
Pilot Contamination Attack Detection in 5G Massive MIMO
Systems Using Generative Adversarial Networks

Fatemeh Banaeizadeh∗, Michel Barbeau∗, Joaquin Garcia-Alfaro†, Evangelos Kranakis∗, Tao Wan∗,‡

∗ School of Computer Science, Carleton University, K1S 5B6, Ottawa, Ontario, Canada
Email: FatemehBanaeizadeh@cmail.carleton.ca, {barbeau,kranakis}@scs.carleton.ca
† Institut Polytechnique de Paris, Telecom SudParis, 91120 Palaiseau, France

Email: joaquin.garcia alfaro@telecom-sudparis.eu
‡ CableLabs, 858 Coal Creek Circle Louisville, Colorado, USA

Email: t.wan@cablelabs.com

Abstract—Reliable and high throughput communication
in Massive Multiple-Input Multiple-Output (MIMO) systems
strongly depends on accurate channel estimation at the Base
Station (BS). However, the channel estimation process in massive
MIMO systems is vulnerable to pilot contamination attacks,
which not only degrade the efficiency of channel estimation,
but also increase the probability of information leakage. In
this paper, we propose a defence mechanism against pilot
contamination attacks using a deep-learning model, namely
Generative Adversarial Networks (GAN), to detect invalid uplink
connections at the BS. Training of the models is performed
via legitimate data, which consists of received signals from
valid users and real channel matrices. The simulation results
show that the proposed method is able to detect the pilot
contamination attack with 98% accuracy in the best scenario.

Keywords: Massive MIMO, Pilot Contamination Attack, Gen-
erative Adversarial Network, Network Security.

I. INTRODUCTION

Fifth generation cellular networks (5G) offer high data rates,
low latency, reliability and security through key technologies
such as massive MIMO, millimeter wave, and software-defined
wireless networks. Among all-aforementioned technologies,
massive MIMO is one of the most promising innovations that
has attracted the attention of the research community in recent
years. This technology is an evolved version of conventional
MIMO used in 4G. It is able to address the shortcomings of
conventional MIMO such as high computational power, high
cost, and lack of scalability. It can also achieve greater spectral
efficiency than 4G [1], [2].

In massive MIMO systems, the Base Station (BS) in each
cell is equipped with a few hundreds of antennae serving
single-antenna users at the same time and frequency do-
mains. The communication channel between a BS and a
user comprises an uplink channel, from user to BS, and a
downlink channel, from BS to user. The uplink channel is
the focus of this research. The uplink channel is used for
sending training sequences (pilots) and data. Users first send
orthogonal pilots to the BS on the uplink. Then, the BS utilizes
the received orthogonal pilot sequences to estimate channels
and get the Channel State Information (CSI). Accurate channel

estimation has considerable impact not only on achieving
reliable downlink communications, but also on improving
user throughput. However, impairments such as interference,
propagation channel effects, and pilot contamination reduce
the accuracy of channel estimation, thus degrading the perfor-
mance of massive MIMO systems [3]. In this paper, the main
focus is on the pilot contamination issue, a major impairment
to channel estimation. We propose a defence mechanism,
using a deep-learning method called GAN, to detect pilot
contamination originating from the impersonation of valid
pilots by an adversary.

In general, the CSI plays a vital role in the channel esti-
mation process. The BS can obtain this information through
orthogonal and unique pilots, which are sent by legitimate
users. CSI acquisition can be based on a reciprocity concept
in Time-Division Duplex (TDD) based systems or feedback
in Frequency-Division Duplex (FDD) based systems. Advan-
tages, such as less overhead and one-way channel estimation,
have made TDD systems more popular than FDD systems.
However, the TDD systems suffer from limitation of co-
herence interval, especially in networks with high mobility.
This limitation prevents the assignment of unique orthogonal
pilots to users in a dense cell, or in a multi-cell network,
which increases the reuse of orthogonal pilots. It also causes
pilot contamination problems [3]. From a security standpoint,
adversaries can impersonate valid orthogonal pilots to inten-
tionally cause the pilot contamination phenomenon, e.g., to
compromise channel estimation in the BS and change the
beamforming direction to facilitate some other attacks [4].

Since pilot contamination attacks significantly reduce net-
work throughput and threaten data confidentiality, we are
motivated to find a mitigation strategy to this problem. In
recent years, the use of neural network techniques in wireless
communications has shown great progress in solving problems
like channel estimation, signal detection (i.e., estimation of
transmitted data symbols by users in the BS) and attack
detection [5], [6]. In the security area, the use of neural
networks allows the BS to learn the features of normal data
during the training phase, hence, enabling the BS to identify
and discard abnormal data during the remaining phases.



In this paper, we propose a method to detect pilot con-
tamination attacks using a GAN-based approach. Our defence
mechanism allows the BS to detect impersonation of legitimate
users in the network. GAN is a deep-learning technique which
combines two types of neural networks simultaneously [7]:
a generative network, named Generator (G) and a discrim-
inative network named Discriminator (D). Traditionally, G
produces invalid (i.e., fake) data, which resembles legitimate
data. D is responsible for detecting the invalid data. The two
networks (both G and D) play a minimax game during the
training phase, until they reach an optimal phase (e.g., Nash
equilibrium). Therefore, G and D act as adversaries during
the training phase (while improving their skills), until the
equilibrium is reached between them [8].

The main contributions of this paper are as follows: (1) we
propose a security framework in the BS to detect pilot con-
tamination attacks in massive MIMO systems without the
need for complex mathematical operations; (2) the BS does
not need to have a priori knowledge of either the user’s
or the adversary’s channel parameters, because it learns the
distribution of the channels during the training phase; and
(3) our simulation results show a high detection accuracy,
hence validating the feasibility of our approach to detecting
the malicious impersonation of pilot sequences.

The remaining sections are organized as follows. Section II
presents the literature review. Sections III and IV provide the
system and threat model, respectively. Section V describes the
architecture of our proposed GAN. Section VI provides the
experimental work. Section VII concludes the paper.

II. RELATED WORK

In this section, we discuss existing techniques for mitigating
pilot contamination attacks in massive MIMO systems. In [9],
the authors present a low-complexity detector of pilot contam-
ination attack for single-cell networks. The method assumes
that the BS has a priori knowledge of the adversary’s channel
parameters, which may not be practical in real settings. The
use of a Phase-Shift Keying (PSK) based detection method
is proposed in [10]. The idea is to use a set of random PSK
symbols as stochastic pilots, which are sent by the users during
the channel training phase. The BS uses the stochastic pilots
to calculate their phase difference and detect anomalies, i.e.,
to detect the presence of adversaries.

The effect of pilot contamination attacks on channel estima-
tion and downlink transmission rates is evaluated in [11]. The
authors present simulation results to show how an adversary
can reduce the downlink throughput by more than 50%,
especially when the adversary is located much closer to the
BS than the legitimate users.

All the aforementioned methods are based on a statistical
analysis of the received signals, whose computational com-
plexity increases as the number of BS antennae grows. In
contrast, the use of learning approaches like GAN can provide
low-overhead defence strategies for attack detection. In [12],
the authors present a method for detecting pilot contamination

attacks in 5G grant-free IoT networks. A GAN approach is
presented to generate the synthetic samples used during the
training of a neural network. The resulting approach uses
characteristics of Channel Virtual Representation (CVR) like
Angle-of-Arrival (AoA) to detect the dissimilarity between
signals from the adversary and the legitimate users.

In our work, we evaluate the use of a GAN-based method-
ology to construct a pilot contamination attack detector. The
generator acts as an estimator of valid channels from noisy
signals, while the discriminator acts as the pilot contamination
attack detector. We validate our approach via simulation. The
results show the feasibility and effectiveness of the approach.

III. SYSTEM MODEL

We consider a single-cell massive MIMO system equipped
with K single-antenna users and a M -antenna BS. The chan-
nel vector (h ∈ CM×1) between each user and the BS antennae
is modeled by a correlated-Rayleigh fading channel [13], [14]:

h = R1/2
r hiid (1)

where hiid ∈ CM×1 is an independent realisation of a
Rayleigh fading channel with Gaussian distribution, and R ∈
CM×M is the correlation matrix in the receiver side (BS)
which shows correlation between antenna elements in the BS.
In fact, R is a matrix that is complex conjugate symmetric.
It has a Toeplitz structure. The correlation coefficient of each
pair of antennae is expressed by the following equation:

ρrij =
E[hkih

∗
kj ]− E[hki]E[h∗kj ]√

V ar[hki]V ar[hkj ]
(2)

where ρrij is an element of Rr which shows the correlation
coefficient between antennae i and j in the BS, hki ∈ CM×1,
hkj ∈ CM×1 are the channel of user k with antennae i and j
in the BS respectively, E[hkih

∗
kj ], V ar[hki] and h∗kj are the

expected value, the variance and the conjugate transpose of
channel of user K and antenna j in the BS, respectively.

In a normal situation, the received signal (Y ∈ CM×τ ) at
the BS from all the legitimate users is expressed as follows:

Y =

K∑
i=1

√
Pihiφi + n (3)

where
√
Pi is the uplink transmit power of the ith user, hi ∈

CM×1 is the uplink channel of the ith user, φi ∈ R1×τ is
the orthogonal pilot sequence of ith user with length τ . We
can generate K orthogonal pilot sequences with length τ via a
Hadamard matrix [15] in Matlab™, n ∈ CM×τ is the additive
white Gaussian noise matrix at the BS.

The BS uses the received signal and known orthogonal pilot
sequences to estimate user channels and adopt precoding and
downlink beamforming.

IV. THREAT MODEL

The threat model used in our work comes from [16], [17]. We
assume the presence of an active adversary. First, the adversary
eavesdrops signals between the BS and a legitimate user. Later



on, the adversary impersonates the legitimate user with respect
to the BS. We assume that the eavesdropping phase can affect
both the uplink and downlink signals.

More precisely, and during the eavesdropping phase, the
adversary identifies pilots being used by the legitimate user.
Then, during the impersonation phase, the adversary synchro-
nizes with the victim (i.e., the legitimate user) and imperson-
ates the user with synthetic versions of the pilots, in order
to compromise the orthogonality and accuracy properties of
the channel estimation between the BS and the victim. If the
attack is successful, the received signal at the BS is combined
with the signal sent by the attacker and changed as follows:

Y =

K∑
i=1

√
Pihiφi +

√
PAhAφA + n (4)

where
√
PA is the uplink transmit power of adversary, (PA =

Pi = 1), and hA ∈ CM×1 is the channel matrix of the
adversary. Notice that if the BS is not able to detect the attack,
the downlink data is beamformed towards the adversary and
the victim (i.e., both the adversary and the victim will receive
the downlink signals after the attack). Hence, a successful
attack will put at risk the reliability and confidentiality of the
communications between the BS and the victim. Notice as
well that the pilot signal that the adversary sends to the BS is
the same as the one used by the victim. Therefore, it violates
the orthogonality rule and increases interference (due to the
non-orthogonality of the two pilot sequences).

Next, we propose a defence method that allows the BS to de-
tect pilot contamination attacks, after a period of training. The
approach assumes the use of Generative Adversarial Networks
(GAN), directly executed by the BS. The discriminator (D)
used in our GAN architecture acts under the role of a BS. The
goal is to learn the distribution and features of legitimate data
during the training phase. Then, during the testing phase, D is
able to detect invalid data, i.e., channels that present anomalies
with respect to those legitimate channels used during the
training phase, thus discarded as pilot contamination attacks.

V. GAN-BASED PILOT CONTAMINATION DETECTION

GAN is a deep learning technique. It consists of two indepen-
dent neural networks, namely the Discriminator (D) and the
Generator (G) [7]. They play a minimax game until reaching
an optimal status, when D is not able to distinguish the
real data from the synthetic data. In other words, G receives
random noise (z) from a distribution Pz and generates a
synthetic sample G(z) with distribution Pg . G learns the
distribution of the real data (Px) during the training, in order
to create synthetic data that can be validated by D as real data,
i.e., G aims at minimizing the power of D in differentiating
real data from synthetic (fake) data. The objective function of
G is expressed as follows:

min
G

V (D,G) = Ez∼pz [log(1−D(G(z))] (5)

where z is random noise from a normal distribution, Ez∼pz is
the expected value on synthetic samples, G(z) is the output

of G after mapping noise to the real data, and D(G(z)) is the
output of D for G(z), which shows the probability whether it
is synthetic or real data.

Likewise, D tries to maximize the probability of properly
differentiating legitimate (real) data from invalid (fake) data,
as follows:

max
D

V (D,G) = Ex∼px [logD(x)]+

Ez∼pz [log(1−D(G(z))] (6)

where x is a sample from legitimate data, Ex∼px is the
expected value on legitimate samples, and D(x) is the output
of D for x, which comes from legitimate data.

The minimax game between the two networks (D and G)
is modeled as follows:

min
G

max
D

V (D,G) = Ex∼px [logD(x)]+

Ez∼pz [log(1−D(G(z))] (7)

Our proposed GAN architecture is depicted in Fig. 1. The
design of D contains four layers. The three first layers consist
of Convolutions, followed by Batch Normalization, Leaky
ReLU, and Dropout operations. The output layer is composed
of a linear activation function that is followed by a Mean
Square Error (MSE) layer, acting as a loss function. The use
of the MSE layer as a loss function during the training phase
makes the optimization process much easier [18]. Its aim is
twofold. First, it helps at having a more stable training process,
since D learns to reject the outputs that G stabilizes on, forcing
G to try something new at each iteration. Second, it forces
G to have a better channel estimation process (i.e., a more
realistic Ĥ) from the noisy received signals (Y ), based on the
difference from the decision boundary (which is derived from
the linear activation function). In fact, G is forced to move
near legitimate channel data. The difference to the decision
boundary is calculated as a loss function by D and is back-
propagated to G. The inputs for D are the legitimate channel
(H) and the channel generated by G (Ĥ).

Fig. 1 also depicts the design of G. It is constructed as
a channel estimator, with encoding and decoding blocks. It
generates Ĥ from Y . In the image processing area, similar
designs are used by autoencoders to reconstruct real images
from noisy (high quality) images. In our case, since the signals
received by the BS are combined with noise, we process the
received signals as if they were noisy images, hence using
an autoencoder architecture for G. This way, G can estimate
and generate channel matrices from noisy signals. Based on
this idea, G is composed of four encoding blocks and four
decoding blocks. Each encoding block consists of layers with
Convolutions, followed by Batch Normalization and ReLU
operations. The output of the last encoding block is sent to
the first decoding block. Each decoding block is composed of
Transposed Convolutions, followed by Batch Normalization
and ReLU operations. The last layer of the last decoder uses a
tanh activation function, to scale up the output values in the
range −1 and 1.



Adam optimization with learning rate equal to 2× 10−4 is
used to update the weights of D and G during the training via
Back-propagation. The initial weight is set to 0.02. The size
of the filters in both D and G is equal to (4,4). The number
of filters in the layers of D and G are (64,128,256,1) and
(128,128,64,32,32,64,128,2), respectively.

Discriminator (D)

H

Convolution

Batch Normalization

Leaky ReLU

Dropout

Flatten

Dense

MSE

Legitimate or Invalid?

Generator (G)

tanh

Ĥ

ReLU

Batch Normalization

Y






Decoding

Blocks






Encoding

Blocks

Convolution

ReLU

Batch Normalization

Transposed Convolution

ReLU

Batch Normalization

Convolution

ReLU

Batch Normalization

Convolution

ReLU

Batch Normalization

Convolution

ReLU

Batch Normalization

Transposed Convolution

ReLU

Batch Normalization

Transposed Convolution

Transposed Convolution

Convolution

Batch Normalization

Leaky ReLU

Dropout

Convolution

Batch Normalization

Leaky ReLU

Dropout

Fig. 1. Architecture of our proposed GAN

According to the defined inputs and outputs in our proposed
GAN-based attack detection method, the minimax loss func-
tion of our GAN design is changed as follows:

min
G

max
D

V (D,G) = EH∼pH [logD(H)]+

EY∼pY [log(1−D(G(Y, φ))] (8)

where H is the legitimate channel matrix and G(Y, φ) is the
channel generated by G (i.e., Ĥ).

VI. EXPERIMENTAL WORK

We evaluate our work via simulation. We use Matlab™, to
simulate a single-cell network and produce the training data.
Then, we experiment with the training and detection pro-
cesses using Python, under the Google Colaboratory (Colab)
environment [19]. The code and results of our simulations
are available online, in a companion github repository [20].
Next, we provide some more details and results about our
experimental work.

TABLE I
SIMULATION PARAMETERS IN MATLAB’S 5G TOOLBOX™

Parameter Value
Number of antenna BS 64

Number of users 8
Pilot length 8

Channel model Correlated Rayleigh Fading
Training dataset size 4000
Testing dataset size 1000

Size of received signal (Y ) (64,8,2)
Size of channel matrix (H) (64,8,2)

A. Training Phase

The training process is conducted in Python, using Google’s
Colab. Algorithm 1 summarizes the main steps of the process.
To train the model, we simulate a single-cell network using
Matlab™ with the characteristics indicated in Table I. The
cell is equipped with a 64-antenna BS and 8 legitimate users.
Orthogonal pilot sequences with length τ = 8 are generated
for each user, using a Hadamard matrix. The training data
only contains legitimate data. Such a training dataset consists
of 4000 received signals (Y ), used as the input of G, as well as
the corresponding dataset with 4000 legitimate channels (H)
for D. Each received signal (Y ) and each legitimate channel
matrix (H) corresponds to a three dimensional matrix of size
(64,8,2). The third dimension shows the values of real and
imaginary parts of the received signal (channel) matrix.

B. Testing Phase

After the training phase, the weights of the resulting trained
G and D networks are stored and evaluated in a secondary
phase, with regard to a second, different, dataset (cf. Table I).
The testing phase is also conducted in Python, under the same
computational environment (i.e., Google’s Colab).

The testing phase validates the accuracy of the trained GAN
in detecting the pilot contamination attacks. It selects a given
legitimate user (i.e., User 1) as the victim. Then, the adversary
impersonates the victim to communicate with the BS. During

Algorithm 1 Training Process
Collect the training dataset and add one size
N = BatchSize
NumBatchSize = TrainingDataSize/N
for i← 1 to Epoch do

for j ← 1 to NumBatchSize do
Select N invalid samples (Ĥ) from G
Select M legitimate samples (H) from the dataset
Label legitimate samples as 1 and invalid samples as 0
Train D to differentiate legitimate from invalid samples
Calculate loss and accuracy of D and update its weights

∇PH
1
M

∑M
k=1[logD(HK)] + [log(1−D(G(YK , φK))]

Select N samples from the received signals (Y )
Estimate the channel (Ĥ)
Calculate loss of G and update its weights

∇PY
1
N

∑N
k=1 log(1−D(G(YK , φK))

http://j.mp/mimoGAN


the testing phase, the output of G, together with legitimate
data, is fed to D. The output of D is distributed in the range
(−1, 1). By using the linear activation function in the last layer
of D, we can determine a decision boundary (i.e., threshold)
to distinguish legitimate data from invalid data.

The outputs of D for legitimate and invalid data shows that,
approximately, most invalid data is distributed in the range
(−0.001, 0.001), while the legitimate data are distributed out
of this range. In order to select the appropriate threshold, we
calculate the absolute value of the outputs of D, to differentiate
legitimate data from invalid data, based on their magnitude
(regardless of the sign). The outputs of D are tested with
different thresholds. Values higher than the threshold are
counted as legitimate data. Values lower than the threshold
are counted as invalid data.

C. Results

Fig. 2 shows the results of simulations composed of 63 batches
per epoch, up to 200 epochs (i.e., 12600 batches). Fig. 2(a)
shows D vs. G loss during the training process. Similarly,
Fig. 2(b) shows the accuracy of D during the same process.
On average, a training based on 12600 batches takes about 15
minutes when using GPU hardware acceleration (with RAM
consumption of about 1 GB and storage consumption of about
30 GB). Table II shows the runtime execution performance
for other three representative batch sizes (1024, 4096, and
8192). From Fig. 2, we see that both D and G reach an
equilibrium after 100 iterations (i.e., more than 6000 batches),
in which G has already approximated the distribution of
legitimate channels, i.e., G is able to estimate the channel
matrix between the BS and users from the received signal

0 2000 4000 6000 8000 10000 12000
Batch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Legitimate Data 

Invalid Data

(a)

0 2000 4000 6000 8000 10000 12000
Batch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Invalid Data Legitimate Data

(b)

Fig. 2. Training. Light gray represents invalid data. Dark gray
represents legitimate data. (a) D vs. G loss during the training process.
(b) Accuracy of D during the training process.

TABLE II
RUNTIME PERFORMANCE

Number of Max. number Hardware Acceleration
Epochs of Batches GPU TPU None

16 1024 120 s 1000 s 1200 s
64 4096 300 s 5000 s 5100 s
128 8192 600 s 9600 s 9700 s
200 12800 900 s 15372 s 16500 s

with less error, while D is not able to distinguish it from
the legitimate data with high accuracy. From Table II we see
that, with GPU hardware acceleration, the time consumption
to reach the aforementioned equilibrium is about 10 minutes,
hence validating the feasibility of our proposal in terms of
time constraints for a single adversary targeting a single pilot
contamination attack. Notice that collusion of adversaries, in
order to target several pilots per BS, is also feasible via
learning parallelization strategies [21].

Fig. 3 shows the accuracy of our attack detection method,
through Receiver Operating Characteristic (ROC) curves for
five different threshold values. Additional information is pro-
vided in Table III, with some other metrics, all reporting
the proportion of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN) in metrics
such as Accuracy ((TP + TN)/(TP + TN + FP + FN)),
Precision (TP/(TP + FP)), Recall (TP/(TP + FN)), and F1

Scoring TP
TP+ 1

2 ·(FP+FN)
. The highest accuracy is obtained with

a threshold of 0.001, reaching about 98% (i.e., TP= 1000,
FP= 0, FN= 47, and TN= 953).

Threshold = 0.001    Area = 0.98

Threshold = 0.002    Area = 0.95

Threshold = 0.003    Area = 0.92

Threshold = 0.004    Area = 0.89

Threshold = 0.005    Area = 0.86

Fig. 3. Receiver Operating Characteristic (ROC) curves

TABLE III
DETECTION PERFORMANCE W.R.T. THRESHOLD VALUES

Threshold Accuracy Precision Recall F1 Scoring
0.001 98% 100% 95.5% 97.5%
0.002 95% 100% 89.8% 94.6%
0.003 92% 100% 84.0% 91.0%
0.004 89% 100% 77.0% 87.5%
0.005 86% 100% 72.4% 83.9%



D. Discussion and Future work

Our work shows the initial steps and results as well as the role
of adversarial models in the detection of pilot contamination
attacks in massive MIMO systems. Although the proposed
GAN-based security framework shows a high accuracy in
detecting pilot contamination attacks, it might also encounter
major challenges in dense single-cell networks (i.e., those that
do not use unique orthogonal pilot sequences for all users or
in multi-cell networks when the same set of pilots is used
in all cells). In such networks, the adversary is not the only
underlying cause of pilot contamination. Legitimate users in
neighbor cells may also reuse orthogonal pilots, resulting in
signal interference to the BS.

The aforementioned issues give rise to some research
questions for future work that are as follows: (1) How to
distinguish the received interference from a legitimate user and
the received interference from an adversary against the BS?
(2) In the proposed method, we consider the worst situation
in which both a user and an adversary send pilot sequences
simultaneously; but, if the adversary is located close to the
location of a legitimate user and sends the pilot while the
legitimate user does not send the pilot, how can this be
detected by the BS? (3) After detecting the attack, how can
we avoid that the downlink signals sent to the legitimate users
are intercepted by the adversary?

Future experimental work shall also enhance the datasets,
e.g., by including as well the Angle-of-Arrival (AoA), the
Angle-of-Departure (AoD) and the received signal strength,
w.r.t. the location of legitimate users and the BS. This will
help the BS to take into account further characteristics of
legitimate signals vs. invalid signals. It will also enable the BS
to correlate the received signals of mobile users at different
time intervals, e.g., base on their speed and location.

VII. CONCLUSION

Pilot contamination attacks against massive MIMO systems
can increase the probability of information leakage. Utilization
of learning approaches, such as neural networks, converts the
BS to a powerful classifier capable of detecting the presence
of adversaries in the network. In this paper, we proposed
a GAN-based approach that enables the BS to detect the
non-legitimate use of pilot sequences in single-cell networks.
We empirically validated, via simulation, the efficiency of the
proposed defence strategy in distinguishing legitimate signals
from invalid ones. The method increases the robustness of the
BS against pilot contamination attacks. We hope our work,
albeit with limitations, can encourage more research into the
use of machine leaning in 5G and future networks to improve
network performance.

Acknowledgements — Research supported in part by NSERC
(Natural Sciences and Engineering Research Council) of Canada
and MITACS (Mathematics of Information Technology and Complex
Systems) grants.

REFERENCES

[1] T. L. Marzetta, “Massive MIMO: An Introduction,” Bell Labs Technical
Journal, vol. 20, pp. 11 – 22, 2015.

[2] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE Journal
of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742 – 758,
2014.

[3] O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya, “A
Comprehensive Survey of Pilot Contamination in Massive MIMO—5G
System,” IEEE Communications Surveys and Tutorials, vol. 18, no. 2,
pp. 905 – 923, 2016.

[4] X. Zhou, B. Maham, and A. Hjorungnes, “Pilot contamination for
active eavesdropping,” IEEE Transactions on Wireless Communications,
vol. 11, no. 3, pp. 903–907, 2012.

[5] T. Erpek, T. J. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C. Clancy, “Deep
Learning for Wireless Communications,” arXiv:2005.06068, pp. 1–33,
2020.

[6] M. B. Mashhadi and D. Gunduz, “Deep Learning for Massive
MIMO Channel State Acquisition and Feedback,” arXiv preprint
arXiv:2002.06945, 2020.

[7] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial net-
works in computer vision: A survey and taxonomy,” arXiv preprint
arXiv:1906.01529, pp. 1–16, 2019.

[8] C. C. Aggarwal et al., “Neural networks and deep learning,” Springer,
vol. 10, pp. 978–3, 2018.

[9] M. Hassan, A. Ahmed, and M. Zia, “Detection of Pilot Contamination
Attack in Massive MIMO System,” 52nd Asilomar Conference on
Signals, Systems, and Computers, pp. 1674–1678, 2018.

[10] D. Kapetanović, G. Zheng, K.-K. Wong, and B. Ottersten, “Detection
of Pilot Contamination Attack Using Random Training and Massive
MIMO,” 24th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), pp. 13–18, 2013.

[11] B. Akgun, M. Krunz, and O. O. Koyluoglu, “Pilot Contamination
Attacks in Massive MIMO Systems,” IEEE Conference on Communica-
tions and Network Security (CNS), 2017.

[12] B. Akgun, M. Krunz, and O. O. Koyluoglu, “Pilot Contamination
Attack Detection for 5G MmWave Grant-Free IoT Networks,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 658 –
670, 2021.

[13] T. Brown, E. D. Carvalho, and P. Kyritsi, Practical Guide to the MIMO
Radio Channel with Matlab Examples. John Wiley and Sons Ltd, 2012.

[14] E. Björnson, J. Hoydis, and L. Sanguinetti, Massive MIMO Networks:
Spectral, Energy, and Hardware Efficiency, vol. 11(3-4). Now Publishers
Inc. Hanover, MA, USA, 2017.

[15] K. J. Horadam, Hadamard matrices and their applications. Princeton
university press, 2012.

[16] L. Sun and Q. Du, “Physical Layer Security with Its Applications in 5G
Networks: A Review,” China Communications, vol. 14, no. 12, pp. 1–14,
2017.

[17] D. Kapetanovic, G. Zheng, and F. Rusek, “Physical layer security for
massive MIMO: An overview on passive eavesdropping and active
attacks,” IEEE Communications Magazine, vol. 53, no. 6, pp. 21 – 27,
2014.

[18] J. Brownlee, Generative Adversarial Networks with Python, Deep Learn-
ing Generative Models for Image Synthesis and Image Translation.
Machine Learning Mastery, 2019.

[19] E. Bisong, “Google colaboratory (colab),” in Building Machine Learning
and Deep Learning Models on Google Cloud Platform, pp. 59–64,
Apress, 2019.

[20] F. Banaeizadeh, M. Barbeau, J. Garcia-Alfaro, E. Kranakis, and T. Wan,
“Pilot contamination attack detection in massive mimo using generative
adversarial networks [github repository].” http://j.mp/mimoGAN, 2021.

[21] S. Pal, E. Ebrahimi, A. Zulfiqar, Y. Fu, V. Zhang, S. Migacz, D. Nellans,
and P. Gupta, “Optimizing multi-GPU parallelization strategies for deep
learning training,” IEEE Micro, vol. 39, no. 5, pp. 91–101, 2019.

http://j.mp/mimoGAN

	Introduction
	Related Work
	System Model
	Threat Model
	GAN-based pilot contamination detection
	Experimental Work
	Training Phase
	Testing Phase
	Results
	Discussion and Future work

	Conclusion
	References

