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The Internet of Things (IoT) relies on resource-constrained devices deployed in unprotected environments. Given their

constrained nature, IoT systems are vulnerable to security attacks. Data provenance, which tracks the origin and low of data,

provides a potential solution to guarantee data security, including trustworthiness, conidentiality, integrity, and availability in

IoT systems. Diferent types of risks may be faced during data transmission in single-hop and multi-hop scenarios, particularly

due to the interconnectivity of IoT systems, which introduces security and privacy concerns. Attackers can inject malicious data

or manipulate data without notice, compromising data integrity and trustworthiness. Data provenance ofers a way to record

the origin, history, and handling of data to address these vulnerabilities. A systematic literature review of data provenance in

IoT is presented, exploring existing techniques, practical implementations, security requirements, and performance metrics.

Respective contributions and shortcomings are compared. A taxonomy related to the development of data provenance in

IoT is proposed. Open issues are identiied, and future research directions are presented, providing useful insights for the

evolution of data provenance research in the context of the IoT.
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1 Introduction

The Internet of Things (IoT) comprises a network of interconnected physical objects, enabling the exchange and collection of

data from diverse sources. This infrastructure facilitates data transfer from various environments over an insecure internet

connection, where it is processed, managed, and analyzed through various technologies [13, 26]. However, IoT increases

network vulnerabilities, as it often lacks mechanisms for identity management, data trustworthiness, and access control,

making it accessible to attackers. IoT applications span across industrial control, healthcare, home automation, car systems,

and environmental monitoring [58, 84, 93]. Moreover, data generated by numerous sensor nodes is subjected to in-network
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processing during transmission to a base station, where provenance, or the tracking of data origin and evolution, becomes

critical to ensure data trustworthiness in decision-making processes [126].

To address IoT security challenges, data provenance is introduced as a solution to trace and verify the history of data

transactions. Initially developed for heterogeneous database systems [135], data provenance documents the origin, evolution,

and transformations applied to data entities, also known as lineage [131]. In IoT and other domains, data provenance is deined

as the process of recording the history of data origin, evolution, and activities, providing essential security features such

as trustworthiness, integrity, and quality assurance [31, 121, 147]. The objective of data provenance is not only to ensure

data quality but also to address speciic security requirements, including conidentiality, availability, and the prevention of

unauthorized access. This paper proposes a taxonomy aimed at providing an in-depth understanding of data provenance

in IoT by classifying data provenance solutions across three primary aspects: encoding methods, storage mechanisms, and

security attack resilience. Provenance encoding refers to techniques used to encode provenance information into IoT systems,

enabling eicient tracking of data origins. Provenance storage mechanisms focus on various methods to store and retrieve

provenance data, while security attacks represent threats against both data and provenance information in IoT networks,

addressing mechanisms to ensure data integrity and authenticity in adversarial environments. With provenance applied in

domains like ile systems, databases, cloud computing, and IoT networks, this research speciically focuses on its application

within the IoT and Wireless Sensor Networks (WSN) domains, emphasizing how provenance can be leveraged to enhance

data security and authenticity in these environments by providing researchers with a deep understanding of data provenance

and ofering insights into research challenges, open issues, and future directions.

1.1 Motivation Ð In IoT networks, data provenance provide the capability to ensure data trustworthiness by summarizing

the history of ownership and actions performed on collected data from the source node to the inal destination. Provenance

must be recorded for each collected data packet from source nodes and track the forwarding nodes engaged in the process of

data transmission from data origin to destination, but many challenges arise to deploy such a solution. A major challenge

is the rapid increase of provenance during the transmission phase in IoT networks. Furthermore, there are limitations in

data storage capabilities, bandwidth and energy constraints of nodes. Hence, it is critical to address security requirements in

such challenging insecure environment in order to securely and eiciently capture provenance information for each packet.

Although data provenance has been studied extensively for database management systems it is still not widely addressed in IoT

networks. Also, the literature still lacks a systematic literature review which introduces the existing proposed data provenance

approaches in IoT networks and provide a detailed analysis in terms of security requirements, provenance encoding and

storing techniques, encountered attacks and performance metrics for the evaluation of proposed methods. We organize this

review using the taxonomy shown in Figure 1. Our work aims to provide researchers with the most practical implementations

over the past decade to point out open issues and research challenges with in-depth insights for future directions in the ield

of data provenance in IoT based on a Systematic Literature Review (SLR).

1.2 Major Contributions Ð The main contributions of our survey are summarized below:

• We present detailed overview of data provenance and its related concepts, ofering essential background knowledge on

the security aspects. We also point out potential attacks to data provenance models in IoT. We describe the diferent

types of provenance, storage mechanisms and security requirements.

• We propose an in-depth review of existing techniques for data provenance in IoT networks with their advantages,

limitations and a set of review attributes through a systematic literature review process.

• We provide a detailed overview of the encountered attacks and performance metrics used to evaluate security require-

ments and system eiciency. We propose a taxonomy including diferent attributes related to the development of data

provenance in IoT.

• We list open issues and research challenges on the evolution of data provenance research in IoT.

1.3 Paper Organization Ð Section 2 presents the review methodology used to conduct our survey. Section 3 provides an 
overview on IoT network and data provenance. Section 4 provides the mechanisms for data provenance storage systems. The 
security attacks on IoT networks is introduced in Section 5. Section 6 presents existing surveys on data provenance in IoT. 
Section 7 introduces existing data provenance approaches in IoT networks, with a comparative analysis. Section 8 provides a 
discussion. Section 9 presents open issues and research challenges. Section 10 concludes the paper.
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2 Review methodology

A Systematic Literature Review (SLR) is a thorough and well-organized method used to identify, assess, and bring together

existing research studies on a speciic topic. It follows a precise and transparent process to ensure that all relevant studies are

included. By following a systematic and well-deined procedure, this type of study ofers many advantages. Firstly, systematic

mappings enable a comprehensive overview of the current status of research in a particular area in the state of the art.

Secondly, it facilitates the identiication of gaps in the literature and provide evidence to guide further research, thereby

preventing redundant eforts. Systematic mappings allow for a high-level analysis of all available studies within a speciic

domain, ofering insights into broad research questions concerning the current state of the literature [82, 105]. A SLR is

conducted based on three main phases. The planning phase deines research questions, and provides the search strategy

and the criteria to select the relevant state of the art studies. The execution phase identiies and selects the required studies

according to the previous phase. The reporting phase analyzes selected studies and points out open issues and future directions.

Our review is based on a SLR methodology proposed by Kitchenham et al. [81]. Figure 2 shows the diferent phases followed

to conduct our review.

2.1 Research questions Ð We use the SLR process shown in Figure 2 to provide a comprehensive and exhaustive synthesis

of the used methodology. The primary purpose of our review is to investigate the integration of data provenance into IoT

networks. To plan the review, we formulated six research questions as described in Table 1.

2.2 Search strategy Ð To address the research questions, a search process was conducted across six electronic publication

databases. The selected databases are shown in Table 2. These databases are widely recognized and widely used in the ields

of computer science and engineering, ofering extensive coverage of the relevant literature. The automated search process

aimed to retrieve relevant studies from these databases [37, 92]. The set of keywords used to ind these studies include the
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Table 1. Research questions for the SLR.

# Question Rationale Where to be ad-

dressed?

RQ1 How data provenance is linked to IoT networks? The answer will help understand the main purpose

behind using data provenance in IoT networks

Section 3

RQ2 What are the provenance storage techniques, at-

tacks and security requirements when integrat-

ing provenance with IoT?

The answer will help researchers know the diferent

provenance storing techniques, security attacks against

IoT system and needed security requirements when

implementing a provenance solution

Section 3

RQ3 How can data provenance security approaches

for IoT networks be categorized?

The answer will help understanding the classiication

of proposed methods for the data provenance

Section 7

RQ4 What are the existing practical implementations

of data provenance in IoT?

The answer will provide researchers with a comprehen-

sive understanding of the shifts in the literature over

the past decade.

Section 7

RQ5 What are the advantages and limitations of the

proposed techniques for data provenance in IoT

in the studied literature?

The answer will help specify the contributions and

shortcomings of the studied state of the art

Section 7 and 8

RQ6 What are the main research gaps and challenges

in the domain of data provenance in IoT net-

works?

The answer will highlight the open issues, and help

researchers to identify research challenges and possible

future directions.

Section 9

Table 2. Electronic databases used in the search strategy.

Database URL

IEEEXplore http://ieeexplore.ieee.org

Science Direct http://www.sciencedirect.com

Scopus http://www.scopus.com

Web of Science http://www.webofknowledge.com

ACM Digital Library https://dl.acm.org/

Springer Link https://link.springer.com/

following: Internet of Things, Wireless Sensor Network, Data Provenance, and Secure Provenance. The search strategy in the

mentioned electronic databases was performed using the following query (and considering synonyms and alternative terms1):

("Data Provenance" OR "Secure Provenance" OR "Provenance")

AND

("Internet of Things" OR "IoT" OR "Wireless Sensor Network" OR "WSN")

2.3 Selection criteria Ð To assess the relevance of each primary study in relation to the deined research questions, diferent

selection criteria were applied. The objective was to include studies that have the potential to address the research questions

and exclude those that do not contribute to answering them. The criteria is used as a means of determining the suitability of

each study for inclusion in the analysis. We have considered several inclusion and exclusion criteria show in Table 3.

2.4 Article selection and data extraction Ð Initially, a search was conducted in the chosen electronic databases based on

the search strategy, leading to a total of 2706 papers. The search and selection processes involved considering primary studies

published between 2013 and 2023. The reasons for choosing this time range are to make the reference list easier to handle and

to avoid older protocols, which usually perform lower than newer approaches, and most approaches are an enhancement of

1The primary keywords were linked together using the logical operator łAND" to establish the search parameters. Similarly, the variations 
and synonyms were connected using the logical operator łOR" to broaden the scope of the search.

http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://www.scopus.com
http://www.webofknowledge.com
https://dl.acm.org/
https://link.springer.com/
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Table 3. Inclusion and exclusion criteria used for inclusion in our analysis.

Inclusion Criteria Exclusion Criteria

IC1: Articles that explores and addresses scenarios, research

challenges, and potential opportunities concerning the inte-

gration of data provenance and IoT.

EC1: The article is not related to data provenance.

EC2: The article is not focused on data provenance

in the domain of IoT or Wireless Sensor Networks

(WSN).

IC2: All articles that have original work and used any security

data provenance approach and belong to the IoT or WSN do-

main.

EC3: The article serves as an earlier version of a more

recent investigation conducted on the same research

topic.

IC3: Publication years in the range 2013ś2023.

IC4: Articles that are out of the speciied time range but have

high citations (above 30 citations).

IC5: Articles written in English.

IC6: Articles published in journals, conferences and work-

shops.

EC4: The article is not written in English.

EC5: The full text of the article is unavailable.

EC6: Articles that are repeating in diferent resources,

then, duplicate was excluded.

them. Two papers were selected from 2010 [86] and 2011 [125] for being highly cited papers in this ield and their direct link

to the scope of our research.

To ensure compatibility with diferent database engines, slight modiications were made to the search string. The automated

search was then conducted on each electronic database, focusing on the title, abstract, and keyword ields. Subsequently, a

screening process was carried out on the titles and abstracts to identify and exclude duplicate and irrelevant papers. This

screening process led to a reduction in the number of relevant papers to 107. The criteria used for exclusion were efective in

removing irrelevant studies from this review. Further analysis is conducted on the full texts of these papers, resulting in the

exclusion of 67 papers. The remaining 40 papers were included in this review. Figure 2 shows the complete identiication and

selection process of our SLR.

To extract data from the chosen primary studies, a data extraction procedure was conducted. This procedure points out

items speciically related to the research questions as well as other relevant information. Data extraction was performed on

each paper to ascertain the following information: (1) the security technique used to secure provenance, (2) the advantages
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Fig. 2. Review methodology phases of our Systematic Literature Review (SLR).



6 • O. Faraj et al.

and limitations of this solution, (3) the approaches and technologies applied to implement provenance encoding, decoding 
and storing, (4) the metrics used to evaluate the proposed method, and (5) the attacks studied by researchers in the security 
analysis process of their proposed solution.

3 Data provenance in IoT networks
This section provides an overview of IoT networks, discussing the attacks on those systems and the necessary security 
requirements for their design and implementation. Additionally, we introduce the concept of data provenance as a general 
term and explore its main applications and implementations in IoT systems.

3.1 Overview of IoT networks Ð The realization of the IoT concept in practical terms can be achieved by combining 
various enabling technologies. In this survey, we direct our attention towards sensor networks, which stand out as a highly 
used technology across a wide range of applications. Sensor networks have been proposed for numerous scenarios, including 
environmental monitoring, e-health, transportation systems, military applications, and industrial monitoring , among others. 
These networks consist of a number of sensing nodes that communicate using a wireless multi-hop model. Typically, nodes 
transmit captured data to a limited number of intermediate forwarding nodes [17]. In recent years, scientists have conducted 
extensive research on sensor networks, examining various challenges across diferent layers of the network protocol stack [2]. 
It faces signiicant vulnerability to attacks due to several factors. Firstly, many of its components are often in stand-by mode 
for extended periods, making them easy targets for physical attacks. Secondly, the widespread use of wireless communication 
in the IoT makes eavesdropping a simple task. Lastly, most IoT components possess limited capabilities in terms of energy 
and computing resources, which prevents the implementation of complex security schemes. Speciically, trustworthiness 
and data integrity present major security concerns [17]. The presence of diverse data sources requires the establishment 
of trustworthiness for the data, ensuring that only reliable information is taken into account during the decision-making 
process. In addition, data integrity solutions play an important role in ensuring that any unauthorized modiications to data 
being transmitted by source nodes or intermediate nodes are detected by the system, preventing adversaries from tampering 
with the information. For these concerns, new solutions were proposed to ensure the trustworthiness of data, such that any 
decision process is based on trustworthy data. Data provenance is introduced as one of these efective solution that can be 
used in constrained networks to ensure trustworthiness of sensed data. Data provenance techniques must consider additional 
methods to tackle the problem of provenance integrity and data packet integrity.
3.2 What is data provenance? Ð The deinition of provenance has undergone changes over time, adapting to diferent 
application contexts. In database systems, provenance was traditionally referred to as lineage and focused on identifying the 
source of data resulting from query processing, commonly referred to as data provenance [98, 101]. Data lineage was initially 
formalized by Cui et al. [43], speciically in the ield of relational databases. It aimed to trace each tuple ”” in the input tables 
that played a role in generating the output of a query from the database [38]. Provenance, also referred to as pedigree, or 
genealogy, is a form of metadata that documents the origin and use of a given entity [32, 56, 121]. In the ield of information 
technology, provenance considers data as the counterpart or relection of an art object. In this ield, researchers also deine 
provenance as the complete information about the entire process of data generation and evolution over time. This includes 
capturing the static origins of data as well as tracking their dynamic changes throughout their transmission process [51]. As a 
summary, provenance holds the capability to provide insights into the what, where, when, how, and why aspects of a given 
data object.
3.3 Data provenance integration with IoT Ð The interconnectivity of the IoT has brought signiicant improvements to a 
wide range of diferent application scenarios. It has also introduced security and privacy concerns due to data transmission 
over open networks. Attackers can easily inject malicious data into the transmission path and maliciously manipulate data 
without any notice from the entities of the networks, thereby compromising the integrity and trustworthiness of the data. 
For example, in 2016, the Mirai botnet attack exploited unsecured IoT devices, resulting in widespread disruptions of major 
websites, demonstrating the potential for privacy breaches through compromised devices [103]. Additionally, the rapid spread 
of malicious data can cause catastrophic failures. Moreover, the sharing, transmission, and processing of data leads to the 
risk of user privacy breaches. Unauthorized access to smart home systems can allow intruders to activate webcams and 
voice-controlled devices or manipulate household appliances like ovens and electric stoves, thereby compromising the security 
of the entire smart home ecosystem. Such breaches not only jeopardize the functionality of these devices but also pose 
significant risks to user privacy, as unauthorized individuals may gain access to sensitive personal information or monitor
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Fig. 3. Proposed Taxonomy of Data Provenance in IoT networks.

household activities without consent [28]. Data provenance, which records the origin and processing history of data, presents

a potential solution to address these aforementioned issues. Provenance information can record the original source node

which produced or forwarded data packet and the operations which the data went through. In many cases, provenance can

provide the time and location of the entities that engaged in any operational procedure on data. We provide researchers with

a proposed taxonomy for the diferent aspects of data provenance in IoT as shown in Figure 3.

The provenance of a data item � , denoted as �� , is outlined in Deinition 1. �� records information about the origin and the

series of data actions a data item undergoes during its transmission from source to its inal destination. There are diferent

types of provenance according to the position of nodes in the network such as simple provenance, as shown in Figure 4a;

aggregate provenance, as shown in Figure 4b; and diferent data path from the same source, as shown in Figure 4c.

Deinition 1. Given a data packet � , the provenance �� is a graph� (� , �) satisfying the following properties: 1) �� is a subgraph

of the sensor network � (� , �); 2) for �� , � � ∈ � , �� is a child of � � if and only if HOST(�� ) = �� participated in the distributed

calculation of � and/or forwarded the data to HOST(� � ) = � � , whereby:

• � = {��/� � | ��/� � is a network node of identiier is �, � }: a set of network nodes.

• � = {��, � | ��, � is an edge connecting nodes �� and � � }: a set of edges connecting nodes.

• HOST(·) assigns a host node to each network node in � , where HOST(�� ) denotes the host node of the network node �� .

3.4 Data provenance categories ś The main objective when implementing a new data provenance method is to securely

store and transmit provenance information. To do so, many challenges in term of security and privacy need to be addressed,

which is related to provenance manipulation in collection, storing, and transmission. It is also essential for the designed

system to consider the security requirements to overcome such challenging issues [88, 101]. In this context, secure provenance

solutions can be divided into the following categories: Cryptography-based, Digital Watermarking, Bloom ilters, Physical

Unclonable Functions, Fingerprints, Blockchain-based, Frameworks with storing methods, Data Santization, Lexical chaining,

Graph-based, Path diference and Logging-based. These categories includes diferent security techniques that may be combined

in some applications to assure data provenance in diferent IoT scenarios. These methods rely on many factors to be developed

such as network resources, IoT application, needed security requirements, provenance storage approach, energy usage, storage

overhead, attack types, and network architecture. The categorization of security techniques for data provenance is shown
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in the proposed taxonomy in Figure 3. Moreover, a detailed deinition and overview on the diferent categories with their

respective techniques is provided in Section 7.

3.5 Security Requirements Ð Introducing the challenges of ensuring data trustworthiness in such limited and constrained

networks have set a number of security requirements that should be satisied to have a robust system against diferent types

of attacks. The security requirements were identiied through an in-depth analysis of related work and by considering the

speciic characteristics and constraints of IoT environments, such as limited computational resources and energy eiciency.

We also evaluated common attack vectors and vulnerabilities in IoT systems to ensure that the requirements address both

theoretical and practical security concerns. We can observe that none of the selected papers in the systematic literature review

satisfy all of the security requirements necessary for a fully robust provenance system as shown in Table 7. For example,

some papers focus on data integrity and conidentiality but lack provisions for ensuring freshness and unforgeability. Others

address availability but fail to account for non-repudiation or privacy. This gap highlights the need for a robust solution that

encompasses all the key security aspects to efectively protect provenance information in IoT networks. These requirements

difer from one scenario to another and are based on the application of the IoT system. The requirements are described as

follows:

• Data Integrity: If the provenance information is altered, it becomes impossible to perform accurate identity manage-

ment, leading to delayed detection of faulty data propagation. To prevent attackers from manipulating provenance

information by selectively adding or removing information, it is important to maintain the integrity of the provenance

information [66].

• Conidentiality: It means that any potential adversary is unable to extract any details about the origin or content of a

data packet just by examining the packet’s data information and metadata [66].

• Availability: In general, availability refers to the ability to access data and is often ensured through fault-tolerance

mechanisms like data replication across multiple locations. In the context of provenance, availability has been considered

a part of integrity. This means that integrity veriication is required to conirm, for instance, that provenance data has

not been altered [63, 108] or intentionally deleted in a selective manner [73, 134].

• Privacy: It provides extra guarantees that the sources of this provenance data are not tracked by unauthorized parties.

In many cases, the provenance information is more important than the data itself. It requires protecting privacy of

such data.

• Freshness: Data freshness refers to the condition where the data is in its most recent and up to date form. This guarantees

that no adversary can replay previous information to deceive a gateway or base station. Sensor data measurements are

consistently updated, enabling the gateway to rely on the current state of the environmental data, thus preventing

reliance on replayed data packets.
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• Non-repudiation: Non-repudiation ensures that a user cannot deny their participation in any activity once the data

provenance is recorded. In some cases, both parties need to follow a provenance commitment protocol to ensure

mutual non-repudiation. This protocol stops either party from denying their actions or participation in the recorded

activities [15, 19].

• Unforgeability: The most critical aspect of a secure provenance system is unforgeability. Unforgeability means that any

adversary attempting to alter an existing provenance record or introduce a new forged record will be unable to do so

undetected. In other words, unforgeability provides tamper evidence, ensuring the integrity and authenticity of the

provenance records [1, 15, 20].

4 Data provenance storage

Eiciently managing the increasing granularity of captured information in provenance, as the number of sensor nodes in a

network grows, is a crucial demand. In IoT, the provenance expands rapidly due to the increase participation of forwarding

nodes. The elements of provenance information vary across applications and methods, depending on the speciic requirements

fulilled by the proposed solution. Gathering detailed information about data generation, processing, and forwarding enables

the system to ensure diverse security requirements. Thus, it is essential to store this data eiciently to minimize bandwidth,

storage, and energy overhead. Provenance information can be stored using four main storage techniques: local database,

blockchain, in-packet storage, and cloud-based.

(1) Local Database: In the local database system, provenance information is stored either in a distributed or centralized

database, depending on the deployed solution’s application. However, local storage is typically located at the edge in IoT

networks for provenance information storage, such as in an edge server, and not directly at resource-constrained IoT

nodes. This distinction is important, as the storage at the edge does not require an internet connection but is still more

capable than individual IoT devices. Moreover, as the provenance record grows with the number of forwarding hops, it

is not feasible to store it in constrained IoT nodes. By storing the information at the edge, it is possible to accommodate

larger provenance data without impacting the performance of the IoT devices. This approach also enhances scalability,

as more resources are available at the edge to handle increasing data volumes [147]. This storage system has challenges

regarding storing and querying lexibility, as well as how IoT nodes store data information at each forwarding node.

Figure 5a shows an example of the use of a local database in an IoT network.

(2) In-packet: The second storage technique involves embedding the provenance records within the data packet and

maintaining the provenance chain throughout its data path to the inal destination as shown in Figure 5b. As previously

mentioned, when data items are processed and transmitted across large-scale systems, the size of the provenance can

signiicantly exceed the size of the data itself. For example, according to the indings of Jayapandian et al. [75], in the

proposed MiMI system, the provenance associated with data of size 270 MB amounts to approximately 6 GB in size [75].

This limits the inclusion of numerous information elements in the provenance record, and diferent provenance systems

must selectively retrieve certain provenance information. In many applications, it may not be feasible to ensure security

requirements by limiting the provenance information to a very small size which makes it challenging to achieve the

required security conditions.

(3) Blockchain-based: Blockchain is a peer-to-peer network’s decentralized ledger maintained by all peers, which

ofers distributed data storage and has been applied to establish data provenance by recording data processes as

blockchain transactions [112]. The large number of data packets generated from diferent source nodes in the IoT

network complicates the use of blockchain for storing provenance records, as each record becomes a transaction. This

complexity introduces challenges and limitations when applying blockchain for provenance storage. However, in

addition to traditional internet-based blockchain solutions, edge-deployed blockchain frameworks, such as Hyperledger

Fabric, can also be used to store provenance information closer to the data sources. An example of connecting a

blockchain to an IoT network for data provenance is shown in Figure 5c.

(4) Cloud-based: In the context of IoT applications, cloud computing is often used to store provenance records as shown

in Figure 5d. Cloud storage provides several advantages for managing and storing provenance records in IoT. Cloud

storage solutions can easily scale to accommodate the massive volumes of data generated by IoT devices. As the

number of connected devices increases, cloud platforms can dynamically allocate resources to handle the growing

data storage requirements. It is also designed to be compatible with various IoT devices and platforms. This ensures
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Fig. 5. Provenance storage mechanisms. (a) Local database. (b) In-packet storage. (c) Blockchain-based. (d) Cloud-based.

that provenance records from diverse sources can be eiciently stored, managed, and retrieved. Integrating cloud

storage with existing IoT architectures and applications can be complex. Compatibility issues, API variations, and

the need for uninterrupted data low between devices and the cloud may introduce integration challenges. Moreover,

IoT devices generate huge amount of data, and transferring this data to and from the cloud can introduce latency

issues. The eiciency of cloud storage solutions relies on the speed and reliability of data transfer, which can be a

challenge, basically in real-time applications [68, 85, 148, 150]. An example of connecting a cloud database system to

an IoT network for data provenance is shown in Figure 5d.

5 Security Atacks

IoT networks are vulnerable to active and passive attacks. The proposed security techniques takes into account these attacks

and try to prove their robustness against it through many proposed solutions using diferent technologies. Provenance

information may be more sensitive than the data itself, which makes it a priority for attackers. Attacks on such systems are of

two types: attacks on data and attacks on provenance. Next, we outline some representative attacks that may be perpetrated in

an IoT environment against data and provenance.

5.1 Data Atacks

• Packet drop attack: It is a security threat where an adversary intentionally discards or drops speciic data packets within

the network. This malicious act disrupts communication between IoT devices and can lead to various issues, such as data

loss, delayed information delivery, or service unavailability. As IoT devices often rely on wireless communication and
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may operate in resource-constrained environments, packet drop attacks can signiicantly impact the overall system’s

functionality and reliability.

• Packet replay attack: It is a type of security attack where an adversary intercepts and records data packets as they

travel through the network. The attacker then replays or re-sends these recorded packets at a later time, attempting to

deceive the system into thinking the information is fresh and legitimate. This malicious action can lead to various

security issues, such as unauthorized access, data manipulation, or false triggering of actions based on the replayed

data.

• Data forgery: It is a form of security attack where an adversary manipulates or alters the data transmitted between

IoT devices. The attacker may forge false sensor readings, control commands, or other critical information to deceive

the system or cause malicious actions. This type of attack can lead to incorrect decisions, unauthorized access, or

compromised system integrity.

• Data modiication attack: It is a type of security attack where an unauthorized entity alters or modiies the data being

transmitted between IoT devices. The attacker may tamper with sensor readings, control commands, or other critical

information, leading to incorrect decisions or actions within the system. This can result in operational disruptions,

potential risks, or unauthorized access to sensitive data.

• Eavesdrop: It refers to the unauthorized interception andmonitoring of communication between IoT devices. Amalicious

attacker, also known as an eavesdropper, captures and listens to data packets as they traverse the network. By doing so,

the eavesdropper can access sensitive information, such as sensor readings, control commands, or personal data, which

can lead to privacy breaches, security vulnerabilities, and potential misuse of the intercepted data.

5.2 Provenance Atacks

• Provenance record drop attack: An individual with malicious intent or a group of colluding users can intentionally drop

speciic provenance records or even the entire set of captured provenance information from a system.

• Provenance replay attack:An attacker could attempt to deceive the system by replaying a previously recorded provenance

record at a later point, thereby manipulating the integrity of the provenance chain.

• Forging provenance attack: In the context of provenance records, a malicious user or a group of colluding users can

engage in forgery by creating false data entries. These forged records can be inserted between legitimate provenance

records or added at the end of the existing chain of provenance. The attacks that involve adding false records at the end

are commonly known as append attacks. When multiple consecutive adversaries are involved, the process of forging

and adding records can be further simpliied, as they can only insert forged provenance between themselves.

• Provenance modiication attack: The attacker’s objective is to manipulate the provenance record by introducing false

data, removing speciic information, or modifying existing information to deceive the system.

• Provenance chain tampering: Provenance records are linked together in a chain to create a complete provenance

information of a speciic data packet. An attacker’s goal is to alter the order of this chain and modify its contents,

thereby attempting to manipulate the integrity and reliability of the provenance information.

• Inference attack: An inference attack compromises the privacy of provenance data, enabling an adversary to deduce

sensitive information about the sources and methods used to collect the provenance information.

The studied security techniques in the literature, along with the types of attacks each method addresses and a taxonomy,

are summarized in the Appendix, which can be found in supplementary materials online. It is evident that the majority of

the reviewed papers do not consider most types of attacks. While most papers address forgery and modiication attacks,

both for data and provenance, they tend to overlook other signiicant attack vectors such as replay attacks, packet drop,

and provenance chain tampering. This limited focus on speciic types of attacks suggests that the current security solutions

are not fully robust, leaving room for future research to explore more holistic approaches that account for a wider range of

potential threats in IoT networks.

6 Existing surveys

Several review articles address the issue of data provenance in IoT networks. Most of these articles focus on the security

requirements for data provenance in IoT. In this section, we compare and highlight the importance and need to conduct this

review paper. Table 4 provides a comparison between the diferent review articles based on a number of aspects, including
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time range (represent the starting and ending years of the conduct review), review methodology (Do the article follow a 
speciied review methodology to conduct the review?), taxonomy (Does the authors provide researchers with a taxonomy that 
summaries the diferent aspects used in the review?), security requirements (Does the review use and elaborate the needed 
security requirements in data provenance approaches?), attacks (Does the review analyze the diferent approaches based on 
the security attacks?), performance metrics (Does the review analyze the selected articles based on performance metrics used 
for the evaluation of any data provenance technique?) and the application domain that the review article covers.

Wang et al. [131] provide a deep understanding of provenance schemes, categorizing them into ive main categories: 
distributed schemes, elementary schemes, lossy compression schemes, lossless compression schemes, and block schemes. 
The survey primarily focuses on WSN networks, examining the techniques used and discussing their respective advantages 
and disadvantages. One notable limitation of the study is the absence of considerations regarding attacks and performance 
metrics in relation to the reviewed works. Another survey that categorizes data provenance techniques is presented by Hu 
et al. [66]. The categorization is based on three main technologies logging-based, cryptography-based and blockchain-based 
technologies. The authors presented the provenance techniques based on the technology used and the requirements to achieve 
a secure provenance framework. Zafar et al. [147] conducted a comparative analysis in their work, presenting a detailed 
taxonomy of secure provenance schemes. They further perform a discussion of existing schemes, focusing on their strengths 
and weaknesses. The survey provides a deep understanding of the concept of provenance and its lifecycle, while addressing 
the necessary security requirements for such systems. The survey does not mention the performance metrics used in the 
studied methods. Alam and Wang [4] propose a survey that present and analyze diferent research methods on three aspects 
that are provenance management, capture, and analysis. They additionally address the problems of maintaining data integrity, 
identifying attack chains in trigger-action platforms, and policy compliance in provenance systems of IoT environments.

A review on data provenance collection and security in distributed environments is presented by Ametepe et al. [12]. 
The work classiies provenance schemes based on provenance collection schemes, general provenance schemes, and basic 
provenance schemes. The paper discusses provenance security elements based on integrity, conidentiality and availability, 
but does not discuss provenance in IoT environemnt. Gultekin and Aktas [59] provide an SLR-based methodology on data 
provenance in IoT. The work selects 16 papers for the study. These papers are discussed based on the main subject that the 
study focus on. The survey lacks comparative analysis based on security requirements and other metrics that are needed 
to evaluate a provenance system. The most recent survey on data provenance is provided by Pan et al. [101]. The study 
explores the signiicance of data provenance in the domains of security and privacy. Additionally, the authors outline the 
foundational principles and models of data provenance, while investigating the mechanisms proposed by previous studies to 
achieve security objectives. Furthermore, they conduct a review of existing schemes aimed at securing the collection and 
manipulation of data provenance, commonly referred to as secure provenance and the role of data provenance, speciically 
in terms of threat provenance. The study covers various application domains beyond IoT, including ile systems, databases, 
generic systems, cloud computing, data management, distributed networks, and media data. While the survey examines 
many of the requirements for provenance systems, it does not speciically address the performance evaluation, deployment 
technologies and storage methods of provenance techniques in IoT environments. Furthermore, it lacks a comparative analysis 
in this regard.

The only review paper [59] using a Systematic Literature Review (SLR) methodology for article selection does not address 
important aspects considered in our work, such as security requirements, security attacks, performance metrics, provenance 
storage methods, and taxonomy representation. In their review, the authors selected 16 papers, categorized into ive main 
categories: blockchain, security, data low, data trustworthiness, and privacy. However, the review lacks speciic details on data 
provenance in IoT and does not provide discussions on open issues, research challenges, and future directions. Furthermore, a 
comparative analysis between the selected articles is not provided. All of the other review articles do not consider all the 
necessary requirements and aspects essential for analyzing security techniques proposed for data provenance in IoT. Our 
survey focuses on IoT environments and provides an extensive comparative SLR review taking into account all the missing 
aspects from the discussed literature.

7 Security techniques for data provenance
Data provenance is a concept that is applied in many ields of study. It is uniquely deined by each application domain [104]. 
Data provenance in IoT networks serves to guarantee data trustworthiness by collecting the lineage of ownership and actions
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Table 4. Comparison with other review papers in the literature.

Reference Year
Time Review

Taxonomy
Security

Attacks
Performance Application

Range Methodology Requirements Metrics Domain

Wang et al. [131] 2016 2006-2016 ✗ ✗ ✗ ✗ WSN

Zafar et al. [147] 2017 2007-2017 ✗ ✗ Cloud computing,
WSN, IoT, smart-
phones

Hu et al. [66] 2020 2010-2018 ✗ ✗ ✗ ✗ IoT

Alam and Wang [4] 2021 2005-2020 ✗ ✗ ✗ ✗ IoT

Ametepe et al. [12] 2021 2010-2018 ✗ ✗ ✗ Distributed Environ-
ments

Gultekin and Aktas [59] 2022 2012-2022 ✗ ✗ ✗ ✗ IoT

Pan et al. [101] 2023 2009-2022 ✗ ✗ ✗ General

This review 2024 2013-2023 WSN/IoT

executed on collected data from the source node to its inal destination. It is essential to record provenance for every data

packet generated from source nodes and trace the involvement of forwarding nodes throughout the data transmission process,

but deploying such a solution presents numerous challenges. One signiicant challenge is the rapid increase in provenance

data during the transmission phase in IoT networks. Additionally, limitations arise from the constraints imposed by data

storage capabilities, bandwidth, and energy consumption of nodes [86]. Data provenance methods establish user trust in the

received information by validating its origin, ensuring that data packets were generated by the designated and authorized IoT

node at the speciied time and location [25]. Provenance can be described as a chain of nodes which traverses from source to

destination.

The idea of data provenance has been applied by many researchers for identifying the source of data, trace ownership to

ensure data authenticity, and evaluate trustworthiness. We classify and study the provided solutions based on the following

main technologies: Watermarking, Data Sanitization, Lexical Chaining, Path Diference, Logging-based Techniques, Bloom

Filters, Fingerprints, Frameworks using Storing Methods, Graph-based Provenance, Cryptography-based Techniques, Physical

Unclonable Functions, and Blockchain-based Solutions. In this section, the provenance encoding techniques are ordered

by increasing overhead, beginning with lighter methods and progressing to those with higher resource demands. In the

Appendix, provided as supplementary material, we provide a detailed comparison of the selected papers based on a number

of protocol metrics, performance metrics, security requirements, and attacks.

7.1 Watermarking Ð Watermarking is a widely known advancement in the ield of WSN security. It serves the purpose of

identifying any alterations made to sensory data, efectively preventing unauthorized interception [14, 96]. The two main

categories of digital watermarking are fragile watermarking and robust watermarking, each ofering diferent anti-attack

properties. Fragile watermarks become undetectable when data is modiied, whereas robust watermarks can withstand

various forms of distortion [42, 94]. Watermarking is being used in many security applications and is introduced in some

proposed data provenance works. As shown in Table 5, one work discusses watermarking as a solution for data provenance

protection. Sultana et al. [125] develop a technique for data provenance aimed at identifying malicious packet dropping

attacks. The technique depends on the timing characteristics between packets after the process of embedding provenance

information. Based on the distribution of inter-packet delays it detects the packet loss. Then, it identiies the presence of an

attack and localizes the malicious node or link.

7.2 Data Sanitization Ð There are situations where privacy concerns prevent some information from being shared inside the

provenance chain. This is where the method of data sanitization is presented. Data sanitization assists in hiding some important

information which could compromise privacy. Data sanitization is mainly used to make sure that data is consistent, accurate,

and dependable, such that it can be used for reporting, analysis, and data-hiding for privacy preservation. Lomotey et al. [89]

present two approaches for device and data veriication in an IoT network to achieve trust and privacy preservation. The
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irst approach enables devices to subscribe and reveal their metadata to allow for data packet tracing without compromising

privacy. To achieve this, a data sanitization method for hiding sensitive information is applied. Users and devices have the

option to label attributes within the provenance data as non-shareable with other devices in the chain. In the second approach,

the authors modeled the entire peer-to-peer IoT network as a graph network. Data origins are veriied using Floyd’s algorithm

between diferent interconnected nodes. This work ensures transparency, traceability, and privacy preservation through both

proposed approaches. The technique is presented in Table 5.

7.3 Lexical Chaining Ð Semantically similar words or phrases are linked together by lexical cohesiveness. The related

elements can be linked together to create Lexical Chains after all cohesive relationships have been determined forming a

conceptually accurate building blocks in a variety of natural language processing systems [109]. This is how a typical chain

may be written:

Device → Type → Owner → �����������

would be feasible to track and categorize the communication channels between diferent IoT devices as well as their previous 
interactions using this method, which may be used for machine-to-machine communication. In their work, Lomotey et al.
[90] irst emphasize the use of provenance through the design of algorithms to conirm the origin of IoT-based data, and 
then they propose developing completeness techniques through visual analytics to trace data packets through the complete 
route in an IoT network. They present an improved system provenance mechanism in their study to achieve traceability. The 
technique is based on an associative logic to decide all connections established in a machine-to-machine communication 
between IoT nodes. To create links between device communication and data propagation to the �-th degree, a statistical 
lexical chaining based on the Adjusted Rand Index (ARI) is suggested as an alternative to knowledge-based methodology. 
Because data propagation pathways and object-to-object communications can be identiied, the proposed IoT architecture 
makes traceability easier. Based on their indings, the suggested system demonstrates that, in terms of identifying linkability, 
unlinkability, and availability, the ARI is more accurate than the knowledge-based methodology. Additionally, visual analytics 
is ofered to give a clearer understanding of interconnection in IoT nodes using visualization graphs such as HyperTree Graph, 
the Weighted Graph, and the combination of SpaceTree and RGraphs. These methods are presented in Table 5.
7.4 Path Diference Ð Path diference is the sum of an indicator variable which represents whether the actual packet path 
for the next hop is the same as the parent node of this packet along the routing path. Parent information can be used in 
reference packets for path reconstruction if the path diference value is equal to zero. If not, more time will be required to 
record the real forwarders. In order to minimize the message overhead, it is better to have a minimal path diference value. In 
big-scale sensor networks having lossy links and complex routing dynamics, Gao et al. [54] mention the inefectiveness of 
current path reconstruction techniques. The authors present Pathinder, a cutting-edge path reconstruction method. Pathinder 
takes advantage of temporal correlation between a group of packet paths at the node side and efectively compresses the 
route information with path variation; at the PC side, Pathinder determines packet routes from the compressed data and 
uses smart path speculation to reassemble the data packet paths with a high reconstruction ratio. With the use of extensive 
simulations and traces from a large real-world sensor network, they construct Pathinder and evaluate its performance 
against the two most similar approaches. Results indicate that Pathinder performs noticeably better than MNT [79] and 
PathZip [91] in a number of network setups. Their indings show that Pathinder achieve both low transmission overhead 
and high reconstruction ratio. An overview of the proposed technique is shown in Table 5.
7.5 Logging-based Techniques Ð Concerns over creating appropriate forensic investigation models were highlighted 
by cybercrime occurrences seen in IoT networks. Every attack on an IoT network leaves behind some evidence of it, but 
the primary diiculty is locating, gathering, and correlating that evidence for accurate forensic analysis. In order to provide 
answers to speciic investigation queries, it can sometimes be rather challenging to determine the linkages between discrete 
information gathered from IoT devices and network level activity. To tackle this issue, forensic investigators can beneit from 
provenance logging. Over time, network provenance generates a vast amount of information. IoT devices reduce this cost by 
using template systems, which require them to log just basic network characteristics as the traditional device logging.

Sadineni et al. [111] propose a template-based provenance approach, ProvLink-IoT, to provide reliable forensic analysis in 
IoT networks, as presented in Table 5. ProvLink-IoT is developed to analyze link-layer attacks. Many open source tools are 
used to implement the system in a simulated environment to approve its robustness in correlating evidence that is found 
in link-layer provenance. Based on provenance logs and network data gathered from the network, traceability graphs are 
generated in both normal and attack scenarios. The approach is studied using 6TiSCH network stack. To analyze the effects
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and conduct forensic analysis, the authors applied three link-layer attacks to the Time Slotted Channel Hopping (TSCH) and

6top (i.e. operational sublayer) layers of the 6TiSCH network. For performance evaluation, they used storage overhead and

provenance growth rate.

Table 5. Overview of selected studies using Watermarking, Sanitization, Lexical Chaining, Path Diference and Logging-based

methods for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Watermarking

Sultana et al. [125] 2011 Watermarking based inter packet delays sensor network ✗
High detection accuracy, energy ei-
ciency

Drastic increase in provenance size as num-
ber of nodes increases

Data Sanitization

Lomotey et al. [89] 2019 Data sanitization Local database Sensor network ✗

Hides sensitive data that users do not
want to share with others by tagging at-
tributes in the provenance information.

Provenance information is not secure. Stor-
ing and querying provenance information
is not deined. Integrity is not ensured.

Lexial Chaining

Lomotey et al. [90] 2018
Associative rules and
statistical lexical

chaining
Centralized database (CouchDB)

Devices with Bluetooth
in a machine-to-machine

(M2M) scenario
✗

During machine-to-machine communi-
cation, it is possible to track and catego-
rize the communication routes taken by
various IoT devices as well as their pre-
vious connections.

Lexical chains are not securely communi-
cated between the diferent entities and the
database.

Path Diference

Gao et al. [54] 2013
Path diference and

speculation
In-packet/ PC database WSN ✗

Lightweight approach that does not re-
quire complex computation at sensor
nodes. In case of inability to record path
diference, a path speculation method
can reconstruct the routing path.

The path ield container is limited to a num-
ber of bits that cannot be exceeded. When
the path diference is large and exceeds
this limit, the path cannot be recorded com-
pletely.

Logging-based

Sadineni et al. [111] 2023
Provenance logs and

network traic
Centralized database

Link-Layer Forensics in
IoT

✗
Detects network and link layer attacks in
IoT networks. Detects stealthy attacks.

Provenance information is not securely
transmitted through transmission channel.
The stored provenance information can be
altered. Multi-hop provenance path con-
struction is not studied. Due to rapid in-
crease in provenance information, there is
a storage overhead at the database.

7.6 Bloom Filters ÐA compact data structure, using hashing, enables rapid veriication of item presence within the structure.

Provenance information is embedded within the generated structure and the bloom ilter is transmitted along with the data.

By employing this method, the original information remains inaccessible to potential adversaries. Due to the variability of

the bloom ilter value from one packet to another, establishing a connection or association between previous bloom ilters

and recent data becomes challenging. An overview of the selected papers in this category are shown in Table 6. In their

work, Sultana et al. [126] present a secure provenance scheme for WSN. Their approach involves embedding provenance

information into a Bloom Filter, which is transmitted alongside the data. This scheme efectively addresses the challenges posed

by resource constraints in WSN. It requires a single channel for data and provenance transmission. The scheme overlooks data

integrity and only focuses on studying the packet drop attack. Additionally, Siddiqui et al. [116] present a data provenance

technique for IoT devices that employs Bloom Filter and attribute-based encryption. This approach presents challenges as IoT

devices typically have limited memory capacity, making it impractical to store extensive provenance information. Furthermore,

the technique is vulnerable to physical attacks, whereby an attacker can easily manipulate the stored provenance information

within an IoT device.

Harshan et al. [62] introduce a method for embedding provenance information known as the Deterministic Double-Edge

(DDE) embedding mechanism, which is based on Bloom ilters [91, 114]. In this approach, a relay node embeds information

about both edges connected to it: the edge through which it receives a packet and the one through which it sends the packet.

This means that a node can efectively cover two edges in the path with a single action, reducing the need for the next node

in the path to update the provenance. This results in decreased packet delay. Authors show that the hop-counter within the

provenance segment can also be used to coordinate the skipping strategy among nodes. Additionally, they propose upper

bounds on the error rates of the DDE embedding technique, which are expressed as functions of the network’s node count,

the number of hops, the size of the Bloom ilter, and the number of hash functions computed by each node.

7.7 Fingerprints Ð Fingerprints refers to unique identiiers or signatures assigned to the communication links between IoT

devices. These ingerprints are typically generated based on various characteristics or attributes of the link, such as received
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Table 6. Overview of selected studies using bloom filters-based methods for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Bloom Filters

Sultana et al. [126] 2015 in-packet Bloom ilters in-packet chain WSN
Simple encoding scheme. Reduces the
size of provenance length. Scalable for
a high number of nodes.

Provenance information is not suicient
(only node ID). Sends the complete data path
within the packet.

Siddiqui et al. [116] 2019
Bloom Filters with
cryptographic
mechanisms

in-packet N/A ✗

The computation of the partial digital
signature is carried out by the IoT node,
while the more resource-intensive calcu-
lations are oloaded and performed by
the edge node. Enhanced storage capa-
bilities.

Fast increment of provenance size. Com-
plete provenance is appended to the data
packet.

Harshan et al. [62] 2020 Bloom Filter In-packet Raspberry Pi network ✗

Atmost half the nodes in the pathmodify
the provenance. Reduction in the delay
on packets.

Storage overhead in large-scale networks as
the number of hops increases.

signal strength, latency, packet loss, or other network metrics. The homomorphic feature of public-key cryptography is 
exploited by numerous anonymous ingerprinting systems. These approaches enable the user’s ingerprint to be embedded in 
an encrypted domain (using public key) so that only the user may access the decrypted ingerprinted material by using the 
private key [95]. Data provenance solutions have been developed by analyzing and comparing link ingerprints generated 
from diferent attributes. The selected studies based on this technique is shown in Table 7. In their work, Ali et al. [7] present 
a method for enhancing the security of data provenance in bodyworn medical sensor devices. They achieve this by using the 
spatio-temporal characteristics of the wireless channels used for communication by these devices. This solution allows two 
parties to create highly similar link ingerprints, which uniquely link a data session to a speciic wireless connection. This 
link enables a third party to later verify transaction details, especially the speciic wireless link through which the data was 
transmitted. To validate this approach, experimental testing was conducted using MicaZ motes running TinyOS, and the 
results show an improvement in energy eiciency. Additionally, the proposed technique generates provenance information on 
each session, reducing the use of cryptographic methods. Using diferent ingerprint method, Alam and Fahmy [5] propose a 
provenance encoding and construction method that adapts three encoding schemes: juxtaposition of ranks, prime scheme, and 
Rabin ingerprints. The method is referred to as Probabilistic Packet Flow (PPF). In the irst scheme, provenance is constructed 
based on the rank of the node instead of the node ID, which requires fewer bits for encoding. Assuming that the packet 
contains a speciic space to hold the identities of � nodes, a counter of log(�) bits is used to track the embedded ranks in the 
packet. The second scheme is based on prime multiplication, which embeds more node IDs using the same number of bits 
compared to the previous one. This method uses prime numbers as node IDs, and their multiplication results in encoding 
a set of IDs that can be uniquely factorized. In their third method, a data path traversed by a packet is a sequence of bits 
that represents the IDs of nodes on that path. The ingerprint of this sequence of bits is transmitted instead of the actual 
sequence. Kamal and Tariq [77] introduce a lightweight protocol for a multi-hop IoT network, aiming to ensure both data 
security and the establishment of data provenance. The protocol uses link ingerprints derived from the Received Signal 
Strength Indicator (RSSI) of IoT nodes within the network. The protocol achieves data provenance by appending the encoded 
link ingerprint to the data packet header as it traverses each node. After receiving the packet, the server decode the packet 
header in a sequential process. However, provenance data expands rapidly, which requires transmitting a large amount of 
provenance information to data packets, thereby increasing the bandwidth overheads.
7.8 Frameworks using Storing Methods Ð Researchers have used various storage methods, using database placement 
strategies, to develop frameworks designed for diverse IoT applications. These methods include a number of techniques for 
storing and querying provenance information within the database. They ofer management solutions to ensure the secure 
storage of provenance data while meeting security requirements. These frameworks ofer a complete cycle for tracking the 
history of provenance records, covering everything from initial capture to storage and analysis. In this section, we present 
selected works that have designed such frameworks for managing data provenance and provide an overview of these works 
in Table 8.

Alkhalil et al. [8] introduce a bio-inspired approach that uses the processes of human thinking to enhance data provenance 
in WSN. Their proposed Think-and-Share Optimization (TaSO) algorithm modularizes and automates data provenance 
management in enterprise-deployed WSN. The TaSO algorithm is designed of four phases: Think, Pair, Share, and Evaluate.
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Table 7. Overview of selected studies using fingerprints-based methods for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Fingerprints

Ali et al. [7] 2014 Link Fingerprints Device Database Bodyworn Sensors ✗

Use of quantization to distill the RSSI
data into a much smaller size to over-
come storage challenges in memory con-
strained sensor devices.

Considers only single-hop scenarios. Data
provenance operates on a per-session basis
and is not validated for each packet sent.

Alam and Fahmy [5] 2014
Prime multiplication and

Rabin Fingerprints
In-packet bufer

IoT sensor network with
TelosB motes

✗

The use of small number of bits to encode
higher number of node IDs and requires
fewer packets to construct network-wide
provenance.

Provenance information is based on only
node IDs, which is not suicient to en-
counter many attacks.

Kamal and Tariq [77] 2018 Link Fingerprint in-packet and server
Multihop IoT network
usinf MICAz motes

✗

The provenance relies on the next hop
node using the RSSI, which is related to
any secrets stored in the nodes.

The higher the value of correlation coei-
cient, the higher the percentage of the se-
cured data transfers that can be deceived by
an attacker when compromising a group of
colliding nodes.

The authors assess the efectiveness of their TaSO algorithm by evaluating key metrics such as connectivity percentage,

closeness to the sink node, coverage, and running time.

Wang et al. [132] introduce the ProvThings framework, designed for the capture, administration, and analysis of data

provenance within IoT platforms. Their approach introduces a selective instrumentation algorithm that reduces the collection

of provenance data by identifying security-sensitive sources and sinks. This method provides a means to trace complex chains

of inter dependencies among IoT components. Additionally, the authors created a prototype of ProvThings for the Samsung

SmartThings platform and evaluated its efectiveness against 26 IoT known attacks. The IoT provenance model is based on

the W3C PROV-DM [57]. The results indicate that ProvThings imposes only a 5% overhead on physical IoT devices while

enabling real-time querying of system behaviors.

Finally, Elkhodr and Alsinglawi [47] extends previous work that introduced a provenance-based trust management solution

to assure data provenance [48]. Their Internet of Things Management Platform (IoT-MP) [48] establishes trust relationships

between communicating IoT devices. This work uses the existing capabilities of IoT-MP to enhance privacy protection in IoT

networks. Furthermore, it introduces a Data Provenance module aimed at enabling the retrieval of data origins and access to

device’s history, including the networks it has interacted with. The method propose three states for IoT devices registered

in the IoT-MP platform: New Resident, Visitor, and Returning Resident. Additionally, it includes a database module that is

reconstructed to adapt to the changes in the architecture.

Table 8. Overview of selected studies based on frameworks with storing methods for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Frameworks using storing methods

Alkhalil et al. [8] 2019
Trust model based on

fuzzy logic
Network Nodes WSN ✗

Node’s trust is based on availability,
neighboring nodes evaluation, and mes-
sage drop rate.

The study needs to consider security issues
in-terms of integrity and secure transmis-
sion of data. Is not clear how provenance
information is encoded and stored.

Wang et al. [132] 2018
Provenance as sources

and sinks
Centralized database

Samsung SmartThings
IoT Platform

✗

Complete platform for provenance track-
ing in IoT applications. Records prove-
nance information by a provenance col-
lector directly from IoT devices.

No security mechanism is applied to secure
the transmission of provenance information.
Multi-hop tracking is not considered.

Elkhodr and Alsinglawi [47] 2020 Store device status Local database
IoT Management

Platform
✗

Stores the provenance information as de-
vice status in a centralized database in-
cluding the visiting and returning de-
vices.

Provenance information is not secured.
Multi-hop model is not taken into consid-
eration. Security requirements in terms of
data and provenance are not studied.

7.9 Graph-based Provenance Ð Graph-based provenance is a method used in data provenance encoding to represent the

origin or history of data. These graphs capture the relationships and dependencies among data elements, processes, and

transformations, providing a visual or structural representation of how data has evolved over time. Three diferent types of

graph-based provenance representations as descibed below and an overview of these methods is provided in Table 9.

Event-low graphs are a type of provenance graph that represents data provenance by capturing events and the low of data

between them. Each event corresponds to a data operation or transformation, and edges in the graph indicate the data low



18 • O. Faraj et al.

from one event to another. Chang et al. [35] propose a data provenance approach for provenance systems in IoT applications 
based on event-action lows instead of provenance graphs. Event-action low is deined as a sequence of events and actions 
including a time-stamp in an execution trace. They are less complex than provenance graphs due their simple structure form 
which allows users to understand it easier. In their work, the authors present an event-low graph to regular users as a static 
abstraction of every possible provenance graph for IoT applications. They dynamically link time-stamped events and actions 
to statically create event and action nodes. Then, users can query provenance information from the event-low graph by 
selecting an event or action node to choose the associated time-stamped actions or events. After users create a query by 
picking a timestamped event or action, the system will respond with one of two types of information: łWhat provenancež 
answers questions about which events or actions are triggered by the user’s speciied action or event, and łWhy provenancež 
provides insights into the events or actions responsible for causing the user-speciied action or event. The system is developed 
as a Graphical User Interface (GUI) forming a user-friendly graphical provenance system.

Provenance graphs include a variety of graph structures that capture provenance information. These graphs may use 
diferent notations and structures to represent data history, depending on the speciic needs of the application or research. In 
a provenance graph, nodes represent data entities, processes, or events, and edges denote relationships, transformations, or 
dependencies between these nodes. Jaigirdar et al. [70] extend their work, Prov-IoT [71], to provide security information for 
provenance graphs. Prov-IoT is a security-aware IoT provenance model. In this work, security metadata is integrated with 
speciied security policies within the provenance graphs. They propose an IoT-Health scenario with a number of potential 
threats: fault packet injection, node cloning, unauthorized access, malicious code injection and denial of service. Three major 
node types are used to describe the scenario: agent, entity, and activity [99]. The terms Was Associated With (WAsW), Was 
Informed By (WInB), Was Derived From (WDeF), and Was Generated By (WGeB) are used to represent the relationships 
between these three nodes. A general provenance graph for the IoT-Health scenario is generated using the W3C-standardized 
PROV-DM concept. To evaluate the system and check for potential risks, the approach is evaluated based on six cases: 
permission violation, missing Web Application Firewall (WAF), intrusion detection, unauthorized access, denial of service, 
and identifying failed signature veriication.

Finally, the use of Directed Acyclic Graphs (DAG) allows directed structures with no cycles. This means that data transforma-

tions and dependencies are represented as a directed low without loops or feedback. DAGs are used to represent provenance 
information because they are well-structured and provide eicient querying and tracking of provenance records. ProChain 
framework is a provenance-aware approach of traceability proposed by Al-Rakhami and Al-Mashari [3] for IoT-based supply 
chain systems. The IOTA protocol, a third-generation DLT, is used by the ProChain framework. To overcome limitations and 
provide a scalable, quantum-resistant, and attack-proof solution for the systems built around IoT, it makes use of the DAG 
information structure in contrast to the linear structure used by the blockchain [120]. ProChain enables food item traceability 
from manufacturing to retailer with the use of several IoT sensors and provenance data at each engaged supply chain phase. 
ProChain strengthens and improves the management and optimization of all operations while also serving as a guarantee for 
the quality and safety of food. On the Raspberry Pi 3B platform, the ProChain idea is evaluated by simulating an IoT-deployed 
supply chain. The average measured time and energy consumption were then evaluated to check on the usability of the 
framework. The authors review and implement the framework to show how it may be used in supply chain systems to couple 
supply chain data with the IOTA Tangle and generate provenance information by adding data for various payload sizes. 
7.10 Cryptography-based Techniques Ð Various cryptographic techniques, including symmetric and asymmetric cryp-
tography methods, hash functions, and digital signatures, are applied to design and implement systems for identifying the 
source of data and ensuring the integrity of both data and provenance. These concepts are used to propose solutions for 
data provenance in many applications. The literature includes the largest number of these solutions when dealing with 
cryptographic approaches as shown in Table 10. The trustworthiness of the data items in a sensor network is evaluated 
by Lim et al. [86]. They compute trust scores for sensor nodes and data packets by using data provenance. These scores 
provide a method of indicating the level of trustworthiness of both nodes and data items. This method provide security and 
trustworthiness for sensor networks, yet they fail to address the challenge of retrieving data provenance against various 
attacks. Moreover, a dictionary-based secure provenance approach for WSN is proposed by Wang et al. [130]. They embed 
path indexes in the provenance instead of the actual data path by using packet path dictionaries. Therefore, compared to 
the current lossy provenance systems, the compressed provenance size in the proposed lossless approach is smaller. To 
achieve security requirements such as integrity, availability and authenticity of provenance, the AM-FM sketch method and a 
robust packet sequence number generating technique are used in the system. Provenance records are encoded at nodes that
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Table 9. Overview of selected studies using graph-based techniques for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Graph-based

Chang et al. [35] 2022 Event-low graphs Provenance server IoT smart apps ✗

Observes provenance without using a so-
phisticated query language by just select-
ing the appropriate nodes on an event
low graph.

As the number of events and actions in-
creases, the provenance data becomes large
in scale over time, provenance data is not
securely stored in the provenance server.

Jaigirdar et al. [70] 2023 Provenance graphs Cloud IoT Health applications ✗

The model includes security-aware prop-
erties at every step of data transmission.
Provides the status of each device as data
processingmechanism, software running
and communication channels properties

Single point of failure where provenance
information is stored in the cloud. All the
devices/sensors and users need to forward
and retrieve this information from it, includ-
ing auditor, doctor, user, and gateway.

Al-Rakhami and Al-Mashari [3] 2022 Directed Acyclic Graph Cloud server
Industrial Internet of

Things (IIoT)
✗

Scalability, afordability, and quantum ro-
bustness are all associated with the adop-
tion of IOTA’s distributed ledger technol-
ogy (DLT).

MQTT protocol is used to store and man-
age the majority of the data that is gathered
by our system, but because it does not ex-
ecute or impose data encryption, it is not
completely safe against tampering.

engage in every stage of data processing and transmission using the suggested dictionary-based system. A secure message

authentication code integrates the packet and its provenance together to provide security against any unauthorized change.

After verifying the Message Authentication Code (MAC) during decoding, the BS retrieves the packet’s provenance graph.

While the majority of previous studies have concentrated on how to protect against data manipulation in Home Area

Networks (HAN) networks, Chia et al. [41] introduce a security topic that has received less attention in such networks, namely

data provenance. To ensure that the stated energy usage is actually consumed and is gathered from the speciied node at the

exact location, they provide a unique technique based on threshold cryptography and Shamir’s secret sharing [113]. The

authors describe a unique use of secret sharing schemes for home energy monitoring networks, in which a secret, or a single

private key, is distributed among all the members who provide data on energy consumption. This system also addresses

the issue of location veriication. To achieve this, authors incorporate a location generator as an additional component. The

location generator employs trilateration techniques based on RSSI values and RSSI iltering methods to verify the location

of the device. This not only ensures that the right power source is under observation but also detects any potential device

relocation. Also, Suhail et al. [123] provide a solution to the challenge of integrating IoT with a system that is aware of

data provenance, enabling the tracking of data low across nodes and monitoring data transformations applied by nodes

in the network. They introduce a lightweight method for transmitting provenance information for IoT sensor data. This

method encodes data provenance information using a hash chain scheme as it traverses each participating node, with the

inal provenance veriication taking place at the destination node. The technique is implemented within the context of the

IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [6] in Contiki OS [46]. Each generated data packet includes

three ields: packet sequence number, data payload and provenance information (i.e. hash value of node ID). Furthermore, Xu

et al. [142] present a provenance approach for WSN based on path index diferences, where a new packet path is encoded

using the index of a highly similar backbone path and the diferences between them. Even if the topology of the WSN is

unstable, this technique may reach an increased provenance compression rate compared to the dictionary based provenance

scheme [130]. In the presented backbone path selection approach for WSN, the gradient of the node on the data packet path

is also determined. In order to cover the commonly used packet transmission channels, the authors also develop a comparable

backbone path elimination technique for WSN. To ind the packet pathways with the highest similarity in the dictionaries,

they develop a locality-sensitive hashing (LSH), SimHash [33, 36], based similarity comparison algorithm. The proposed

approach is evaluated according to Total Energy Consumption (TEC) and Average Provenance Size (APS).

Moreover, Suhail et al. [124] present an approach called Provenance-enabled Packet Path Tracing for IoT devices connected

through the RPL protocol. Their scheme involves including sequence numbers into the routing entries of the forwarding

nodes’ routing table, establishing a node-level provenance. Additionally, they introduced a system-level provenance that

encompassed destination and source node IDs, enabling complete packet trace capture. To retrieve the entire data provenance

using this approach, it is essential to sequentially access the storage space of each node along the routing path. Hence, the

base station cannot independently decompose the complete provenance of each data packet. Liu and Wu [88] introduced

an algorithm for compressing provenance called index-based provenance compression. To reduce the overall size of the

provenance data, their approach combines the concept of typical substring matching with path identiier and path index to
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represent path information within data provenance. Additionally, they expand the data provenance scheme to include attack 
detection and present a method for identifying malicious nodes based on this expanded scheme. The proposed scheme falls 
short in terms of ensuring data integrity, lacks a thorough security analysis within a deined threat model and results in 
computationally intensive operations. Additionally, Tang and Keoh [129] present a methodology to ensure the unaltered 
reporting of energy usage data of home appliances. The proposed approach guarantees the collection of data from the correct 
and trusted source at the speciied location. This framework is speciically designed for Home Area Networks (HAN) within a 
smart metering infrastructure, with the primary objective of conirming the authenticity of data, source identity, and location. 
The MAC is used to verify data authenticity and integrity. It should be noted that the authors assume the trustworthiness of 
the receiver (i.e. smart plug), while acknowledging the possible vulnerability of one of the two senders (i.e. smart plug or 
magnetic sensor) to attacks. To achieve location authenticity veriication, the system integrates a third sender (i.e. a Bluetooth 
device), which operates independently and does not collude with other system components.

In their research, Xu et al. [140] introduce two provenance schemes for Wireless Sensor Networks. The irst is the Path 
Index Diferences-based Provenance (PIDP) scheme, where provenance information is encoded using diferences in packet 
path indices. Speciically, it links an index representing the packet path’s similarity to the main backbone path and the 
variation between the actual packet path and this backbone path. Additionally, the authors propose a second scheme known 
as the Path Hash Value-based Provenance (PHP) scheme. In this approach, provenance data is encoded as a combination of 
the data source node’s ID and a part of the hash value taken from the packet’s path. Both schemes are evaluated based on 
their provenance compression rate and energy conservation rate, and these metrics are then compared to those of the DP 
scheme. Xu and Wang [141] introduce a provenance scheme called Multi granularity Graphs-based Stepwise Reinement 
Provenance (MSRP). In this scheme, they use mutual information between pairs of nodes as a similarity index to categorize 
node IDs. This categorization forms the basis for generating multi granularity topology graphs. Additionally, they apply 
the Dictionary-based Provenance (DP) scheme for stepwise encoding of the provenance information. The Base Station (BS) 
follows the same stepwise approach for provenance recovery and simultaneously conducts data trustworthiness evaluation 
during decoding. The performance of the MSRP scheme is thoroughly evaluated through a combination of simulations and 
testbed experiments. Results show that the scheme achieve high provenance compression rate, energy usage and eiciency of 
data trustworthiness assessment.

7.11 Physical Unclonable Functions Ð Physical Unclonable Functions (physical unclonable functions (PUFs)) provide 
a hardware-oriented system that generates a response for a speciic challenge, ensuring uniqueness for each device in the 
system. PUFs facilitate the authentication of IoT devices that generate sensitive data while maintaining device anonymity. 
Through the presence of a trusted third-party veriier, the identities of these devices can be veriied without compromising 
their anonymity [78]. The selected techniques are shown in Table 11. Aman et al. [10] developed two secure protocols for data 
provenance in IoT networks, aiming to achieve authentication and privacy preservation. These protocols address two diferent 
scenarios: the irst scenario involves a direct connection between an IoT device and a wireless gateway, while the second 
scenario deals with IoT devices indirectly connected to the wireless gateway through multiple hops of other IoT devices. Both 
protocols use PUFs in addition to wireless link ingerprints generated from the RSSI between communicating nodes. Through 
experimental analysis, the authors show that these protocols achieve high eiciency in terms of computational complexity 
and energy usage, while also obtaining robustness against various physical and cloning attacks. Aman et al. [11] propose an 
analytical model to create a mechanism that enables the establishment of data provenance in IoT systems. Their approach 
incorporates PUFs and the extraction of ingerprints from the wireless channel, along with the implementation of mutual 
authentication and anonymity measures, all aimed at achieving robust data provenance. The approach lacks consideration for 
the multi-hop scenario and fails to adequately address tracking of data packet provenance. Moreover, Hamadeh and Tyagi [60] 
propose an approach which combine two solutions: data provenance and privacy prserving in IoT networks. They provide 
trustworthiness and dependable IoT networks by using PUFs with non-interactive zero knowledge proof. In this method, 
an IoT device has the capability to transmit data to its respective server without revealing its identity, as it provides proof 
of ownership. In particular, the method under consideration is designed to validate that the authorized device executed an 
authorized program for creating or modifying data. Authors introduce a privacy-centric data provenance protocol. To validate 
practicality and eieciency, they developed the protocol using Altera Quartus and subsequently implemented it on an Altera 
Cyclone IV FPGA.



Security Approaches for Data Provenance in the Internet of Things: A Systematic Literature Review • 21

Table 10. Overview of selected studies using cryptography-based methods for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Cryptography-based

Lim et al. [86] 2010 Trust scores N/A Sensor Network ✗
Practical solution for trustworthiness as-
sessment.

The method is based on the principle that
themore trustworthy data a source provides,
the more trusted the source is considered.
Many attacks can deceive the system and
overcome the trustworthiness of data.

Wang et al. [130] 2016a Path Index and MAC Distributed database WSN

Embeds path index instead of data path,
which reduces the size of the embedded
information in each packet. Each packet
path is stored at the forwarding nodes in
the network.

Provenance information is only accessible at
the BS and cannot be veriied at each stage
of the path, provenance data is not securely
transmitted and stored.

Chia et al. [41] 2017
Shamir secret sharing

and threshold
cryptography

Smart meter
Home Energy

Monitoring Networks
✗

Achieves source identity authenticity, lo-
cation authenticity, data consistency and
source data authenticity.

The proposed solution does not consider the
storage of provenance information, multi-
hop architecture and provenance encoding.

Suhail et al. [123] 2018 Hash chain In-packet Sensor network ✗

Keeps track of data packets using a chain
of provenance records that store that
hash of traversed node ID.

Integrity is veriied at the destination. Prove-
nance size grows very fast as the number
of forwarding nodes increase, link overhead
due size increase in forwarded packets.

Xu et al. [142] 2019 Path index diferences Network nodes WSN ✗

High provenance compression rate.
Whenever the number of hops increases
the provenance size nearly remains at a
constant level.

Provenance information is based on a few
number of data features. Dictionaries at
each node increase in size as the network
scale and the data packets increase.

Suhail et al. [124] 2020 In-packet embedding Routing table RPL-based IoT network
Constant provenance size, used energy
consumption, enhanced provenance gen-
eration time.

Considers robustness against only three at-
tacks. Provenance information is node ID
and sequence number.

Liu and Wu [88] 2020
Common substring

matching
Distributed database Multihop IoT network ✗

Malicious node identiication. High
provenance decoding accuracy. Stable
provenance length after all the path have
been traversed

Many provenance ields that increase the
size compared to other techniques. Lack of
security analysis against diferent types of
attacks.

Tang and Keoh [129] 2020 MAC in-packet
HAN with smart

metering

Use of a symmetric key approach to im-
prove eiciency over asymmetric key-
based approaches.

Needs to integrate a third sender to the sys-
tem to achieve location veriication. Solu-
tion for single-hop data transfer scenario
only.

Xu et al. [140] 2022
Path index and Packet

path hash value
Distributed node database Zigbee WSN ✗

Reduces the negative impact of network
topology changes. Maintains high prove-
nance compression and keeps the prove-
nance size constant

Increase in provenance size as network be-
comes larger in the PIDP scheme. Lacks anal-
ysis to diferent security threats.

Xu and Wang [141] 2022
Dictionary-based

provenance scheme/
Hash functions

Network nodes ZigBee sensor network ✗

WSN topology graph is presented as a
series of diferent granularity topology
graphs. Encoding provenance on high
granularity levels which skips prove-
nance updating at some nodes. Decrease
in the provenance updating latency.

The scheme yields high cost in terms of com-
putation and storage in sensor nodes, which
are resource constrained and require light-
weight schemes.

Table 11. Overview of selected studies using watermarking and Physical Unclonable Functions for provenance encoding in

IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Physical Unclonable Functions

Aman et al. [10] 2019 PUFs and RSSI Device memory and server
Indoor laboratory IoT

environment

Unclonability and robustness against
physical attacks through avoiding the
need to store secret keys.

Provenance information is based only on de-
vice’s pseudonym identity and RSSI, which
is not enough to obtain any attack attempt
in packet drop, replay, and modiication.

Aman et al. [11] 2021
PUFs, wireless
ingerprints

server database
IoT network with
MICA-Z motes

IoT devices do not store secrets in
their memory. Privacy preservation. Re-
silience against Ephemeral Secret Leak-
age (ESL) attacks.

Requires computation of many session
keys for each node. Lacks security analy-
sis against diferent type of attacks.

Hamadeh and Tyagi [60] 2021 PUFs Network nodes and server FPGA Altera Cyclone ✗

Source identity authenticity through
PUF. IoT node is able to send anony-
mously data to the server.

The system does not consider the traceabil-
ity of data packets along the data path.Multi-
hop model with the presence of forwarding
devices is not considered. Selecting and com-
puting a secret key in each round results in
computational overhead.

7.12 Blockchain-based Solutions Ð Distributed ledger technologies, like blockchain, have gained visibility for maintaining

the security and privacy of provenance data. These blockchain platforms serve as the primary means to ensure data integrity

by creating transactions as provenance records that are chained in a secure manner. Once recorded on the blockchain, these

records cannot be altered or removed, thereby establishing a trustworthy system for verifying the integrity of the provenance
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information in a network environment that is vulnerable to diferent attacks. Table 12 provides an overview of the selected 
studies that uses blockchain-based methods to maintain the security of provenance data in IoT networks.

Baracaldo et al. [21] propose a framework in IoT environments to maintain and secure IoT provenance data, whose main 
features are: (i) use of a completely distributed lightweight keyless blockchain element (i.e. Keyless Signature Infrastructure 
Module (KSI) [29, 30]) to guarantee that the integrity of the provenance data is protected; (ii) maintenance of provenance 
information conidentiality by granting speciic access controls to various parties as required; and (iii) high level of availability 
of provenance. In addition, provenance data in [21] can be subject to restricted access policies. The integration of cryptographic 
algorithms in the solution ensures conidentiality since it is diicult to manage the low of data and its provenance in IoT 
contexts.

Zeng et al. [149] propose a blockchain-based data provenance scheme (BCP) which deploys a distributed blockchain 
database that is connected to the sensor network through edge computing. In this scheme, each node updates the provenance 
records along the packet data path. These records are obtained by high performance nodes (H-nodes), which are edge 
computing nodes placed either above or close to the WSN, through the process of packet sniing [115]. Then, the base station 
retrieves the provenance records by querying the H-nodes. Moreover, provenance records are stored in a blockchain-chain 
database after encryption through invoking a smart contract running on Ethereum Virtual Machine (EVM) [136]. In this 
model, each provenance record contains node ID, sequence number, hop count, sequence numbers of the aggregated packets, 
and the number of times a packet is aggregated.

In their work, Javaid et al. [74] propose a solution for data integrity and data provenance in IoT networks by using PUFs and 
a blockchain variant with smart contracts that is Ethereum. This method is called BlockPro. PUFs are used to maintain data 
provenance by providing unique hardware ingerprints. To overcome data tampering attacks and block unregistered devices, 
Ethereum is used as a decentralized digital ledger. With the presence of expanding sequence of records, data undergoes initial 
validation before being permanently stored on the blockchain. Once stored, it can not be tampered with or modiied, thus 
ensuring data integrity. Sigwart et al. [119] implement an IoT data provenance framework based on smart contracts using a 
generic data model to provide data provenance capturing, storing, and querying functionalities for diferent IoT use cases. This 
work extends their approach proposed in [118]. The framework uses the data provenance model by Olufowobi et al. [100]. 
The authors conduct an assessment of the proposed framework with speciied requirements through the implementation 
of a proof-of-concept using Ethereum smart contracts. In this approach, a provenance record (���� (��)) for a data point 
(��) is composed of a 3-part structure. It links the address (���� (��)) of �� (i.e. essentially an identiier ID) with the set of 
provenance records associated with the data points that are used to create a �� (referred to as �����(��)), and includes a 
context element (����� (��)). This element includes information for provenance purposes, such as details about the agents 
involved in the computation of the data point, timestamp, location, or the speciic execution context within the IoT system.

According to Liu et al. [87], a multilayer provenance query index and a blockchain-based architecture are proposed for 
the network provenance in the IoT: blockchain-based secure and eicient distributed network provenance (SEDNP). For 
efective representations in the Veriiable Computation (VC) framework, the design integrates range, keyword, and K-hop 
ancestor queries into a single model. The authors also create a digest hashing method that veriies the provenance log and 
index. With constant-size digests, they decrease the storage and processing costs associated with on-chain transactions 
regardless of the volume of data. Along with extensive security research, they formalize preserving security to record the 
requirements for the validity and integrity of the query results. Finally, using a proof-of-concept approach that combines the 
Pinocchio VC framework and a testing blockchain network, the authors analyze the implementation issues. For cloud-based 
IoT networks, Siddiqui et al. [117] provide an application layer data provenance system that relies on an execute-order 
architecture. By using outsourced encryption on Edge nodes using Ciphertext-Policy Attribute-based Encryption (CP-ABE), it 
allows fast transaction throughput on the blockchain network with minimal security overhead. The workload on the IoT nodes 
is reduced since every communication between IoT devices is connected to a blockchain network and recorded on authorized 
blockchain peers. Smart contracts are used to store the provenance data on the blockchain. The IoT Device Registration smart 
contract begins when an IoT node connects to the network. The Data Transfer smart contract is run whenever a message is 
transmitted from one IoT node to another. This is responsible for preserving the provenance information on the blockchain. 
The Provenance Veriication smart contract, which is in charge of conirming the provenance data, is then run when it has 
been conirmed that the message was transmitted by the appropriate IoT node.

In their work, Porkodi and Kesavaraja [106] present a framework to secure the data provenance by introducing blockchain 
and access control policies in IoT systems. They use hybrid attribute-based encryption to securely transmit provenance
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information. The proposed method is evaluated using diferent performance metrics such as computational cost and the

throughput of encryption/decryption, and the key strength is calculated using the efect of avalanche. Additionally, the authors

conducted experiments to prove that the proposed approach reduces computational cost and achieves high throughput.

Another solution is presented by Yin and Fu [144], which use blockchain and smart contract to develop a data provenance

scheme for IoT applications. The scheme includes a smart contract on the blockchain with reasonable access control policy.

The access authorization for users and data sources is limited to maintain security of generated data. For data security and

data integrity, the suggested approach implements two data structures: provenance record and provenance record set. To

achieve data provenance, blockchain’s non-repudiation is used. Access to the data is made secure by this structure. The

provenance system can continue to function and the smart contract may impose the data owner’s policy. To evaluate the

feasibility of the proposed scheme, Ethereum network test is used for veriication. Additionally, Sun et al. [128] construct a

blockchain-based IoT data provenance model through adapting the PROV data model (PROV-DM) [97] to address the issue of

recording provenance data generated by a multi-layer IoT system. The provenance elements are deined by PROV-DM along

with their connections. The W3C provenance family of standards has this conceptual data model as its basis. To create an IoT

data provenance model, it is therefore required to improve and expand the PROV-DM. In this work, authors present the needed

requirements to design and build a robust data provenance model. Then, they propose a model based on PROV-DM using a

blockchain network to secure provenance records from being tampered. To demonstrate how the suggested approach may be

used to build a provenance graph and identify which agent is operating IoT data abnormally, they provide an application

scenario in the IoT trustworthy data sharing system.

ProvNet, a distributed data sharing system that may ensure data ownership and accurately record and preserve data

sharing provenance, is proposed by Chenli et al. [39]. Users can share data in two ways: through the same service provider,

where provenance veriication and storage will be handled by the service provider and certain users; or through other

service providers, who will work together to maintain a provenance graph and authenticate sharing records. They suggest a

blockchain variant structure that can provide both forward and backward tracking in order to store the provenance information

during the sharing process. A directed graph is appropriate for keeping the provenance records because of the nature of data

sharing, which allows senders to re-share the datasets they receive and allows datasets to be shared among many recipients

simultaneously. ProvNet suggests storing the provenance records in a networked blockchain, or blocknet, as an alternative

to a single blockchain. In order to perform forward tracking, ProvNet selects redactable blocks [16, 27] and Chameleon

Hash [34, 83], allowing a block to record the hash value of its subsequent block while maintaining its own hash value.

After analyzing the selected state-of-the-art papers based on our proposed taxonomy in Figure 3, the indings of this

analysis are shown in Tablesin the Appendix, which can be found in supplementary materials online. Each paper is analyzed

based on the provenance encoding method, provenance storage method, application, security analysis, advantages and

shortcomings. The indings from this in-depth analysis of the presented literature is shown in details in the Discussion section

below.

8 Discussion

Data provenance can be used to detect errors in the diferent stages of data generation and processing enabling the system

to detect the nodes that produced those errors [143, 145, 146]. In addition, storing detailed information about data in the

provenance record allows for data recovery when data is no more usable to ensure availability and achieve normal data

communication within diferent network entities [50]. Data provenance enhances data readability when it includes detailed

information about the data’s origin and processing [69]. Furthermore, data provenance enhances data clarity, ensure data

reliability, and facilitates data reuse [76]. One of the most important features of data provenance is providing the system with

the ability to asses the trustworthiness of generated data through diferent secure provenance techniques [110]. However,

the size of provenance records depends on the number of nodes involved in generating the provenance information and the

quantity of attributes to be included in each record. To obtain a provenance chain that satisies security requirements, it is

essential to include many attributes that describes the origin, transformation, data path, data quality and any modiications

the data has undergone. In large-scale networks with an increasing number of nodes, the size of provenance information

grows rapidly, posing signiicant challenges in terms of storing and querying these records. This can limit the eiciency of

provenance analysis. There should be a trade-of between the number of attributes included in the records and the limitations



24 • O. Faraj et al.

Table 12. Overview of selected studies using blockchain-based methods for provenance encoding in IoT networks.

Reference Year
Provenance Encoding Provenance Storage

Application
Security

Pros Cons
Method Method Analysis

Blockchain-based

Baracaldo et al. [21] 2017
Keyless Signature

Infrastructure Module
(KSI)

Blockchain N/A ✗

Provenance data that is secured can only
be accessed by authorized users. Light-
weight and scalable architecture for IoT
applications.

Data points generated from IoT de-
vices/sensors are not secured when
communicated to the gateway and then to
the policy engine and KSI before storing
the provenance data as a transaction in the
blockchain.

Zeng et al. [149] 2018
Ethereum blockchain
using edge computing

nodes
blockchain database

Raspberry Pi Nodes and
micaz motes

✗

No provenance compression is needed.
Secure provenance storage through
blockchain database.

Each data packet requires a transaction for
updating provenance information. Large
number of generated data packets from sen-
sor nodes, requiring a complex and costly
method to store and query each prove-
nance record for the data packets from the
blockchain.

Javaid et al. [74] 2018 PUFs Blockchain
Linux working
environment

Prone to single point of failure due to the
decentralized architecture. Smart con-
tracts enable a safe and secure mecha-
nism for the transmission, authentication
and storage of requests.

Each PUF Challenge Response Pair (CRP)
and the address of IoT device is stored by
the smart contract. The huge number of data
generated makes it complex to store this
amount of data using a blockchain.

Sigwart et al. [119] 2020 Data points Blockchain-based General
A general framework for diferent IoT ap-
plications. Layered architecture of smart
contracts.

No consideration for the secure transmis-
sion of provenance records. New architec-
ture is needed in the IoT platform.

Liu et al. [87] 2020
Hash function and
K-Hop Ancestor

Blockchain
IoT application with
blockchain network

Examines existing security concerns in
the distributed IoT network architec-
ture. Uses blockchain as the fundamental
architecture for storing and retrieving
cross-domain provenance data by using
its decentralization and immutability.

Querying provenance information needs to
be optimized due to the cost of retrieving
on/of blockchain storage.

Siddiqui et al. [117] 2020
Ciphertext-Policy
Attribute based

Encryption (CP-ABE)
Blockchain and centralized database Cloud based IoT ✗

By applying partial signatures, it is possi-
ble to oload the blockchain method and
associated overhead from the IoT node
to the edge nodes.

Each provenance record must be stored
twice (requiring additional storage and com-
munication overhead), with the block be-
ing saved in the provenance database and
the provenance data being published on the
blockchain network by a provenance audi-
tor.

Porkodi and Kesavaraja [106] 2021
Hash function and

symmetric encryption
Blockchain IoT network

Multiple levels of authorities. Light-
weight key management.

Verifying data origin is not satisied. Needs
for provenance storage. Provenance infor-
mation is not suicient to establish trust-
worthiness in the system.

Yin and Fu [144] 2022 Smart contract Blockchain Ethereum network ✗

Users can not access provenance infor-
mation without access permission from
data owner. Each time an operation is
performed the authority is checked.

Provenance information needs to be commu-
nicated securely with the blockchain stor-
age. Each operation need to be set as a trans-
action to be stored within the blockchain,
which makes it complex.

Sun et al. [128] 2022
Hash function and

Homomorphic Signature
Blockchain

Multi-layer IoT
applications

✗

Detects abnormal data operations using
the provenance graph with integrity ver-
iication using a signature and a hash
function on each IoT node.

Provenance information is not securely com-
municated with the edge node or gateway.

Chenli et al. [39] 2022
Directed graph and
Chameleon Hash

Blockchain
Decentralized data
sharing applications

Performs both forward and backward
tracking. Uses networked blockchain in-
stead of single blockchain for storing
provenance records.

Costly in terms of computation and storage
for resource limited devices such as sensors
and devices in IoT networks.

in the computational capabilities of the system. This requires to determine the most important security requirements of the 
system and the needed attributes that satisies it with minimum storage and querying overhead.

The presence of constrained network components and limited resources in IoT environments presents several challenges 
for data provenance schemes. Based on the analyzed literature, any data provenance scheme designed for such environments 
must address multiple challenges to be efective [9, 122, 127]. One of the important challenges is minimizing bandwidth 
consumption while ensuring high data processing and throughput in the provenance infrastructure. Properly indexing the 
provenance records is also essential due to the extensive nature of complete provenance. Queries often involve more complex 
operations than simple name-based databases, requiring users to search for speciic data sets based on subsets of attributes and 
values within the provenance chain. Diferent users may query diferent attributes depending on their objectives, necessitating 
eicient indexing structures for databases across various dimensions. Additionally, managing the size of provenance data 
eiciently is crucial, as provenance records in large-scale systems typically exceed the size of the actual data when processed 
and transmitted.

Establishing secure transmission of provenance information and enabling the detection of malicious attacks with fast 
response from provenance management systems is vital. Eicient storage of provenance data is equally important, particularly 
as original data undergoes multiple hops and accumulates complex processing histories, resulting in large provenance 
information. There should also be lexibility in querying provenance data to allow reconstruction when an authorized entity 
queries it from the provenance storage entity. Collecting provenance information poses its own challenges, as different data
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features may be collected and stored based on the service and requirements of the IoT system. Often, the system requires the

collection of various operations or information about forwarding entities, necessitating efective handling of these records

from the generation of data to its inal receiving node.

Based on the insights gained from the analysis and in-depth study of the security techniques for data provenance presented

in Section 7, we can better understand the critical challenges and considerations outlined above. These security techniques

not only address the issues of trust and integrity within data provenance but also inform our recommendations for enhancing

the development and implementation of efective provenance solutions in IoT networks.

In the category table of the Appendix, we provide details on the evaluation mechanisms used by the various techniques,

categorizing them as hardware-based, cloud-based, or simulation-based (software-based or simulator). This resource aims to

assist researchers in exploring the diferent implementation tools and simulation software associated with each provenance

category. Our analysis reveals that the majority of studies predominantly use simulation-based approaches to implement and

test their techniques. These software-based simulators ofer lexibility and cost-efectiveness, making them a popular choice

among researchers. However, only a limited number of studies combine both hardware and simulator implementations, which

could provide a more thorough evaluation of the techniques in real-world scenarios. This observation highlights a potential

gap in the literature, where practical, hardware-based testing could validate the efectiveness of proposed solutions under

more realistic conditions. Encouraging a balance between simulation and hardware implementations may lead to more robust

and applicable techniques for data provenance in IoT environments.

Moreover, in the performance table in the Appendix, we present the performance metrics evaluated by various security

techniques for data provenance in IoT, based on a selection of recent literature. Our analysis reveals that while several metrics

are available for assessing the efectiveness of provenance mechanismsÐsuch as provenance length, energy consumption,

data packet size, link-loss rate, detection rate, false positive rate, false negative rate, and computation timeÐmost existing

studies focus primarily on a limited subset of these, typically provenance length, energy consumption, and computation

time. This selective focus indicates that while these metrics are essential, there is limited research that thoroughly evaluates

techniques across multiple performance dimensions. For instance, metrics like detection rate, false positive rate, and false

negative rate are important for assessing the security and reliability of provenance techniques. However, few studies include

these alongside resource-related metrics, such as energy consumption and computation time. Similarly, link-loss rate, which

can impact communication stability in IoT networks, is often overlooked. We observe a need for more holistic evaluations that

consider the full spectrum of performance metrics. Expanding future work to address this broader set of metrics could provide

more robust assessments of the practical feasibility of these techniques. This would also align with IoT requirements, where

both resource eiciency and high security are critical. The lack of studies that comprehensively address multiple performance

metrics highlights an area for further research in developing balanced, resource-conscious, and security-oriented solutions

for IoT provenance.

9 Research challenges and open issues

Following our analysis of the security techniques presented in Section 7 and the discussions in Section 8, we aim to foster

further dialogue and propose recommendations for advancing data provenance in IoT networks by outlining several open

problems, research gaps, challenges, and limitations identiied in the reviewed literature.

9.1 Research challenges Ð The integration of data provenance with IoT raises critical security concerns and in this section

we summarize some of the important challenges observed while integrating provenance with IoT.

• A irst challenge deals with provenance records processing and storage. Indeed, provenance information may be larger

than the data itself, since provenance records gets larger as the number of forwarding nodes increase. While some

applications may involve a small-scale network, there is a need for a complete provenance representation in the

provenance chain. This representation requires a number of attributes that need to be stored in the provenance records

which is also an issue with storage. Additionally, the diversity of IoT devices and sensors leads to a variety of data

types and formats.

• Provenance records must also accommodate to the diferent types, leading to a larger andmore complex datasets. Also, to

provide useful information from the history and processing of data, provenance records need to be detailed and granular.

This granularity adds to the size of the provenance dataset, especially when capturing detailed information about each

data transformation. In large-scale IoT deployments, devices are often interconnected in complex networks. Provenance
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records need to traverse these networks, leading to additional metadata and size considerations as data moves across

multiple devices and systems. Moreover, IoT devices may have limited storage and bandwidth capacities. Transmitting,

storing, and managing large provenance datasets can load these resources, impacting the overall performance and

eiciency of IoT networks. There exist some solutions to overcome this problem such as compression techniques.

These techniques have high loss rate and increase the computational complexity of the system with limited resources.

It is challenging to take into account the required information to be stored in provenance records and maintain, at the

same time, processing and storage overheads. Addressing the challenge of provenance size in IoT networks requires

careful consideration of storage solutions, data compression techniques, and protocols for optimizing data transfer and

processing. Balancing the need for detailed provenance information with the constraints of IoT environments is very

important for efective and eicient provenance management in IoT networks.

• A second challenge deals with provenance attachment to data packets. Making sure provenance lows with data is a

challenging task. Provenance is a type of metadata which increases in size as the number of forwarding nodes increases.

In an IoT network, data often traverses diverse and resource-constrained devices, making it essential to track the origin,

transformations, and actions performed on the data. Embedding provenance information directly into data packets

can be challenging due to constraints such as limited bandwidth, energy, and processing capabilities of IoT devices.

Maintaining a balance between the requirements of data provenance and the limitations of IoT networks is essential.

Addressing this issue involves developing eicient and lightweight methods for attaching and transmitting provenance

records with data packets and ensuring that the provenance information is captured throughout the data path across

the IoT network without causing signiicant overhead or afecting the functionality of the devices.

• Two additional challenges are related to provenance collection and provenance privacy. The former, provenance collection,

deals with the large amounts of data generated, usually in real time, in IoT network. This requires the need for tracking

its origin, transformations, and actions resulting in an overhead for collecting provenance records. Additionally, the

heterogeneity of IoT devices introduces complexities in standardizing provenance formats, as diferent devices may

generate diverse data types and use diferent communication protocols. The resource-constrained nature of many

IoT devices makes provenance collection more diicult, as it requires energy consumption, storage limitations, and

processing capabilities. Furthermore, extracting the provenance information from the networks that are designed

without considering the possibility of need for querying provenance information is a challenging task.

• Provenance privacy emerges as a challenge in IoT networks due to the sensitive nature of data and the wide number

of diferent interconnected devices. Provenance records, which trace the origin and transformations of data, provide

details about the context and usage history of information. In an IoT system, where diverse and personal data is

continuously generated, maintaining the privacy of individuals becomes essential. The challenge is to balance the

need for important provenance information while protecting user privacy. Dealing with these issues requires careful

consideration of secure transmission, encryption protocols, secure storage and access controls to ensure that while

provenance records remain efective for achieving security requirements, they do not compromise the privacy rights of

individuals and entities whose data contributes to the IoT network. Developing robust privacy-preserving mechanisms

becomes essential to address these concerns and achieve trust in the secure development of IoT networks.

9.2 Open issues Ð First, we identify some representative open issues and potential research directions which can help in

exploring diferent aspects of data provenance integration in IoT networks.

• Privacy and security of data stored on the blockchain: Integrating a blockchain with the IoT network provides

a robust database that provides integrity to the provenance records stored as transactions. These records include

sensitive information about the creation, processing and transmission of the data packets. Hence, it is essential to

preserve privacy while maintaining the integrity of the complete provenance chain. Attackers may try to obtain secret

information by analyzing the provenance chain which the blockchain holds. It is important to secure the records stored

on the blockchain.

• Range of studied atacks: Most of the proposed approaches focus on a very few and limited number of attacks.

In many cases, researchers take into account either data attacks or provenance attacks. Attackers aim to deceive

the system by targeting both data and provenance records. The majority of existing works focus on the forgery and

modiication attacks, which are the most common threats. It is clear, that almost all the proposed methods do not

consider chain tampering. As mentioned above, a complete provenance information of a particular data packet is
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created by connecting provenance records in a chain. The objective of an attacker is to change this chain’s sequence

and contents to afect the accuracy and dependability of the provenance data. Hence, to develop any solution for

provenance in IoT, the robustness of the system against data and provenance attacks must be taken into account.

• Watermarking as a solution: Maintaining data integrity through procedural requirements is the major goal of

watermarking system design. These requirements cover node ownership, data integrity, and bandwidth establishment.

Embedding a watermark with data is the main technique to achieve the requirements in watermarking schemes [44, 67,

102, 126, 127]. The criteria used in the generation of watermarking schemes is not restricted to WSN; it also includes

the security of multimedia programs [49, 64, 107, 125] and database formation [40, 72, 80]. This wide range of domains

allows watermarking to be one of the lightweight solutions in limited networks such as IoT. Hence, the features of

data hiding that watermarking provides a new provenance encoding technique to store provenance records in an

eicient way in-terms of storage and transmission overhead. Only one relevant work [125] considered watermarking

for data provenance. They consider inter-packet timing characteristics for embedding provenance information and

does not use the data features and watermarking embedding with the data packets. This technique can be used to

develop lightweight solutions for the limitations of IoT networks in terms of storage and computation.

• Lack of complete provenance management system and narrow focus: The literature is still missing a robust

provenance management system that take into account all required procedures from collecting, storing and analyzing

provenance information. The system should satisfy the security requirements while maintaining storage and data

management issues. To achieve this, these systems should be designed based on the architecture of IoT networks, taking

into account various factors, such as communication protocols, computational capabilities, storage limitations, node

coordination, database integration, and potential security attacks against data and provenance records. Additionally, it

is essential to thoroughly test the robustness of the proposed provenance system, assessing its performance across

all relevant metrics. This approach ensures that the system complies with all the necessary objectives, rather than

evaluating its performance based on only a subset of criteria. Many of the existing approaches fail to adequately address

these important issues while maintaining the security of provenance data. Furthermore, the proposed provenance

approaches focus on a speciic application for a speciic domain. The fast development of interconnected applications of

diferent domains require adapting these techniques to be applied to multiple domains that include diferent structure

of provenance records.

• Lack of eicient query and provenance support: In IoT networks, which involve numerous interconnected devices

generating huge amounts of data, eiciently querying and managing the history and transformations of this data is a

complex task. The absence of efective mechanisms for querying and handling provenance can hinder the ability to

trace the origin and processing of data, resulting in a limitation in providing security, freshness, and scalability in IoT

applications. Addressing this issue involves developing more eicient and scalable methods for querying and managing

provenance data in the unique and dynamic environment of IoT networks.

• The storage of blockchain is expensive: Blockchain relies on a decentralized and distributed network of nodes,

each maintaining a copy of the entire blockchain. While this redundancy enhances security and fault tolerance, it

signiicantly increases the storage requirements. In IoT networks, with a large number of devices generating data, the

continuous increase in the size of the blockchain can grow rapidly. Additionally, achieving scalability in blockchain

networks, especially in public networks, is a known challenge. As the number of transactions and participants increases,

maintaining the performance and eiciency of the blockchain becomes a complex task, hence requiring more robust

infrastructure and resulting in an increased operational costs. In order to overcome the issue of expensive storage in

blockchain-based data provenance for IoT networks, researchers should develop a more scalable and eicient validation

mechanisms, optimization of data storage techniques, and alternative blockchain architectures in IoT that balance the

advantages of security with the need for cost-efective scalability in the context of IoT data provenance.

• Integrating data provenance with Intrusion Detection System (IDS): Adding data provenance to system logs

transforms them from simple records into rich sources of security insights which are used in traditional Host-based

Intrusion Detection Systems (HIDS). This helps investigators to detect security threats with greater accuracy, minimizing

computational time and resources on false alarms, as extensive research has documented [18, 22ś24, 45, 52, 53, 55, 61, 65,

133, 137ś139]. Data provenance can be integrated with HIDS to improve intrusion detection. IDS based on provenance,

known as Provenance-based Intrusion Detection Systems (PIDS), leverage data provenance to identify intrusions.

This involves examining not only the properties of system entities but also dealing with the causal relationships
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and information low within a provenance graph [151]. However, the integration of data provenance and IDS in

IoT networks has not been widely studied. This opens an important ield for researchers to study, addressing the

signiicance of integrating data provenance in IoT networks and exploring its various applications for enhancing

intrusion detection.

10 Conclusion

This review explores the integration of IoT and data provenance, addressing the vulnerabilities in IoT networks and the need

to ensure data trustworthiness, data quality, traceability, and security. The IoT, with its huge network of interconnected

physical objects, has engaged applications in many domains, but its risk of cyber attacks is a growing concern. This paper

aims to ill the gap by analyzing the integration of data provenance with IoT networks which is considered as a security

measure to securely transmit IoT data and ensure data trustworthiness, a concept originally used in heterogeneous database

systems. The core objective of our research was to provide a detailed review of existing data provenance techniques in IoT

networks, presenting their advantages, limitations, and their application in ensuring security requirements. We also examined

the encountered attacks and performance metrics used to evaluate security requirements and system eiciency. Through a

well structured taxonomy, we categorized diferent attributes related to the development of data provenance in IoT, helping

researchers for a better understanding of this ield.

The indings of this study provide the importance of addressing the security challenges in an environment characterized by

rapid data transmission, limited storage capabilities, bandwidth constraints, and energy limitations in IoT networks. We have

highlighted the need for secure, eicient and practical implementation of data provenance techniques. Moreover, we have

identiied that, while data provenance has been extensively studied in many domains, it remains an under explored area in the

context of IoT networks. The lack of a systematic literature review in this ield motivated us to conduct this research, serving

as a valuable resource for researchers. We have also addressed the following research questions: (1) How data provenance is

linked to IoT networks?; (2) What are the provenance storage techniques, attacks and security requirements when integrating

provenance with IoT?; (3) How can data provenance security approaches for IoT networks be categorized?; (4) What are the

existing practical implementations of data provenance in IoT?; (5) What are the advantages and limitations of the proposed

techniques for data provenance in IoT in the studied literature? and (6) What are the main research gaps and challenges in the

domain of data provenance in IoT networks?. In our discussion, we have explored the diferences between our review and the

related research, presenting unresolved issues, research challenges and potential directions for future research. Hence, we

have addressed both the signiicant challenges and the evolving issues within data provenance in IoT.
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