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Abstract. Traditional cyber defense strategies rely on a linear app-
roach that involves detecting threats, selecting defenses, and mitigating
attacks; yet, they struggle with emerging, unrecognized, and advanced
threats. In search of a more robust solution, researchers have explored
innovative strategies to maintain cybersecurity in a network without
prior knowledge of the adversary or the specific attack being executed.
One such strategy is known as Moving Target Defense (MTD). Lever-
aging Bayesian Stackelberg game theory, we establish optimal strate-
gies for the defender and adversary, showcasing how the defender can
reduce costs by steering attacks away from higher criticality nodes. This
approach helps the defender implement a novel MTD logic model for
either diversion or minimization of the attack damages. We use simu-
lation results to show how our approach surpasses previous strategies.
Our approach offers improvements in managing a multitude of resources.
The new approach, while not addressing the known drawbacks, lays the
foundation for more advanced MTD models that can incorporate a more
detailed representation of system resources.

Keywords: Cybersecurity · Moving target defense · Cyber defense ·
Game theory · Logic model

1 Introduction

Cybersecurity is a complex issue when adversaries possess some knowledge of
the system and can bypass the system’s defense mechanisms. To address these
advanced attacks, the scientific literature has introduced new approaches to han-
dle security during such attacks. Progress beyond the use of different technologies
involves implementing innovative security approaches that hinder attacks rather
than simply halting them. One such approach is Moving Target Defense (MTD).
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MTD finds its origins in older applications, such as the radio frequency hopping 
techniques used during World War II to thwart interception. This core concept 
has transitioned seamlessly into the digital age, with the rise of the internet in 
the 1990s prompted the development of MTD techniques for securing digital 
communication [7,9,26] and to address cyber-resilience issues associated with 
critical systems [25]. MTD operates without requiring prior knowledge of the 
adversary, relying solely on information about the expected attack type [33].

Moving Target Defense MTD strategies aim to enhance the resilience of the 
system by increasing the uncertainty of attackers, such as dynamically chang-
ing IP addresses. These periodic changes reduce the likelihood of successful 
attacks [11]. Despite growing interest in MTD, limitations exist, particularly 
in creating lightweight adaptive mechanisms against rational adversaries. MTD 
also incurs high costs in prolonged attacks. Furthermore, some MTD methods 
confuse attackers, broader network targeting attacks can diminish their 
effectiveness [8,27].

Based on the work of Mizrak [20], strategic approaches in cybersecurity 
emphasize cost-oriented optimization, where the defender aims to minimize over-
all costs. In our work, we build on Mizrak’s findings and propose a mathematical 
model as a foundational approach to managing a cybersecurity system, specifi-
cally using MTD. This model serves as a basis for more advanced studies that 
address the handling of multiple resources and simultaneous attacks. A more 
complex model incorporates a detailed representation of resource criticality and 
accounts for multiple adversaries or attack vectors. The primary objective is to 
minimize the defender’s costs, whether the system is under attack or not.

Our work leverages game theory, a branch of mathematics concerned with 
the analysis of strategic interactions between rational agents [1]. Formally, a 
game is defined as an interaction between players governed by a set of rules 
that specify the actions available to each player and the resulting outcomes for 
all possible combinations of actions [15]. In the context of MTD, game the-
ory is used to investigate the strategic decision-making processes of two players 
with conflicting objectives [17]. These decisions are based on mathematical mod-
els (utility functions) that quantify the potential gains and losses associated with 
each action. Both players act rationally, seeking to minimize losses or maximize 
gains through their chosen strategies.

This paper is a preliminary outline of this work which was presented in 
study [2] and builds on previous work [8] to propose a new mathematical model 
for a defender-adversary game. The model considers multiple adversary strate-
gies and focuses on resource protection by a defender who relocates resources to 
thwart attacks. This approach minimizes cost and attack impact, especially for 
interconnected and crucial resources. The development of our model, which con-
stitutes the main contribution of this paper, follows a structured methodology 
outlined in the following list:

– Introduce a model for a system consisting of multiple nodes and resources.
– Define a multi-target defense strategy for the defender.
– Establish a game-theoretic strategy for the defender.
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– Define the gains for the two players in the game.
– Solve the problem and develop a general solution.
– Perform numerical comparisons between the new strategy and the related

work.

The paper is organized as follows. Section 2 surveys related work. Section 3
presents our method and some analytic results. Section 4 provides the best sce-
narios for the adversary and the defender. Section 5 provides numerical results.
Section 6 concludes the paper.

2 Related Work

A wide range of methodologies for implementing deception in cyber defense have
been tested [12]. Deception plays a crucial role in safeguarding networks by redi-
recting adversarial attacks towards less critical components. Notable technolo-
gies include contributions from Borders et al. [3], where fake network terminals
are used to deceive attacks into unfruitful results. In addition, Onaolapo [21]
and Lazarov [19] propose the creation of synthetic data to attract adversaries
and protect resources, and Rrushi et al. [24] propose the use of decoy network
interfaces to lure malicious software running on the system.

In a similar vein, MTD contributions employ various models such as game
theory, heuristic models (e.g., genetic), and machine learning to implement the
different aspects of MTD, such as determining when to implement changes and
which parts to modify [5]. MTD can be activated using triggers based on time or
events. Time-based triggers are activated at specific intervals, while event-based
triggers wait for certain trigger events before activation [6,23,30]. Time- and
event-based triggers can be used concurrently [16,31,32], creating a hybrid acti-
vation mechanism. Although robust, all of these mechanisms share the drawback
of being one-dimensional (handling a singular entity). Consequently, advanced
attackers operating beyond a single attack model still pose a significant threat
to systems that model them with a single threat model. Furthermore, combining
different MTD models is not a straightforward process [29].

Yoon et al. [28] develop an MTD approach over programmable networks via
Software Defined Networking (SDN) techniques using a three-tier attack graph.
This attack graph uses a topology-dependent model as the basis for the MTD
implementation. Asset-aware MTD offers an adaptive and scalable security solu-
tion. By integrating the topology-dependent attack graph with SDN, the impact
of MTD on the system can be reduced. The attack graph evaluates exploitability
considering the path leading to vulnerabilities. In the paper, the prediction of
the attack path of the defender employs three main approaches: brute force, for-
ward, and backward propagation. Incorporating deception alongside MTD can
enhance the effectiveness of the previous approach. Although MTD is effective,
using deception would benefit both security and cost for the defender.

In the work of Feng et al. [8], a game-theoretic model is proposed that incor-
porates MTD and deception to protect resources. The authors operate under the
assumption that the adversary has more knowledge about the defender than vice
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versa. The system consists of multiple nodes that might be housing a resource.
The defender can change the position of the resource, to deceive the adversary
into failed attacks. The adversary, on the other hand, studies the system to
select the node that is most probable to contain the resource. This interaction
forms a two-player game between the adversary and the defender, each striv-
ing to maximize gains while minimizing losses. Leveraging the adversary’s prior
knowledge, the defender employs fake communication to deceive the adversary
into targeting nodes less likely to contain the resource. Upon receiving feedback,
the adversary must discern whether it is deception or accurate information. The
study shows how, when implemented correctly, deception decreases the cost of
defense. However, the previous work does not discuss having multiple resources
and attacks. Furthermore, some attacks, such as Denial of Service (DoS), may
affect the node functionality as a whole and, in this case, multiple resources. In
such cases, switching resources may not impede the attack and could potentially
result in unnecessary sacrificing of system resources.

Jia et al. [14] introduce a proxy switching MTD that helps against DOS
attacks. Nonmalicious nodes are assigned to secure, noncompromised proxies.
After an attack, nodes undergo continuous shuffling among proxies until mali-
cious insider nodes are identified. Wright et al. [27] extend the work of [14]
by proposing a new pay-off model for both adversaries and defenders. Their
study introduces four additional strategies for the proxy switching defense sys-
tem. The results demonstrate the efficacy of proactive defense for the defender,
while adversaries in this scenario tend to target proxies with a higher number of
nodes.

Although previous research has made significant progress in implementing
MTD [4] and new defense technologies, we identified shortcomings at the micro-
level of the networks under consideration. Specifically, resources within the net-
work are treated as a single entity rather than as separate manageable enti-
ties. Since most networks contain multiple resources, using a single-entity model
would place these resources at a higher risk. More specifically, since resources
are often correlated, separating them would reduce the efficiency of the model
(see Sect. 5). Effective resource management becomes crucial when adversaries
have prior knowledge of the system and can target resources regardless of the
number of nodes associated with the proxy. Furthermore, the defender can lever-
age the knowledge of the adversary as a defensive strategy. Building upon these
observations, this paper introduces a model for the defender to manage multiple
resources within a network. This allows the defender to minimize defense costs
and the impact of attacks. Additionally, the defender can use the adversary’s
knowledge as a weapon to protect the resources in the system. In this paper,
we do not consider quantifying the criticality of resources and consider that the
defender uses an already established mathematical representation of value [13].

3 Our Approach

In this section, we describe our two-player model. Section 3.1 describes the model
and the benefits for the two players. Section 3.2 describes the strategy that the
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defender is undertaking to maintain the security of the network nodes. A table
of key variables used throughout this paper is presented in Table 1.

Table 1. Table of symbols and meaning as used in the paper

SymbolMeaning

π Adversary strategy

n Number of nodes

m Number of resources

ca Adversary total attack cost

cm Defender resource migration cost

i Index for resources

k Index for nodes

R Set of resources

ri resource i

Tc(k) Criticality of node k

α(i, k) Probability of moving ri to node k

C(k) Defense cost if node k is attacked

3.1 Moving Target Defense Model

In this work, we introduce a novel MTD model comprised of two fundamental
elements, nodes and resources. We define a network with n interconnected nodes
(where n > 1) and m essential resources (where m > 1). These resources repre-
sent critical system components that provide vital services for network operation.
We envision resources as functionalities offered by applications or services. An
example of a resource could be an HTML service that grants access to specific
websites hosted on the system. The nodes, on the other hand, function as contain-
ers for these resources. These nodes can be physical devices such as computers,
microcontrollers, or any other electronic device capable of running the resources.
The nodes are interconnected, allowing the free movement of resources between
them. This model provides a framework for analyzing and understanding the
behavior of networks where resources are dynamically managed and migrated
across interconnected processing units.

Our model incorporates two intelligent agents, an adversary, and a defender.
These agents operate with opposing objectives, seeking to maximize their respec-
tive utilities within the system. The defender, responsible for system control,
prioritizes minimizing the overall cost of the system. In contrast, the adversary
acts with malicious intent, with the aim of inflicting the greatest possible damage
to the system.

The cost incurred by the defender agent comprises two components, defense
cost and attack impact cost. The defense cost encapsulates the expenses associ-
ated with implementing the defender’s strategy, as elaborated in Sect. 3.2. The
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Fig. 1. Dynamic two node model with nine resources mobility

attack impact cost represents the damage inflicted by the attack of the adversary.
Both agents are primarily concerned with the resources of the system.

The adversary adopts a strategic approach, crafting its attack strategy based
on the anticipated utility gained from targeting specific nodes. The adversary
can utilize attacks such as Denial-of-Service to disable a node. However, the
adversary also incurs a cost associated with the launch of the attack. Therefore,
the adversary’s total utility is calculated as the difference between the expected
benefit from a successful attack and the cost of carrying it out. This cost-benefit
analysis guides the adversary’s selection of targets, shaping its overall attack
strategy.

The defender strategy involves resource protection through node relocation,
allowing multiple resources to reside within a single node (as depicted in Fig. 1).
The defender strategically distributes resources between nodes, ensuring that
all nodes possess similar total criticality. By doing so, the defender removes the
incentive for the adversary to attack a specific node and minimizes the maximum
possible cost.

Assumptions. As mentioned above, adversaries and defenders have a set of
prior knowledge on which to base their strategy. In the following, we outline the
assumptions that we have made about the knowledge that the two agents have.
We categorize the assumptions into two groups depending on what is known and
what is hidden.

What the Adversary Knows:

– The number of resources and the number of nodes available to the defender.
– The strategy used by the defender. In this case, MTD.
– Probabilistic positions of the resources.
– The cost associated with implementing an attack.
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What the Adversary Does Not Know:

– The exact location of the resources.
– How the defender implements MTD.

What the Defender Knows:

– An estimation of the attack cost by analyzing network complexity, threat
intelligence, attack vectors, and resource investment (time, skills, tools)

– Total knowledge of the system’s composition, including nodes and resources.
– The adversary’s decision-making process regarding attacks.

What the Defender Does Not Know:

– The timing of the adversary’s planned attacks.

Due to limited knowledge, both agents use probabilities in their strategies. The
adversary uses past observations to predict the location of the resources. Under
conditions of limited mutual knowledge, agents can converge on strategies that
optimize their individual outcomes while remaining acceptable. This point of
convergence, where both agents achieve a stable and mutually agreeable out-
come, corresponds to the concept of an equilibrium state in game theory.

To sum up, the system comprises the following key components:

– A defender agent that tries to decrease defense and attack impact cost.
– An adversary agent that tries to cause the highest attack damage.
– m resources that are freely movable between nodes at a given cost.
– n interconnected nodes, each capable of containing multiple resources.
– The impact of the attack depends on the number of resources in the attacked

node.

3.2 Resource Moving Strategy

The defender employs an MTD strategy to protect the system by relocat-
ing resources between nodes, thereby complicating the adversary’s efforts. The
defender, through the knowledge that the adversary is familiar with the system,
proceeds to move resources between nodes. Consequently, the adversary gains
the ability to anticipate the defender’s movements and formulate a correspond-
ing attack plan. The model operates as a two-player game known as a Bayesian
Stackelberg game [22]. Bayesian Stackelberg is one of the classical models of
game theory that tries to establish realistic strategies for the players where the
leader chooses their action by anticipating the follower’s response while tak-
ing into account uncertainty in the follower’s preferences and adjusting them
accordingly.

We establish the existence of a set of resources denoted as R within the sys-
tem, which are the primary concern for both the defender and the adversary.
This set of resources is denoted as R = {r1, r2, ... rm}. We suppose that the
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adversary, through insider nodes or eavesdropping techniques, can form a prob-
abilistic model of the position of the ith resource ri throughout the network. We
normalize the values around the cost of resources. Specifically, we represent all
variables as a factor of resource cost.

The adversary formulates an attack binary strategy [Eq. (1)], denoted π,
considering both the expected gain of the attack and the associated cost of
the attack. The expected gain depends on the resources affected, with attacks
capable of targeting multiple resources in the kth node, where k is the index of
the attacked node.

π =

{
1, attack cost < expected gain of the attack
0, otherwise

(1)

Before an attack is conducted, the initial step for the adversary is to establish a
positional probability representation highlighting the optimum node for attack-
ing. To illustrate the probabilities for the resources, we construct a matrix A
where α(i, k) is the probability that the resource ri is in node k, as shown in
Matrix (2).

A =





α(1, 1) α(2, 1) . . . α(m, 1)
α(1, 2) α(2, 2) . . . α(m, 2)

...
...

. . .
...

α(1, n) α(2, n) . . . α(m,n)




(2)

note that
∑n

k=1 α(i, k) = 1. For each node k, the adversary can find the impact
of the attack, denoted by Tc, as the sum of the elements of the row k in the
matrix A multiplied by the cost of each resource. Since the model is normalized
to the cost of resources, we replace that value with 1 to form the impact of the
attack as Tc(k) =

∑m
i=1 α(i, k). Let Ua(k) be the expected gain of the adversary,

that is, the utility function if the attack is targeting node k. We define the utility
of the adversary in Eq. (3).

Ua(k) = (Tc(k) − ca) · π (3)

where ca designates the cost of attack for the adversary.
The defender similarly establishes an A matrix to define the implementation

of MTD. Let C(k) be the expected cost incurred by the defender to implement
the defense strategy. Then, we define the cost for the defender in Eq. (4).

C(k) = (Tc(k) · π) + cm

m∑

i=1

(1 − α(i, Position(i)))2 (4)

where cm is the cost of movement for the defender. Position(i) denotes the
current location of ri before any action by the defender is taken. Since the
defender uses a uniform approach to move resources and all resources are of
equal importance, moving resources incurs the same cost for the defender. The
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cost of moving resources only differs between different networks and setups of
the system. Given the discrete nature of the model, the probability of resource
movement is computed as one minus the probability of not moving the resource.
As such, 1 − α(i, Position(i)) is the probability that ri will be relocated.

The cost of the defender, as shown in Eq. (4), is formed from the expected
loss due to an attack and the cost of the defender’s strategy. In this context,
the defender reallocates system resources to generate a state that minimizes the
adversary’s utility. Similarly, the adversary targets the node with the highest crit-
icality (i.e., highest Tc(k)). Although our cost model resembles the one presented
in [8], we focus on the defender’s management of multiple resources. We consider
the squared value of the probability of moving a resource, 1 − α(i, Position(i))
to accentuate the impact of moving a single resource, as opposed to dividing the
movement between multiple resources. Moving a single resource would cause this
resource to become frequently unavailable. Since resources in R are critical, this
scenario could bring the entire system to a halt while waiting for the unavailable
resource to resume normal functionality. Consequently, it is more advantageous
for the defender to move multiple resources.

4 Optimum Scenario

In this section, we discuss the defender’s preferred MTD strategy. In Sect. 4.1 we
present the two defender methodologies and illustrate them using two use-case
examples. In the subsequent Sect. 4.2 we apply the methodologies introduced in
Sect. 4.1 to find the general solution for the scenarios defined by the adversary’s
intent of attacking or not. In Sect. 4.3 we discuss the scenarios and highlight
some important remarks.

4.1 Matrix Derivation

Building on the model presented in Sect. 3.1, the defender strategy is defined by
two constraints. The first constraint is concerned with minimizing the probability
of moving nodes; intuitively, a higher α for a particular resource signifies a lower
probability of the defender needing to move that resource. The second constraint
that the defender tries to minimize is the impact of the attack on all nodes i.e.,
Tc(k). This optimization problem can be seen as a variation of the subset sum
problem [18], this problem consists of a set of numbers A which is divided into a
selection of numbers that add up to a specific target value. In this case, the set
in question is the probability matrix A, and the sum is each row with a value
determined by the scenarios taken by the defender.

This section explores the two key constraints considered by the defender,
which can be mathematically represented by the matrix A. The first constraint
aims to minimize the probability of movement. This can be achieved by max-
imizing the maximum value α within each column of matrix A. The second
constraint focuses on minimizing the overall impact of the attack. This trans-
lates into minimizing the sum of the elements in a row in matrix A. A lower
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sum across a row indicates a reduced cumulative impact of potential attacks
targeting that specific resource type.

Consider an example involving five resources and three nodes (i.e.,m = 5 and
n = 3). The defender’s goals are to minimize Tc(k) and maximize α(i, postion(i)).
Each column of the matrix corresponds to a resource, while each row corresponds
to a node.

In the initial step, we consider a set-up where resources are equally divided
among all nodes as shown in matrix A shown below. By evenly dividing resources
across all nodes, the defender minimizes the maximum possible attack cost.

A =




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3





Minimizing Movement, First Approach. In this step, the goal of the
defender is to minimize the probability of movement without changing Tc(k).
To accomplish this goal, the defender has the flexibility to interchange resources
between nodes. At this stage, the model shares some similarities with the
resource allocation model defined in [10]. In the context of matrix A, the
movement cost is inversely proportional to the highest value in each column.
To adhere to the constraint of not altering Tc(k), the defender can subtract
from one column and add to another; in this case, the subtracted and added
value is 1

3 . Specifically, the defender takes two columns i1 and i2 and two
rows k1 and k2 to carry out the operation. We move the values to the set
{α(i1, k1), α(i1, k2), α(i2, k1), α(i2, i2)}. The new values of α after the oper-
ation are {α(i1, k1) + 1

3 ,α(i1, k2) − 1
3 ,α(i2, k1) − 1

3 ,α(i2, i2) +
1
3}. The defender

repeats the same operation with different pairs of i and k, in this case for three
pairs of resources, to decrease the probability of resource movement and main-
tain the same maximum Tc over all nodes. We illustrate this iterative approach
in the following matrices:

A =




2
3 0 1

3
1
3

1
3

0 2
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3



 →




1 0 0 1

3
1
3

0 2
3

1
3

1
3

1
3

0 1
3

2
3

1
3

1
3



 →




1 0 0 1

3
1
3

0 1 0 1
3

1
3

0 0 1 1
3

1
3



 →




1 0 0 2

3 0
0 1 0 0 2

3
0 0 1 1

3
1
3





Minimizing Movement, Second Approach. The result matrix obtained
from the last step minimizes the cost of movement for the defender, but the
squared cost of movement, i.e., (1 − α)2, can be further decreased. To this end,
the cost of movement is divided across multiple resources instead of focusing
on one resource. To achieve this, the defender for each node (row) sums all
probabilities and divides them equally between resources. Note that this action
is taken only with maximum α values, i.e., when a row has more than one
maximum α value. Our objective is to maximize the maximum values for each
column. Applying the previous step, we get the final matrix. In the last step, we
reorganize the matrix for organizational purposes.
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A =




5
6 0 0 5

6 0
0 5

6 0 0 5
6

1
6

1
6 1 1

6
1
6



 →




5
6

5
6 0 0 0

0 0 5
6

5
6 0

1
6

1
6

1
6

1
6 1





4.2 Defender Preferred Strategy

By employing the methodology of Sect. 4.1, we can establish a novel mathe-
matical model and propose the corresponding general solution for the defender.
Given that the adversary prefers to attack node k with the highest Tc(k), and
considering that the maximum cannot be less than the average, it follows that
Tc(k) ≥ m

n . Taking into account the adversary attack strategy described in
Eq. (1), we differentiate three different scenarios: attack, optimized attack, and
no attack.

Attack Scenario. This scenario is the general solution for the example in
Sect. 4.1. If condition ca < Tc(k) holds, the adversary will opt to launch an
attack. If ca < m

n , the defender is unable to allocate ri to nodes in a way
that prevents an attack. To minimize costs, the defender should aim to mini-
mize Tc(k) while simultaneously maximizing α(i, Position(i)). However, to reach
an initial solution, the defender prioritizes minimizing Tc(k) over maximiz-
ing α(i, Position(i)). Consequently, the defender establishes the cost shown in
Eq. (5).

C(k) =
m∑

i=1

α(i, k) + cm

m∑

i=1

(1 − α(i, Position(i)))2 (5)

The minimum value of Tc(k) can be achieved by equally dividing resources
over nodes (i.e., Tc(k) = m

n ). After defining Tc(k), the defender proceeds to
maximize the value of α(i, Position(i)), which leads to the matrix in Matrix (6).
The upper left and lower right cells in Matrix (6) are repeated $m

n % times.

A =




m

n!m
n " .I

!m
n "

m mod n 0 (m−!m
n "m mod n)×(m mod n)

1
n!m

n " .1 (!m
n "m mod n)×(n−m mod n) I

m−!m
n "

m mod n





m

n

(6)

where I x
y designates an identity matrix of size y that is repeated x times i.e.,

I x = I |I . . . I . We designate &m
n ' as the round-down value of m

n and $m
n % as

round-up. From Matrix (6) the expected attack impact is m
n . The matrix also

shows that &m
n '(n − m mod n) resources do not move, while (m mod n)$m

n %
resources have a m

n!m
n " probability of not moving. We update C(k) with the

calculated value as shown in Eq. (7).

C(k) =
m

n
+ cm(m mod n)$m

n
%(1 − m

n$m
n % )

2 (7)
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Optimized Attack Scenario. The previous scenario can be further improved
mathematically while maintaining that the adversary will attack. C(k) can be
further decreased by increasing Tc(k) beyond m

n in favor of decreasing the cost of
moving nodes. we designate δ as the amount of increase of the attack impact in
favor of decreasing the probability of moving resources. We form the optimization
problem C(k) = m

n + δ(m mod n)$m
n % + cm(m mod n)$m

n %(1 − m
n!m

n " − δ)2.
To find the optimum solution for an attack scenario, we calculate the mini-

mum of the previous equation by varying δ. The defender uses the same matrix
A from Matrix (6) but changes the maximum values of α to agree with the
section. Note that 0 ≤ m

n!m
n " + δ ≤ 1 since the probability cannot be negative or

exceed 1. δ in this case is constrained to − m
n!m

n " ≤ δ ≤ 1 − m
n!m

n " . Solving the
previous problem gives δ = 1 − m

n!m
n " − 1

2cm
. Substituting δ in Eq. (7) gives the

optimized cost for the defender as in Eq. (8).

C(k) =
m

n
+ (m mod n)$m

n
%(1 − m

n$m
n % − 1

4cm
) (8)

No Attack Scenario. If ca ≥ m
n , the defender can distribute the resources

in a way that prevents the attack. In this scenario, the defender can minimize
the defense cost by maximizing α(i, Position(i)) while averting the attack (i.e.,
Tc(k) = ca). Based on this, the defender cost is shown in Eq. (9).

C(k) = cm

m∑

k=1

(1 − α(Position(k), k))2,
m∑

i=1

α(i, k) = ca (9)

The defender’s objective is to efficiently distribute R across the nodes, by max-
imizing the value of α(i, Position(i)). It should be noted that when ca equals
$m
n % (where $m

n % represents the roundup value of m
n ), the defender can safely

allocate resources statically (α = 1) to the nodes, effectively preventing adver-
sary attacks by ensuring that the maximum value of Tc(k) remains below ca.
Beyond the $m

n % threshold, the defender model does not show any change.
It is sufficient to solve on the range where m

n ≤ ca ≤ $m
n % to minimize costs

and meet the given constraints. To achieve this, while optimizing expenses, the
defender’s optimal strategy is defined in the following matrix in Matrix (10).
The upper left and lower right cells in Matrix (10) are repeated $ca% times.

A =

[
ca

!ca" .I
!ca"
Nm

0 %ca&(n−Nm)×Nm

!ca"−ca
!ca"(n−Nm) .1 (%ca&Nm)×(n−Nm) I %ca&

n−Nm

]
m

n

(10)
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&ca' is the round down value of ca and Nm = m − n&ca' is the number of
nodes with only moving resources. The adversary does not plan to attack, so
the impact of the attack is zero. Nm$ca% resources have ca

!ca" probability of not
moving. Note that Nm is strictly positive and when ca exceeds $m

n % it follows
that the defender does not need to move resources and Nm is set to zero. The
no attack C(k) is shown in Eq. (11).

C(k) = cm ·Nm$ca%(1 − ca
$ca%

)2 (11)

This scenario is used by the defender given it is better than the previous models
(i.e., it minimizes C(k)), as discussed next.

4.3 Discussion

Equation (11) presents a situation where the defender faces a dilemma due to the
acquisition of two conflicting strategies. On the one hand, optimizing the place-
ment of ri to minimize migration reduces associated costs. However, decreasing
migration increases the attractiveness of attacking the system to the adversary.
This increased allure is directly related to the cost of attack ca and the num-
ber of nodes involved. Specifically, when ca exceeds m

n , the adversary no longer
perceives attacking the system as opportune.

In summary, the defender is caught between two conflicting strategies: opti-
mizing the placement of ri and reducing migration costs versus the increased
attractiveness of attack and its correlation with the cost of attack and the num-
ber of nodes. Once the cost of attack exceeds the threshold of m

n , the defender
can migrate ri as denoted by Matrix 10, and attacking will no longer be advan-
tageous to the adversary.

In Eq. (7), the defender assumes that the adversary intends to attack the
system, where the benefit of launching an attack outweighs the associated costs.
However, the defender encounters another predicament: They have two options:
either reposition ri to confuse the adversary, incurring migration costs, or divide
ri evenly between multiple nodes, thereby preventing the adversary from exe-
cuting a highly impactful attack.

In Fig. 2, the cost variations of the three approaches for the defender are
depicted. We set m to 4 and n to 3. The figure illustrates that the optimal cost
of the attack is nearly as efficient as the mathematical optimum. The curve also
shows when the no attack strategy is desirable or not depending on the value of
cm.

5 Numerical Simulation

In this section, we validate the new results presented in this paper, using [8] as a
reference. We employ numeric simulations for the computation of various values,
visualizing data, and generating graphs.
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Fig. 2. Comparing C obtained by using the three models of this paper as cm varies.
The model is setup with m = 4 and n = 3.

5.1 Simulation Model

The system is configured as previously described in Sect. 3.1. C(k) is calculated
using what was defined in this paper and in [8]. C(k) is then divided by m to
find the cost per resource. As previously established, all values are normalized
to the cost of the resource. We investigate six different scenarios that examine
the effect of varying cm, ca, m, and n as follows:

1. m = 1, n = 2, and ca = 1
3 while varying cm from 0.1 → 2 Fig. 3a.

2. m = 13, n = 5, and ca = 1
3 while varying cm from 0.1 → 1 Fig. 3b.

3. m = 13, n = 5, and cm = 3
2 while varying ca from 0.1 → 1 Fig. 3c.

4. m = 20, ca = 1
3 , and cm = 1

5 while varying n from 2 → 50 Fig. 3e.
5. m = 20, ca = 1

3 , and cm = 1
50 while varying n from 2 → 50 Fig. 3f.

6. n = 5, cm = 1
5 , and ca = 1

3 while varying m from 2 → 50 Fig. 3d.

5.2 Discussion

The overlaid curves in Fig. 3a show that our new strategy yields the same C(k)
when implemented in the same scenario as the original model (m = 1). The
subsequent figures illustrate how the new strategy exceeds the previous one.
Specifically, Fig. 3b shows how the Feng model exhibits an initial rapid increase
in the defense cost as cm increases. The increase becomes less rapid when the
defender changes strategy when cm = n

2(n−1) . The defender in our model uses
other resources to maintain the same risk level while decreasing the cost of move-
ment. On the other hand, in the Feng model, the defender is treating resources
independently and spending a higher cost on defense.

In Fig. 3(b) we investigate how implementing the strategy in the Feng
model [8] can impact the cost of the defender, we define two applications for
the Feng model:
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Fig. 3. C(k) per resource for the defined models. The scenario switch signifies the
border over which the defender switches from the attack scenario to the non-attack
scenario or vice versa

– Feng model Separate: Each resource is treated independently, leading to
potentially inefficient defense allocation and inaccurate strategy by the
defender.

– Feng model merged: The model considers all resources together, enabling for
a more strategic defense.

Separating resources might lead the defender to consider one strategy while the
adversary selects another. This difference in strategy results in the defender
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wrongly predicting the strategy of the adversary. This can be observed in the
increase in the cost in Fig. 3(d) to Fig. 3(f). We use these examples to illustrate
how the related work could be implemented ineffectively.

The advantage of our strategy becomes more pronounced with an increase of
m and n (to a threshold), as shown in Fig. 3(d) to Fig. 3(f). This is because our
approach allows for more flexible resource allocation compared to simply moving
resources all the time.

When m and n have the same value, the curves in Fig. 3(d) to Fig. 3(f) start
to show a marginal change. At this threshold and due to the usage of $m

n % and
m mod n, the model reaches a higher stability of the cost per resource as the
logic starts to repeat when the number of resources increases. In this case, the
defender prioritizes increasing m and n as these values offer the lowest cost per
resource.

Finally, the parameter cm plays a crucial role in influencing the margin
between our proposed model and previous work (as shown in Fig. 3(c) and
Fig. 3(f)). As expected, increasing the value of cm leads to a wider gap between
the performance of our model and the existing approaches. In a perfect scenario
where cm is very low, the defender can essentially move the resources infinitely
without incurring any cost. This makes the cost of the defender solely dependent
on the number of resources and nodes, regardless of the chosen strategy or MTD
approach, leading to the loss of the advantage of using our strategy.

From the previous results, we form the impact of different variables as:

– Higher cm incentives using our strategy.
– Increasing m and n is desirable.
– Although not directly affecting cost, knowledge of ca is crucial to building an

optimal defense strategy.

Our proposed strategy offers evident cost savings compared to existing strategies,
especially with a larger number of resources and nodes. By understanding the
impact of different variables, defenders can take advantage of this strategy to
create more efficient defense systems. Since cm cannot be controlled, they use this
value to determine whether MTD is a cost-effective defense strategy. Conversely,
the defender can control m and n by varying the system design and in that case
can build a more favorable network. Finally, ca helps the defender establish a
limit of the optimal defense cost.

6 Conclusion

In the dynamic cybersecurity landscape, traditional static defense strategies
have proven to be inadequate to counter emerging, unrecognized, and advanced
threats. This has led researchers to explore innovative approaches that can secure
networks without prior knowledge of the adversary or the specific attack that
is underway. Among these approaches, MTD offers a promising avenue. Rather
than abruptly halting attacks, it aims to hinder attacks by distributing the net-
work’s adversary targets without introducing additional entities. By expanding
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the potential points of attack, the adversary’s confidence in executing the attack
falters, often causing delays in their actions. Periodic implementation of MTD
within specific intervals can force adversaries into a state of continuous delay
waiting for an opportune time, effectively deterring attacks. Furthermore, if an
attack is initiated, the defender can minimize losses by diverting the impact
away from more critical parts of the system.

We have presented a novel MTD strategy for securing segmented nodes,
where the main target is the resources distributed across these nodes. Utiliz-
ing Bayesian Stackelberg game theory, we have established optimal scenarios for
both the defender and the adversary, analyzing how the defender can reduce
costs by efficiently moving resources between nodes while reducing the likeli-
hood of attacks. Our simulation results show that the new strategy achieves a
lower cost for the defender when multiple resources are present. The results also
show that the efficiency of the new strategy is further enhanced as the number
of nodes and resources increases. From the numerical results, we find that the
new strategy holds significant promise in enhancing network security when com-
pared to previous contributions. Although MTD is a promising cyber defense, it
still suffers from limitations born from the current network infrastructure such
as the high cost of continued network change. This issue requires a new inno-
vative network management infrastructure alongside models, similar to the one
we presented in this paper, that optimize implementation and decrease defense
cost.

We have successfully introduced a new mathematical model that demon-
strates improved performance when managing multiple correlated resources. By
accounting for resource correlations, the model reduces the defender’s total cost
compared to previous approaches. In future work, our aim is to extend this model
to include multiple adversaries and the correlations between these intelligent
entities. In a multi-attack scenario, the defender’s focus shifts from merely min-
imizing the attack’s impact to managing the system’s post-attack state. Addi-
tionally, the model could benefit from a more detailed definition of resource crit-
icality and constraints related to node sizes, where resources differ in value to
the defender. Lastly, a more comprehensive approach to long-term cost analysis
throughout the system’s lifecycle should be considered.
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Información (RECSI) Servicio de Publicaciones de la Universidad de León, 2024
(2024)

3. Borders, K., Falk, L., Prakash, A.: Openfire: using deception to reduce network
attacks. In: 2007 Third International Conference on Security and Privacy in Com-
munications Networks and the Workshops - SecureComm 2007, pp. 224–233. IEEE,
Piscataway (2007)

4. Charpentier, A., Neal, C., Boulahia-Cuppens, N., Cuppens, F., Yaich, R.: Real-time
defensive strategy selection via deep reinforcement learning. In: Proceedings of the
18th International Conference on Availability, Reliability and Security, ARES 2023.
Association for Computing Machinery, New York (2023)

5. Cho, J.-H., et al.: Toward proactive, adaptive defense: a survey on moving target
defense. IEEE Commun. Surv. Tutor. 22(1), 709–745 (2020)

6. Colbaugh, R., Glass, K.: Predictability-oriented defense against adaptive adver-
saries. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 2721–2727. IEEE, Piscataway (2012)

7. Douligeris, C., Mitrokotsa, A.: DDoS attacks and defense mechanisms: a classifica-
tion. In: Proceedings of the 3rd IEEE International Symposium on Signal Process-
ing and Information Technology (IEEE Cat. No. 03EX795), pp. 190–193. IEEE,
Piscataway (2003)

8. Feng, X., Zheng, Z., Cansever, D., Swami, A., Mohapatra, P.: A signaling game
model for moving target defense. In: IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, pp. 1–9. IEEE, Piscataway (2017)

9. Ghosh, A.K., Pendarakis, D., Sanders, W.H.: Moving target defense co-chair’s
report-national cyber leap year summit 2009. Technical report, Federal NITRD
Program, Washington, DC, USA (2009)

10. Herrera, J.G., Botero, J.F.: Resource allocation in NFV: a comprehensive survey.
IEEE Trans. Netw. Serv. Manage. 13(3), 518–532 (2016)

11. Gonzalez-Granadillo, G., et al.: Dynamic risk management response system to
handle cyber threats. Futur. Gener. Comput. Syst. 83, 535–552 (2018)

12. Han, X., Kheir, N., Balzarotti, D.: Deception techniques in computer security: a
research perspective. ACM Comput. Surv. 51(4), 1–36 (2018)

13. Jeffrey, M.: Return on investment analysis for e-business projects. Internet Ency-
clopedia 3, 211–236 (2004)

14. Jia, Q., Sun, K., Stavrou, A.: MOTAG: moving target defense against internet
denial of service attacks. In: 2013 22nd International Conference on Computer
Communication and Networks (ICCCN), pp. 1–9. IEEE, Piscataway (2013). ISSN:
1095-2055

15. von Neumann, H.J., Morgenstern, O.: The Theory of Games and Economic
Behaviour. Princeton University Press (1944)

16. Keromytis, A.D., et al.: The meerkats cloud security architecture. In: 2012 32nd
International Conference on Distributed Computing Systems Workshops, pp. 446–
450. IEEE, Piscataway (2012)



554 J. Ahmad Kassem et al.

17. Kiennert, C., Ismail, Z., Debar, H., Leneutre, J.: A survey on game-theoretic
approaches for intrusion detection and response optimization. ACM Comput. Surv.
(CSUR) 51(5), 1–31 (2018)

18. Kleinberg, J., Tardos, E.: Algorithm design (2003)
19. Lazarov, M., Onaolapo, J., Stringhini, G.: Honey sheets: what happens to leaked

google spreadsheets? In: 9th USENIX Workshop on Cyber Security Experimenta-
tion and Test, Berlin, Chausseestraße 20, Germany. ResearchGate (2016)

20. Mizrak, F.: Integrating cybersecurity risk management into strategic management:
a comprehensive literature review. Pressacademia (2023)

21. Onaolapo, J., Mariconti, E., Stringhini, G.: What happens after you are pwnd:
understanding the use of leaked webmail credentials in the wild. In: Proceedings of
the 2016 Internet Measurement Conference, IMC 2016, pp. 65–79, 1601 Broadway,
Times Square, New York City. Association for Computing Machinery (2016)

22. Paruchuri, P., Pearce, J.P., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Effi-
cient algorithms to solve bayesian stackelberg games for security applications. In:
AAAI, pp. 1559–1562, Washington, DC, U.S. (2008)

23. Rowe, J., Levitt, K.N., Demir, T., Erbacher, R.: Artificial diversity as maneuvers
in a control theoretic moving target defense. In: National Symposium on Mov-
ing Target Research, USA. Artificial diversity as maneuvers in a control theoretic
moving target defense (2012)

24. Rrushi, J.L.: NIC displays to thwart malware attacks mounted from within the
OS. Comput. Secur. 61, 59–71 (2016)

25. Segovia-Ferreira, M., Rubio-Hernan, J., Cavalli, A.R., Garcia-Alfaro, J.: Cyber-
resilience approaches for cyber-physical systems (2023)

26. Sengupta, S., Chowdhary, A., Sabur, A., Alshamrani, A., Huang, D., Kambham-
pati, S.: A survey of moving target defenses for network security. IEEE Commun.
Surv. Tutor. 22(3), 1909–1941 (2020)

27. Wright, M., Venkatesan, S., Albanese, M., Wellman, M.P.: Moving target defense
against DDoS attacks: an empirical game-theoretic analysis. In: 3rd ACM Work-
shop on Moving Target Defense, pp. 93–104, Berlin, Chausseestraße 20, Germany.
ResearchGate (2016)

28. Yoon, S., Cho, J.H., Kim, D.S., Moore, T.J., Free-Nelson, F., Lim, H.: Attack
graph-based moving target defense in software-defined networks. IEEE Trans. Net-
work Serv. Manag. 17(3), 1653–1668 (2020)

29. Zhang, H., Zheng, K., Wang, X., Luo, S., Bin, W.: Efficient strategy selection for
moving target defense under multiple attacks. IEEE Access 7, 65982–65995 (2019)
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