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Abstract. Despite the advances in the field of network security technologies, such as ac-
cess control, monitoring of traffic, and encrypted communications, there may always be 
errors that can degrade the security of a system. The use of automatic tools for the assis-
tance of security configuration aims at providing assistance for the proper configuration 
of network security components — in order to optimize the degree of security deployed 
over the system. The configuration of the network security components is, however, very 
complex and error-prone. It is based on the distribution of several packages of security 
rules that define properties such as traffic that must be refused, traffic that must be sur-
veyed, and traffic that must be protected. The assembly of all these properties over all the 
system components must be consistent, addressing always the same decisions under 
equivalent conditions, and avoiding conflicts or anomalies. Otherwise, the existence of 
misconfiguration will definitively lead to weak security architectures, potentially easy to 
be evaded by unauthorized parties. We provide in this paper a detailed set of functionali-
ties that an ideal platform for the management of network security architectures shall pro-
vide to network administrators. We complement our work with an overview of available 
network management tools in today’s market. We finally point out to some limitations of 
such support tools that might worth fulfilling by further research.

1 Introduction

Several components are required to build up a network security architecture, such as
firewalls, intrusion detection systems, and VPN routers. These components must be
properly configured in order to provide an appropriate degree of security to the sys-
tem. The configuration process is a highly complex and error-prone task. There is,
indeed, a clear necessity of guaranteeing the conformity of the process for managing
the configuration of a network security architecture. Otherwise, the resulting system
can lead to wrong configurations that do not provide the required level of security.

We set in this paper an overview of the main functionalities that any general purpose
platform for the management of network security architectures must cover. Such func-
tionalities can be summarized as follows: an appropriate expressive language capable
of representing an abstract model of the security requirements and the properties of
the system; an automatic process for translating and deploying such an abstract model
into the concrete configuration of each security component located in the system; a
complete audit process for analyzing the unavoidable modification of concrete con-
figurations due to maintenance tasks; and an automatic process for the activation of



reaction when attacks targeting the system are detected — in order to provide, for in-
stance, eventual modifications of the abstract model that are required in order to react
against the attacks.

Organization of the paper — Section 2 presents a detailed explanation of our pro-
posed list of functionalities. Section 3 overviews available support tools in today’s
market that can be valuable for implementing the set of functionalities. Section 4 dis-
cusses some limitations of these tools and foresees some research perspectives. Sec-
tion 5 closes the paper.

2 Functionalities of our Ideal Management Platform

We set in this section the core functionality of our ideal management platform. We
recall that the goal of this platform is to assist the network administrator to obtain the
appropriate configuration of network security components, according to the security
requirements that must govern the system. A brief summary of the core four functions
that we envision is presented below:

– The platform must provide the appropriate mechanisms to express in a unique and
unambiguous manner the global policy that must rule the security of the system.
Similarly, it must provide to the administrator with the appropriate language to
describe the concrete information associated to the system, such as topological
data and component capabilities. As a result, the platform must determine if the
required degree of security expected to be enforced by the network security archi-
tecture is consistent, given the capabilities and functionalities deployed on it —-
by means of the set of security components.

– If the result of previous step is positive, and the administrator can successfully
define the appropriate policy that can govern the system given the components
contained on it, it must then be capable of automatically deriving the appropriate
set of configuration packages that makes the security system operative. Such a
technical refinement can be efficiently be implemented by a downward translation
of the abstract model that contains the security policy towards the concrete syntax
of each component contained in the network security architecture.

– The cycle of life of the security system must consider the eventual maintenance
of configurations. In other words, once the network security architecture is active,
there will be daily or weekly updates, that dynamically adapts the configuration
of the components to changes, updates, and any other related events. It is, then,
necessary that the platform offers the administrator the appropriate mechanisms in
order to verify that the current packages of configurations are still consistent to the
global security policy. This third functionality must, therefore, provide an upward
audit process of configurations, in order to report any eventual misconfiguration or
anomaly at both single- or multi-component level.



– Finally, it is very likely that malicious activity detected by monitoring components
of the network security architecture will eventually activate the reaction modules of
the system. In such a case, the platform should provide the necessary mechanisms
to assist the activation of responses and to update accordingly both the global se-
curity policy and the configuration of components. The former will provide a kind
of short-term reaction, while the administrator — once warned — decides a more
efficient reaction. The latter will simply consist on a re-deployment of the updated
policy towards the affected components.

We present in the sequel a more deeply explanation of each functionality. We split,
in turn, each functionality into specific technical processes; and refer the reader to
appropriate literature for the implementation of each one of these processes.

2.1 Policy Expression and Architecture Discovery

The objective of this first functionality involves building an abstract model of the se-
curity requirements expected to be enforced over the system. The formal meaning of
this abstract model must be unique and unambiguous. In order to provide this model,
it is first necessary to receive as an input some technical aspects of the system, such
as its topology and the capabilities provided by the security components that are con-
tained on it. A reconciliation between the degree of security expected by the system,
and the real set of capabilities contained within the system, will conclude whether such
a unique and unambiguous set of abstract security rules is indeed possible or not. Fig-
ure 1 depicts a simplified scheme of the two main processes that we consider crucial
for the appropriate implementation of this first functionality: architecture discovery
and reconciliation. We detail these two processes next.

Architecture Discovery — The purpose of this first process is to determine the topo-
logical data of the networking system, the set of security components, and some as-
sociated information, such as minimal paths, optimal routes, or precomputed lists of
components crossed by any given packet (e.g., knowing its source and destination).
We assume that the use of existing network support tools, e.g., set of tools surveyed
in Section 3, that already provide features for network discovery, such as collection
of technical configurations and collection of topology network cartography at the OSI
levels 2 and 3, is sufficient to collect and encapsulate in a single and unique format the
resulting system architecture of this first process.

Reconciliation — The objective of this second process is to formally validate whether
the organizational security requirements can be successfully applied to the obtained
system architecture. Indeed, this process should ensure that the enforcement of the se-
curity requirements, given the topology of the system, and the functionalities provided
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Fig. 1. Policy Expression and Architecture Discovery.

by the security components contained in such a system, is possible. Moreover, should
ensure that it is possible to enforce the architecture with such a policy in a way that are
not either conflict nor anomalies. Therefore, and in case that are no errors, the output
data corresponds to the global security policy that is meant to govern the behavior of
the system.

There exists in the literature several models in order to describe in a unique and un-
ambiguous manner the resulting policy. However, not all the models might answer
optimally the complete set of security requirements. Some models like the Discre-
tionary Access Control (DAC) model of the Mandatory Access Control (MAC) model
might require important additional administration efforts to sum up some properties
that can, in turn, be satisfactorily described by more complete models, like the Role
Based Access Control (RBAC) model [22] (e.g., introduction of notions such as roles
and hierarchies). The same semantics proposed in the RBAC model, and many other
like the use of delegation, and the activation of contexts, are inherent to the formalism
of the Organization Based Access Control (OrBAC) model [1]. As we will see later, all
these semantics might specially benefit the dynamic management of networking poli-
cies, specially when the system is composed by heterogeneous security mechanisms,
such as filtering devices, monitoring modules, and VPN routers. The election of an
appropriate model for representing the global policy is, therefore, crucial.



2.2 Downward Deployment of Technical Configurations

This second functionality addresses the downward deployment of rules by unfolding
the obtained global security policy into the concrete configurations of the network
security components. Notice that the previous stage (cf. Subsection 2.1) already guar-
antees that such a deployment can be done by translating the global policy into local
configurations, while guaranteeing complete consistency. Figure 2 depicts a simplified
scheme of the two main processes for the implementation of this second functionality:
technical refinement and enforcement. We detail them below.
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Fig. 2. Downward Deployment of Technical Configurations.

Technical Refinement — This process is in charge of translating the set of abstract
rules contained within the global security policy into a set of concrete rules that will
later be communicated to each security component of the architecture. The process can
be seen as an iterative set of transformations, each complying with a given security
technology instantiated in the system (e.g., firewalls, intrusion detection systems, or
VPN routers). Each transformation can be conceived as the instantiation of those parts
of the security policy that must be enforced in the system by means of the processed
components. The global policy is, therefore, decomposed into several packages of local
configurations.

Several proposals in the literature have been proposed for the implementation of this
functionality. The main difference relays on the expressiveness of the model or lan-
guage that expresses the set of abstract rules of the policy. In [6], for instance, we can
find one of the earliest proposals for the refinement of a global security policy into
local configurations of security components, such as filtering routers or firewalls. The
approach, based on the RBAC [22] formalism, uses a traditional Entity — Association
model that represents the abstract level. This abstract level is expected to be projected



onto the network topology as a set of roles. The instantiation of the model is based on
a specific language that allows a downward transformation of the global policy into a
set of local firewall configurations.

The use of the role concept used in the previous approach, although valid for defining
the network capabilities, becomes ambiguous in its semantics. In fact, the authors use
the notion of group to identify topological data, such as network hosts. However, we
can observe in [6] that the same notion is used later on to determine roles and sets
of roles. We, therefore, consider that the approach does not ensure a clear separation
between the network level and the security policy. This makes difficult the use of the
proposed solution for modeling complex networks which, indeed, is very valuable in
case the platform is targeting, for instance, at large enterprise configurations. The au-
thors use, moreover, privilege inheritance through group hierarchies in order to derive
permissions. If permission inheritance is related to the so-called open group, prohi-
bitions are inherited through a close group. The notion of group clearly introduces
ambiguities and seems to be useless at this abstraction level. Most of these limitations
are solved in a more recent approach presented in [9]. The approach is based on the
OrBAC model, and therefore benefits from inherent semantics of delegation and con-
texts in order to address the previous limitations. The solutions is, in turn, ameliorated
in the work presented in [21], in order to include the deployment of a larger set of
components, not only firewalls, but also intrusion detection systems and VPN routers.

Enforcement — The objective of this second process is to communicate the resulting
packages of configuration rules towards the security components. Several communica-
tion protocols can address this issue. For example, the Simple Network Management
Network (SNMP) protocol, the Common Open Policy Server (COPS) protocol, and
the Netconf protocols are, actually, solutions that are easy to find implemented in most
of todays’ support tools (cf. Section 3 for more details). They appear, moreover, in the
related literature in order to implement similar operations as the deployment method
that we discussed above.

The SNMP protocol is one of the most widely used protocols by network management
tools. This protocol relays on a traditional agent-manager paradigm, in which the agent
is basically a program running over the equipments of a system; and the manager is
a program centralized by a platform that controls and collects the execution results of
each agent over the system. Most solutions of well known vendors like Cisco or ChecK
Point base the synchronization and management of their tools on SNMP or other vari-
ants. In contrast, the COPS and Netconf protocols are essentially of a query-response
nature. They have also been reported in recent literature aiming at exchanging policy
information between servers and clients. COPS have been used in [7], for example, to
dynamically distribute IPsec-based VPN policies. The main limitation reported in [15]
seems to be the handling of XML encoding, as it is not natively handled by COPS,
rather that other protocols like Netconf. A recent approach presented in [21] proposes



the combination of the OrBAC formalism and the Netconf protocol, in order to deploy
and communicate the configurations of security components over the network.

2.3 Upward Analysis of Technical Configurations

The dynamism of current networking threats forces the system to be periodically up-
dated. This can affect both the global security policy and the local set of components’
configurations which. Therefore, the system is often affected by either daily or weekly
updates, with the objective of dealing with the real-world changes or threats. The man-
agement platform shall provide the necessary mechanisms in order to guarantee that
the modifications do not lead to a misconfiguration of the system. In other words, it
must verify that the current packages of local configurations that are enforcing the se-
curity components of the architecture are, indeed, still consistent with the global secu-
rity policy. The platform must, therefore, assist the administrator to process an appro-
priate audit of the local configurations, and to report the existence of misconfiguration
or inconsistency with the global policy. Moreover, it must propose the necessary mod-
ifications that will fix such problems — either manually, by requiring the approval of
the administrator; or automatically, by reconfiguring the affected components without
requiring further actions. Figure 3 depicts a simplified scheme of the main processes
for the implementation of this third functionality: gathering configuration data, single-
component audit, multi-component audit, and management of modifications. We detail
them next.
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Fig. 3. Upward Analysis of Technical Configurations.



Gathering configuration data — This process aims at collecting the packages of local
configuration rules deployed on each component of the network security architecture.
Like in the architecture discovery process defined in Subsection 2.1, we also assume
here that current support tools available in today’s market, e.g., set of tools surveyed in
Section 3, already provide the necessary features to configure the set of network com-
ponents in order to divert their local configuration files towards a centralized repository
of network component configurations. The use of a unique and unambiguous format
shall be used in order to express and provide the resulting packages of local configu-
ration rules derived from the gathering process.

Single-component analysis — This process is intended to detect and remove conflicts
between configuration rules, that could lead to the misconfiguration of components
from a stand-alone perspective. The output of this function contains a group of ver-
ified rules, free of anomalies, and the corresponding information about the detected
anomalies. Several solutions for implementing this process exist in the literature. The
authors in [2] consider that, in a configuration set, two rules are in conflict when the
first rule in order matches some packets that match the second rule, and the second rule
also matches some of the packets that match the first rule. This overlap results either
on anomalies that might affect the performance of the components (e.g., redundant
rules that can be removed without affecting the policy that governs the components)
or security conflicts (e.g., rules that shadow other rules with less priority in the con-
figuration, and that make inconsistent the local policy of the component to the global
system policy). In [3], the authors provide a more complete taxonomy of anomalies in
firewall configuration, and a set of algorithms to detect them by analyzing, as it was
proposed in [2], the relationships between rules two by two. The limitation of these two
approaches is that anomalies due to the union of rules are not explicitly considered.

The proposal presented in [24], uses a model checking formalism for detecting incon-
sistencies and redundancies in single firewall configurations. This proposal handles the
detection process by addressing directly the way how traffics is handled by the com-
ponents. Their solution, as well as the above mentioned approaches, only addresses
the audit analysis process. They do not propose a candidate set of rules for replacing
the conflicts. Moreover, none of them have presented specific mechanisms for verify-
ing configurations other than firewall configurations. To our knowledge, just the works
proposed in [10, 19] cover the above mentioned limitations. This new work consid-
ers the audit of configurations of firewalls and intrusion detection systems, processing
and detecting anomalies like redundancy and shadowing. The configurations are pro-
cessed as a whole. Through a rule transformation process, the proposal derives from
an initial set of configuration rules, an equivalent and valid one that is completely free
of misconfiguration, such as shadowing and redundancy. This rewriting of rules al-
lows, moreover, the derivation of a new configuration set whose rules are completely
disjoint. Therefore, the ordering of rules is no longer relevant.



Multi-component analysis — This third process, complemented now by the knowl-
edge of the system architecture, must verify that the configurations of each network
component, from a distributed point of view, is consistent with the global policy. It
must guarantee, moreover, the interoperability between the different components. The
output of this function corresponds to the group of reports and modifications generated
during the verification process. Proposals like [4, 20] extend the single-component au-
dit analysis presented in [3, 19], in order to detect multi-component deployments that
are not consistent. The approach presented in [4] provides a correlation process that
compares the configuration rules of distributed architectures and derives inconsisten-
cies hidden in their configurations. The detection process is based again on the com-
parison of rules two by two. Therefore, errors due to the union of rules are still not
properly handled. The approach presented in [20] solves this limitation and allows,
moreover, the audit of distributed architectures where firewalls and intrusion detection
systems are in charge of enforcing the global policy. The detection checks, indeed, if
there are errors in the distributed configurations by comparing the policy decision that
should rule over each component that matches the exactly same traffic.

Regarding the analysis of VPN routers’ configurations, a significant approach is the
proposal presented in [16]. The authors provide a technique that simulates VPN tun-
neling processing and reports any violation of the security policy requirements. In their
approach, if an access rule concerning a protected traffic between two points is imple-
mented by configuring more than one VPN overlapping tunnel, the risk is that in some
network zones the IP packets circulate without any protection. The authors present a
discovery process to detect such situations and propose a high-level language to deal
with VPN policies. An important limitation is that, although it can discover some vio-
lations in certain simulation scenarios, there is no guarantee that it discovers every pos-
sible misconfiguration present in the system. Moreover, the proposed technique only
discovers VPN conflicts resulting from incorrect tunnel overlaps, but it does not ad-
dress the complete taxonomy of all possible conflicts. Another attempt to audit and fix
VPN misconfiguration is presented in [5], where the authors propose a central-entity
approach with high level language conflict resolution techniques also. Unfortunately,
their proposed algorithms remain unevaluated.

Management of modifications — The complete set of results and candidate modifica-
tions provided by the previous processes, and intended for fixing the detected miscon-
figuration or inconsistencies, should be centralized and reported to the administrator.
The management platform should also leave open the option of either simply report-
ing the analyses results or automatically enforcing the proposed modifications. The
former case means that the platform would simply inform the administrator about the
results of the single and multi-component analyses. The administrator is, therefore, in
charge of verifying the reports and manually activating the appropriate modifications.
The alternative option is to directly accept the proposed modifications and re-enforce
the security components that would require such a re-configuration. In both cases, a



communication protocol is required. Valid alternatives are protocols like SNMP, COPS
or Netconf. These protocols have already been overviewed in Subsection 2.2.

2.4 Handling of Reaction and Re-deployment of Configurations

The objective of this fourth functionality is the activation of reaction. We assume here
the use of appropriate components for the management of alerts based, for instance,
on the analysis of attack descriptions defined as actions that violate the global policy.
We also assume that such components can anticipate the occurrence of possible attack
scenarios, and that produce the appropriate diagnosis and candidate counter-measures
to neutralize the attacks. For example, if the attacks have being specified in the policy
as prohibitions, the achievement of an attack has to be interpreted as a violation of the
security policy, and detected by monitoring the set of events collected by the security
components of the network security architecture. They are, therefore, treated in a man-
agement process by a monitoring system. Figure 3 depicts a simplified scheme of the
main processes for the implementation of this fourth functionality: monitoring, policy
update, and re-deployment. We detail these processes next.
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Fig. 4. Reaction and Re-deployment of Configurations.

Monitoring — This process must provide real time diagnosis of the system state
to detect whether the system has been victim of an attack. We assume that the goal
of a monitoring process is to provide to either the administrator or the management
platform the appropriate set of concrete counter-measures. We also assume that these
counter-measures where designed on the basis of a response mechanism that will even-
tually update the global security policy by activating, for example, conditions already
defined within the policy (e.g., specified in the abstract model as logical predicates
that can either be enabled or disabled). There are several proposals defined in the liter-
ature in order to implement this process. The analysis of this proposals is beyond the



scope of this paper. We recommend the reader references like [8, 12, 13], and citations
thereof, for more information.

Policy Update — This second process must offer the necessary mechanisms to make
effective the update of the global policy. This function establishes the link between the
policy and the counter-measures raised by the monitoring process — with the purpose
of reacting against policy violations as a dynamic policy enforcement. This policy up-
date aims at short-term reactions. For example, to block the access to those services
or resources that are the target of the detected attacks — while expecting that the ad-
ministrator will later enable some kind of long-term reaction. Existing solutions in the
literature provide the means for implementing this process. For example, the proposals
presented in [17, 23] provide a network filtering policy update based on the processing
of intrusion detection alerts. A centralized server that controls the policy and receives
the intrusion alerts, is in charge of deciding the necessary modifications in order to
react to the detected threats. Unfortunately, these solutions do not provide a clear indi-
cation about how the response strategy or the mapping from alerts to counter-measures
should later be handled. Two more complete solutions are presented in [12, 13]. In [13],
the mapping from alerts to counter-measures is appropriately defined as a mapping be-
tween concrete alerts (expressed in the IDMEF model [11]) and OrBAC contexts [1].
The OrBAC contexts represent the necessary reaction that must be enforced when the
IDMEF alerts are detected by the monitoring system. In [12], the authors provide,
moreover, the specific instantiation process for updating the global policy as a result
of the alerts provided by the monitoring process.

Re-deployement — This last process must offer the administrator the necessary mech-
anisms to re-enforce the configuration of the security components, according to the
previously updated security policy. We assume that this function is equivalent to the
deployment function presented in Section 2.2.

3 Available Network Management Tools in Today’s Market

We survey in this section state-of-the-art solutions taken by the industry that might be
useful for the implementation of the platform functionalities.

The current market of support tools for the management of network security archi-
tectures is dominated by the following two industrial leaders: Cisco and Check Point.
Their main products are the Cisco Security Manager and the Check Point SmartCenter.
These support tools may assist the administrator in a, relatively, low level language.
These two state-of-the-art tools provide a very complete set of networking manage-
ment features. The core functionality relays on the systematization of intrusion de-
tection alert management, deployment of component configurations, and management
of VPN routers. They offer additional features for network discovery, such as collec-
tion of technical configurations and collection of topology network cartography at the



OSI levels 2 and 3. They also provide, in addition to the traditional security man-
agement operations, historical storage of software/firmware update and modifications
of technical configurations, management of fault-tolerance support, centralization of
fault-tolerance procedures, and management of workflow assistance for the enforce-
ment of security and fault tolerance technologies. We can, however, point out some
limitations when using these tools. First, and most important, these solutions are mono-
constructor. They only provide the above mentioned set of operations in order to assist
the administrations of, respectively, Cisco and Check Point products. Second, they do
not offer a semantic model rich enough to express a complete global security policy
that might integrate notions such as contexts and hierarchies. Although it is possible
to define some variables, and thus to define access rules involving such variables, the
administration tasks are not much simplified. The administrator always needs a global
view of the topology in order to correctly assign each rule to network devices; then,
there is no automatic discovery of security devices that optimally implement an access
rule involving an IP source and a destination. Furthermore, the lack of a real down-
ward deployment approach is partially replaced by other tools (e.g., the Cisco conflict
discovery tools) that need the security officer’s assistance and that unfortunately only
guarantee conflict resolution for local configurations.

The following vendors also offer pertinent solutions: IBM, LogLogic, Juniper Net-
works, and Tufin. They provide some more general purpose administration tools, like
the IBM Proventia Desktop Endpoint Security; the LogLogic Security Change Man-
ager, formerly known as Solsoft Policy Server and Network Security Policy Server; the
Juniper Network and Security Manager, and the Tufin SecureTrack and SecureChange.
The main advantage of these four solutions is that they can interact with third party
network security components (e.g., firewalls, VPN routers and intrusion detection sys-
tems manufactured by well-known companies like Cisco and Check Point). Compared
with the above mentioned solutions by Cisco and Check Point, these other tools try
to integrate more open standards — specially standards based on XML and SOAP —
in order to ease the integration of future third party products. While the definition of
policies by the solution of IBM and Juniper offers RBAC-like policy definitions, the re-
mainder solutions by LogLogic and Tufin still relays on the use of relatively low-level
technical languages, too close to the original syntax and semantics of the components
intended to be administered. Some other extended features offered by these solutions
are: handling of operating systems, firmware and antivirus updates; analysis of threats;
management of workflows; and management of rollbacks (e.g., aiming at managing
the restoration of previous architecture configurations).

Finally, it is worth mentioning the existence of some relevant open source solutions,
like the product Firewall Builder. Indeed, this solution comes with a GPL Open Source
license for its use on GPL-based Unix-like systems (such as GNU/linux and freebsd)
and a commercial license for its use on commercials systems like MS-Windows and
Apple Mac OS. Although the Firewall Builder only allows the configuration of fire-
walls, it allows the management of different vendors’ solutions and the deployment of



large configurations on heterogeneous networks. The main limitation of this solution
is, however, the definition of a centralized security policy in a relatively poor policy
definition language.

4 Limitations and Perspectives

We have already mentioned in the previous sections some problems related to the
state-of-the-art solutions in today’s commercial market and academia. We group in this
section some of the limitations, in terms of relevance, and summarize several areas of
study that we envision as important in order to move towards the ideal management
platform addressed in our paper.

The first, and most important limitation, is the lack of semantics for the expression of
the global security policy. Indeed, the lack of an appropriate language, rich enough to
express all the semantics that must be included in global policy, limits the power of the
functionalities we presented in Section 2. Indeed, support tools for the management of
large network security architectures depending on a poor semantic abstract model to
represent the global properties of the security policy will hardly help the administra-
tor to escape the specificity of the components that are supposed to be managed. The
second limitation we want to stress is the lack of stateful analysis of configurations.
The discovery functions of the surveyed solutions are mostly done at a very low-level.
They lack of an appropriate development to perform the analysis of misconfiguration
at a more abstracted level which would help, indeed, on the analysis of stateful firewall
configurations — an area that is still to be explored by most commercial applications.
Some research solutions has recently been presented by Fitzgerald et al. in [14]. We
do not find, however, appropriate solutions for doing this kind of analysis on commer-
cial products. Finally, the third limitation we want to address is the high dependency
of some important solutions (specially those manufactured by Cisco and Check Point
vendors) to mono-constructor platforms. This limitation leads to an analysis of tech-
nical configurations that remains very close to the original syntax of the configuration
rules that must be processed. This problem limits the interoperability of most commer-
cial solutions and make difficult a full integration of third party components.

Before closing this section, we consider two interesting perspectives that are worth
exploring in order to highly improve the efficiency of the surveyed state-of-the-art
commercial solutions presented in Section 3. A very unexplored area in most of the
surveyed solutions is the integration of a guided process to complement the upward
analysis of technical configurations (cf. Section 2.3) with an automatic discovery of
roles associated to the different security components already deployed in the system.
The use of role mining techniques [18], for example, would highly benefit the admin-
istration tasks by discovering access control roles associated to the components — to
derive, after the analysis, the appropriate rules of the global configuration. Another
interesting perspective is the inclusion of workflow management. Large-scale archi-



tectures will highly benefit for some kind of automatic management to enable a more
efficient enforcement of daily administration activities that should include inclusion
of new rules, removal of unnecessary conditions, and so on. The challenge is finding
an effective link between workflow management and policy deployment, in order to
optimize the enforcement of administrative operations as a whole.

5 Conclusion

The aim of a platform for the management of a network security architecture is to sim-
plify the work of the administrator that is in charge of the whole architecture and its
security components. The platform has to provide the following functions: (1) assis-
tance to the conception (expression) of the architecture; (2) assistance to the automatic
configuration (deployment) of the components of the architecture; (3) detection and
removal of misconfiguration; and (4) supervision and assistance to activation of coun-
termeasures for a proper update and redeployment of the policy when malicious activ-
ities and policy violations are detected. The study of state-of-the-art support tools in
today’s industrial market allows us to claim the following limitations: lack of appropri-
ate semantics for the description of policies; lack of stateful analysis of configurations;
and high dependency of mono-constructor solutions. We have envisioned the following
perspectives: integration of a role mining process to complement the upward analysis
of technical configurations; and inclusion of workflow management to enable a more
efficient enforcement of daily administration activities.
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