring ICS is probably more
important than for IT.

4.2 Potentially effective network monitoring

On another level, some specificities about ICS seem favorable to monitoring so-
lutions. Indeed, compared to IT systems, ICS do not evolve much. They have
equipment, especially programmable logic controllers (PLC), that are determin-
istic in their operation. This provides industrial communication protocols with
interesting properties for network monitoring [35]:
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– relatively simple protocols;
– deterministic communication, based on iterative and continuous polling be-

tween, for example, a PLC and its sensors/actuators or between a supervi-
sory console and its PLCs;

– strict timing requirement.

These properties make industrial communications easier and more efficient to
monitor than IT communications which are often more complex, evolve rapidly
and have a high variability due to human activities [36]. This facilitates the
creation of anomaly detection models. However, the heterogeneity of industrial
solutions, their low hardware resources and their closed (proprietary) aspects
limit the possibilities for Host-based IDS.

4.3 Strong need of anomaly-based IDS for ICS

The two aforementioned points about ICS, comparing to IT, 1) risks and impacts
of cybersecurity are potentially much higher and 2) anomaly-based monitoring
solutions can be particularly effective, are complementary and make the use of
anomaly-based IDS even more important. However, here again, there are several
scientific works [3,10,35–51] but few anomaly-based IDS are deployed. The need
to explore this paradox becomes even stronger in this context. The XAI issue of
anomaly-based IDS may be a part of the problematic.

5 Conclusion

This position paper has addressed why, despite their excellent results and in
particular their potential capacity to detect unknown attacks, the use of arti-
ficial intelligence (AI) anomaly-based detection in IDS products, e.g., machine
learning (ML) approaches, still remain marginal in the cybersecurity industry
— compared to other detection approaches, such as the use of signature-based
detection.

We have started our discussions by reviewing some existing background and
related literature, highlighting specific problems in other AI and ML domains,
such as the difficulty of building up and maintaining quality datasets (both for
training and operational processing), as well as issues with traditional criteria
proposed for the evaluation of IDS. The use of extended criteria, such as com-
pleteness of knowledge and ease of implementation and maintenance led our
discussion to claim the necessity of exploring a new criterion, the explainability
of IDS predictions and positioned some of the necessary rationale to be included
by next-generation anomaly-based detection engines, to tackle the problem.

To sum up, we have considered that usual IDS evaluation approaches such as
false negative and false positive rates, complemented by additional performance
criteria, are not enough for an IDS to adopt new anomaly-based products built
upon AI and ML techniques. We think that novel criteria addressing the level of
quality and explainability of the predictions derived from anomaly-based detec-
tion engines is a must. We have also discussed the importance of handling this
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question under the specific domain of critical ICS. Indeed, those systems have
increased monitoring needs and have properties that make them more favorable
to anomaly detection.

For future work, it would be interesting to identify metrics to quantify the
new criteria we have discussed in this paper: completeness of knowledge, ease of
implementation and maintenance and especially explainability. Then to measure
these metrics on various existing products and thus make a comparison of the
existing solutions. Finally, it would be relevant to apply this approach in priority
to critical ICS which are particularly adapted to anomaly-based IDS. For the
latter case, it will also be necessary to overcome the issue of lack of data sets,
which is more pronounced for industrial than for IT.
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