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Abstract. Problems in distributed security often naturally map to gra-
phs. The centrality of nodes assesses the importance of nodes in a graph.
It is used in various applications. Cooperative game theory has been
used to create nuanced and flexible notions of node centrality. However,
the approach is often computationally complex to implement classically.
This work describes a quantum approach to approximating the impor-
tance of nodes that maintain a target connection. In addition, we detail
a method for quickly identifying high-importance nodes. The approxi-
mation method relies on quantum subroutines for st-connectivity and
approximating Shapley values. The search for important nodes relies on
a quantum algorithm to find the maximum. We consider st-connectivity
attack scenarios in which a. malicious actor disrupts a subset of nodes to
perturb the system functionality. Our methods identify the nodes that
are most important in minimizing the impact of the attack. The node
centrality metric identifies where more redundancy is required and can
be used to enhance network resiliency. Finally, we explore the poten-
tial complexity benefits of our quantum approach in contrast to classical
random sampling.

Keywords: Quantum computing · Distributed system · Graph
analytics · Game theoretic node centrality · st-Connectivity

1 Introduction  

Quantum science and related technologies hold significant potential for global 
innovation in several domains, quantum-enhanced information networks being 
only one of them. With recent promising results in quantum computing for com-
binatorial optimization problems, quantum-enhanced information networks are 
a promising evolution of classical distributed systems where the use of quantum 
technologies is expected to foster significant new paradigms [ 14]. This includes 
the development of quantum sensor networks and the enhancement of Key Dis-
tribution (QKD) technologies [ 9]. The integration of quantum computing within 
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these new environments must address traditional security problems, including 
defense and resilience. 

In the realm of graph analytics, node centrality metrics quantify properties 
such as the utility of a node, whether a node is critical in keeping the graph 
connected, or if the node is vulnerable to attack. These metrics help to determine 
whether a network is secure and resilient. They can guide structural changes to 
improve these properties. Traditional node centrality metrics look at individual 
nodes; however, some properties cannot be easily measured without considering 
the coalitions of nodes. 

This paper builds upon the flexible notion of game-theoretic node centrality 
measures. Specifically, we describe a node centrality metric based on the con-
nection of two critical nodes. We use the metric to handle the following two 
properties (relevant to distributed systems’ security): resilience and remediation 
degree. The former refers to the ability of a communication network to maintain 
functionality and carry out its mission, even in the face of adversarial events. An 
adversarial event can either occur naturally or result from deliberate actions. The 
latter can be used to quantify the capacity to provide restoration and mitigation 
capabilities after an attack on the system occurs. 

We aim at addressing the aforementioned properties in the presence of adver-
saries in a distributed system perpetrating a given type of attack (the st-
connectivity attack). We build a methodological solution to assess the node’s 
importance. Quantifying the importance of nodes can be used to guide modifi-
cations to the network topology so that the level of resilience is improved. We 
also explore the advantage of a quantum version of our solution, compared to a 
baseline classical computing solution. We present a practical implementation of 
our approach and provide a rough estimation and comparison of the complexity 
of our solution w.r.t. classical Monte Carlo methods. The code is available in our 
companion Github repository 1. 

Paper Organization—Section 2 provides motivation and preliminaries. Sect-
ion 3 presents our contribution and its complexity analysis. Section 4 surveys 
related work. Section 5 provides the conclusion and perspectives for future work. 

2 Motivation 

We assume a quantum distributed system that offers, for example, quantum 
key expansion, entanglement swapping, and error mitigation services [ 9,14], in 
which an adversary aims to disrupt the connectivity of the service from node s 
to node t. By assuming a classical abstraction of the problem and focusing only 
on the information-gathering stage of the attack, we aim to anticipate adver-
sarial strategies to disconnect. s from t (i.e., we assume that the adversary can 
successfully sabotage the services in those intermediate nodes from s to t, hence 
avoiding any possible functionality between both nodes). Our goal is to identify 
the most important nodes in keeping node t accessing the services of s, allowing

1 https://github.com/iain-burge/quantum st-attack. 



236 I. Burge et al.

us to increase the resilience of the network. We accomplish this by using the 
game-theoretic concept of centrality of nodes as a metric to quantify the degree 
of remediation associated with the attack scenario. 

Before moving forward, we provide some needed preliminaries and definitions 
on the use of cooperative games on graphs. We start with some background 
concepts on which our approach is based. 

Definition 1 (Network Graph). Define a graph H = (N, E) as a pair of the 
set of network nodes N and the set of edges (u, w) ∈ E, with  u, w ∈ N and 
u "= w. 
Remark 1 (Graph Representation). Let us index each node by some integer in 
Z|N |. Each edge is indexed by an integer in Z(|N| 

2 ) that is mapped to the set of 
pairs {(a, b) :  a, b ∈ Z|N |, a "= b}, with a bijection. We write the edge index (u, w) 
as uw. We may represent the adjacency matrix of the graph with a binary string 
x ∈ {0, 1}(

|N | 
2 ), where xuw is one if (u, w) ∈ E, otherwise xuw is zero. 

Definition 2 (Cooperative Games on a Network Graph [ 18]). We define 
a cooperative game on graph H = (N, E) to be the pair GH = (F, V ), where  
F ⊆ N and V is a valuation function from the subsets of F to the reals, i.e., 
V : P(F ) → R. With the restriction that V (∅) = 0. 

This definition allows us to treat the nodes in F as players in a game. Given 
a subset of nodes R ⊆ F , we can treat it as a binary graph coloring where 
the colors correspond to the inclusion (or exclusion) of the node in R. V (R) 
represents the value of that particular graph coloring. 

Though it is useful to have a value for coalitions of nodes, or their color-
ings, the number of combinations grows exponentially with respect to graph 
size. Thus, it is useful to have a metric that can condense this vast amount of 
information into a utility for each node. We adapt the Shapley value solution 
concept to our current situation. 

Definition 3 (Node Shapley Value [ 16]). Given a game GH = (F, V ) on 
graph H = (N, E), with  F ⊆ N . The  ith node’s Shapley value Φi is,

∑

R⊆F \{i} 

γ (|F \ {i}|, |R|) · (V (R ∪ {i}) − V (R)) 

where γ(n, m) =
((n 

m

)
(n + 1)

)−1 . 

In this work, we proceed with the narrow concept of graph coloring. If node 
a ∈ F is in the subset Q ⊆ F , it is considered enabled, otherwise, if a is not in 
Q, a is considered disabled. 

Definition 4 (subgraph HQ). We define the subgraph HQ = (Q, EQ) of the 
graph H = (N, E), such that Q ⊆ N . EQ ⊆ E is the subset of all edges (a, b) ∈ E 
where a, b ∈ Q. 

In the context of node centrality, we consider the value function V (Q) that 
indicates whether HQ maintains a particular property.
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2.1 The st-Connectivity Attack 

Definition 5 (st-connectivity). Consider a graph H = (N, E), with nodes  
s, t ∈ N . The graph H is st-connected if there exists a path from node s to 
node t. Formally, H is st-connected if there exists a sequence of nodes s = 
u0, u1, u2, . . . , ur−1, um = t such that (uk, uk+1) ∈ E for k ∈ {0, . . . ,m  − 1}. We  
define the value function Vst : P(F ) → R, 

Vst(R) =

{
1 if HR∪{s,t} is st-connected, 
0 otherwise, 

where R ⊆ F = N \ {s, t}, and  HR is described in Definition 4. 

In the context of our scenario, the adversary aims to remove st-connectivity 
(source-target-connectivity). The value function returns 0 when the set of 
enabled nodes HR is no longer able to keep the target connected to the source 
and 1 when it maintains that property. Hence, the Shapley values (Definition 3) 
of each node reflect how critical it is to maintain that connection. A high Shapley 
value means that the node is a valuable target, while a low Shapley value means 
that the node is not of interest. 

Definition 6 (st-connectivity attack). Given a graph H = (N, E), an st-
connectivity attack is a malicious action perpetrated by an adversary. The adver-
sary can turn off a subset of nodes Q ⊆ F = N \ {s, t}. The adversary’s goal 
is to transform the graph H into a subgraph HN \Q that is not st-connected. 
Equivalently, the adversary’s goal is to minimize Vst(F \ Q). 

3 Quantum Approach 

In this section, we present our quantum algorithm for st-connectivity assessment. 
To begin, we define a simplified version of span programs, detailed in [ 4, 7]. 

Definition 7 (Span Program Decision Problem). A span program 
P (|τ〉 , W, x) takes as input a unit target vector |τ〉 ∈  Cd, a set of  input vec-
tors W = {|µk,0〉 : k ∈ Zr} ∪ {|µk,1〉 : k ∈ Zr} ⊂  Cd, and a binary vector 
selection string x = xr−1 · · ·x0 ∈ {0, 1}r. Given x, the available vectors are 
A = {|µk,xk〉 : k ∈ Zr}. The span program P outputs 1 if the target |τ〉 is in the 
span of the available vectors Span(A). Equivalently, P outputs 1 if there exists a 
complex vector c ∈ Cr such that, 

|τ〉 = 
r−1∑

k=0 

ck |µk,xk〉 . 

Otherwise, the program returns 0. 

We now reformulate the problem of st-connectivity as a span program deci-
sion problem [ 4].
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Theorem 1 (Span Program for st-Connectivity). Consider graph H = 
(N, E). We detail a span program that determines, given s, t ∈ N , if  H is
st-connected. Let |v〉 be a basis vector that represents a node v ∈ N . Define
P (|τ〉 , W, x), where  |τ〉 ∈  C|N |, 

W =
{
|µuw,0〉 : uw ∈ Z(|N| 

2 )
}

∪
{
|µuw,1〉 : uw ∈ Z(|N| 

2 )
}

⊂ C|N |,

and x is the binary string representation of the adjacency matrix for H 
(Remark 1). So, xuw is 1 if (u, w) ∈ E, otherwise, xuw is 0. The target vec-
tor is, 

|τ〉 = |t〉 − |s〉√
2 

, s,  t  ∈ N.

The input vectors are |µuw,0〉 = 0, and,  |µuw,1〉 = (|u〉 − |w〉)/
√
2, for all u, w ∈

N , and edge indices uw ∈ Z(|N| 
2 ). Thus, our available vector span is, 

Span(A) =  Span
{
|u〉 − |w〉√

2 
: xuw = 1, uw  ∈ Z(|N | 

2 )

}
.

If the span program outputs 1, H is st-connected, otherwise, H is not st-
connected. 
Proof. Suppose H = (N, E) is  st-connected, then there exists a sequence of 
nodes s = u0, . . . , ur−1, um = t, such that (uk, uk+1) ∈ E, k ∈ {0, . . . ,m  − 1}.
As a result, for our span program P (|τ〉 , W, x), the set of available vectors A
includes every 

|uk+1〉 − |uk〉√
2 

, with k  ∈ Zr.

Simultaneously, we have, 

|τ〉 =
r−1∑

k=0 

|uk+1〉 − |uk〉√
2 

,

since the right-hand side is a telescoping sequence. As a result, the span program 
accepts the input as expected. In [ 7] a proof shows that the span program rejects 
H when it is not st-connected. +,
Theorem 2 (Quantum st-Connectivity Algorithm [ 4, 7]). There exists a 
quantum algorithm to decide whether a graph H = (N, E), with nodes  s, t ∈ N , is
st-connected. The algorithm uses O (log |N |) space and takes Õ

(
|N | 3 2

)
queries

to the adjacency matrix up to polylogarithmic factors (where Õ ignores slow-
growing factors). The routine is successful with a probability of at least 9/10. 
The best possible classical algorithm takes at least Ω

(
|N |2

)
time.

Formally, we have a unitary quantum transformation Ust which acts on an 
auxiliary register of O(log |N |) qubits aux and an output register of one qubit
out. Performing the algorithm and tracing out the auxiliary register results in, 

traux

(
Ust |0〉⊗O(log |N |) 

aux |0〉out
)
= ((1  − p) |¬y〉 〈¬y| + p |y〉 〈y|)out
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where y is one if H is st-connected and zero otherwise, and p is in range [9/10, 1). 
Measurement of the output bit returns the correct output with probability p. 

Proof. We proceed with a rough sketch of the algorithm. A full algorithm and 
proof are provided in [ 7]. The algorithm is based on the span program for st-
connectivity. We perform phase estimation on the unitary matrix U = (2Λ −
I)(2Πx − I) with the input vector |0〉 using precision O(|N |−3/2). Thus U is
queried O(|N |3/2) times. If the phase estimation outputs zero, the algorithm
claims that the graph H is st-connected and outputs 1. Otherwise, if the phase 
estimation outputs a non-zero answer, the algorithm claims that H is not st-
connected, and outputs 0. It is correct with probability 9/10. We assume, for 
the sake of simplicity, that (s, t) /∈ E, this can be checked in O(|N |) time. We
also give edge (s, t) the index st = 0.  

U is the product of two reflections, a reflection about Λ, and a reflection 
about Πx. Λ represents a projection onto the kernel of, 

M̃ = O
(

1√
|N |

)
|τ〉 〈0| +

∑

uw∈Z (|N| 
2 )

\{0}

|µuw,1〉 〈uw| .

M̃ represents a transformation from the indices of edges to their respective vec-
tors in the span program for st-connectivity. The reflection, (2Λ − I), is imple-
mented using a Szegedy-type quantum walk [ 7,17]. The walk is implemented in 
logarithmic space and time with respect to |N |, and is input-independent. Πx is
the projection onto available vector indices and onto the target vector index, 

Πx = |0〉 〈0| +
∑

(u,w)∈E

|uw〉 〈uw| . (1) 

Thus, (2Πx − I) represents a reflection where all the indices of unavailable edges
are negated. This reflection can be performed with a single query to the adja-
cency matrix. 

Intuitively, the quantum phase estimation extracts the spectral qualities of 
U . The reflections (2Λ− I) and  (2Πx − I) are constructed such that the spectral
qualities of U correspond to whether |τ〉 is linearly independent of the available
vectors. +,

Remark 2 (Span Program for st-Connectivity Node Centrality). Consider the 
graph H = (N, E). Suppose that we wish to determine the st-connectivity of 
a subgraph HR = (R, ER), R ⊆ N . Equivalently, we wish to compute V (R).
We proceed similarly as in Theorem 1. Define the span program P (|τ〉 , W, xR),
where |τ〉 and W are described in Theorem 1. Let  xR 

uw be one if uw ∈ ER, oth-
erwise xR 

uw is zero. Equivalently, we can define xR 
uw to equal one if and only if 

xuw is one and nodes u, w ∈ R.
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Definition 8 (Majority Vote). We define the majority function MAJ : 
{0, 1}n → {0, 1}, where  n is odd, as, 

MAJ(z) =

{
1 if

∑n 
k=0 zk > n/2, 

0 otherwise. 

Where z = zn−1 · · ·  z0 ∈ {0, 1}n. We also define the quantum version of this 
function, UMAJ, which operates on an n-qubit register in and a one-qubit register 
maj, 

UMAJ |z〉in |0〉maj = |z〉in |MAJ(z)〉maj . 

Lemma 1 (Majority Vote Powering). Suppose that we have a quantum algo-
rithm U that outputs a binary value with fixed success probability p >  0.5. Let  
the correct value be y ∈ {0, 1}. We can augment the probability of success by 
repeatedly performing the algorithm and taking the majority output. In particu-
lar, suppose our repeated quantum subroutine gave an n-qubit output of, 

((1 − p) |¬y〉 〈¬y| + p |y〉 〈y|)⊗n . 

Then, adding an extra qubit in the form of a maj register, the majority vote 
unitary UMAJ can be applied. Given a desired final failure probability bound κ, 
the maj register stores the correct answer with probability 1 − κ if n is of order 
O

(
log κ−1

)
. In other words, we have failure chance κ given O(log κ−1) applica-

tions of the U algorithm. 

Proof. Suppose we perform our quantum algorithm n times, where n ≥ 3 is odd. 
This outputs a list of n bits. The probability that k bits are correct is,

(
n 
k

)
pk(1 − p)n−k . (2) 

The threshold for a majority is t = (n−1)/2. So, the probability that the majority 
fails is

∑t 
k=0

(n 
k

)
pk(1 − p)n−k. In Eq.  (2), for k ∈ {0, 1, . . .  , t}, the probability is 

increasing with respect to k. Thus, the probability of majority failure is bounded 
by, 

t

(
n 
t

)
pt(1 − p)n−t . (3) 

By an improved version of Stirling’s formula [ 15],
(
n 
t

)
<

√
n 

2πt(n − t) 
nn 

tt(n − t)n−t <

√
2 

πn 
2n , 

where the latter inequality is the result of replacing t with n/2. Plugging the 
inequality into Eq. (3) and once again replacing t with n/2 yields the new bound√

n 
2π 2

n(p(1 − p))n/2. So long as
√

p(1 − p) < 1/2, which holds for p >  0.5, the 
upper bound for majority failure chance shrinks exponentially with respect to 
n. +,
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3.1 Quantum Algorithm for Shapley Value Approximation 

The quantum algorithm for Shapley value approximation takes an approach 
inspired by classical random sampling [ 10]. Each subset of nodes is given a prob-
ability amplitude proportional to their γ coefficient in the Shapley equation 
(Definition 3). Classically, we would randomly sample from the distribution of 
node subsets, and record how much our target node increases the value of the 
subset. After many samples, we take the average increase in value and use it as 
an approximation. By Chebyshev’s inequality, the number of samples required 
scales quadratically with respect to the desired error. The quantum approach 
can provide a quadratic improvement. 

Theorem 3 (Quantum Algorithm for Shapley Value Approximation 
[ 5, 6]). Take the cooperative game on graph H = (N, E) to be the pair GH = 
(F, V ) where F ⊆ N and V is the value function. Suppose we have a quantum 
implementation of V , UV , and that we wish to find the Shapley value Φi of 
node i. Then, given a fixed desired probability for success, there exists a quantum 
algorithm that produces approximation Φ̃i in, 

O
(√

(Vmax − Vmin)(Φi − Vmin)
ε

)
, 

queries to the value function UV . Where  Vmax, Vmin are respectively an upper and 
lower bound for the value function V , and the desired error bound is ε ≥ |Φi− ̃Φi|. 

Proof. We now give a sketch of the algorithm; a complete proof and error analysis 
is provided in [ 6]. We can uniquely encode a subgraph HQ, Q ⊆ F , as a binary 
string of the form: bQ = bQ 

0 b
Q 
1 · · · b

Q 
|F |−1 ∈ {0, 1}|F |, where bQ 

j = 1  if  j ∈ Q else 
bQ 
j = 0. We define quantum implementation UV of V as, 

UV

∣∣bQ
〉
Pl 
|0〉Ut =

∣∣bQ
〉
Pl 

 


√

1 − V (Q) 
Vmax − Vmin 

|0〉 +

√
V (Q) 

Vmax − Vmin 
|1〉

 

 

Ut 

. 

We begin with a quantum state made of three registers: Pt, the partition 
register, which helps to prepare the γ probability amplitude distribution (Def-
inition 3); Pl, the player register, which stores the subgraph encodings; and 
Ut, the utility register, which stores the value of a subgraph. We begin with the 
quantum state, |0〉⊗"

Pt |0〉
⊗|F | 
Pl |0〉⊗1 

Ut , where * = O(log((Vmax−Vmin)·
√
n/ε)). Next, 

prepare the Pt register as follows, 

1√ 
2"

2!−1∑

k=0 

|θk〉Pt |0〉
⊗|F | 
Pl |0〉⊗1 

Ut , 

where θk is an * bit binary approximaiton of arcsin 
√ 
2−"k. For notational sim-

plicity, we suppose i = |F | −  1. Using the partition register as a control, it is
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efficient to transform the state to, 

1√ 
2"

2!−1∑

k=0 

|θk〉Pt
((√

1 − 2−"k |0〉 + 
√ 
2−"k |1〉

)⊗|F |−1 
⊗ |0〉

)

Pl 

|0〉⊗1 
Ut , (4) 

Note that the bit corresponding to node i is zero. Switching to a density matrix 
representation and tracing out the partition register gives an approximation for 
the state, ∑

R⊆F \{i} 

γ (|F \ {i}|, |R|)
∣∣bR

〉
Pl 
|0〉Ut

〈
bR

∣∣
Pl

〈0|Ut . 

This results from the fact that
∫ 1 
0 (1 − t)n−m tm dt = γ(n, m) for integer n ≥ 2, 

and m ∈ {0, 1, . . .  ,m}. Now, applying UV and measuring the utility bit gives an 
expected value of, 

1 
Vmax − Vmin

∑

R⊆F \{i} 

γ (|F \ {i}|, |R|) V (R). (5) 

Using the quantum speedup for Monte Carlo methods [ 13], the expected value 
can be approximated quadratically faster than with classical methods. 

We can repeat the process with a simple modification, prepare Eq. (4) where 
the bit corresponding to node i is one, then proceed identically to above. This 
yields the expected value, 

1 
Vmax − Vmin

∑

R⊆F \{i} 

γ (|F \ {i}|, |R|) V (R ∪ {i}). (6) 

Subtracting Eq. (5) from Eq.  (6), then multiplying the result by (Vmax − Vmin) 
gives an approximation for the ith player’s Shapley value. Note that we can 
compute Eq. (5), Eq. (6), and thus the entire Shapley approximation without 
measurement. As a result, we can approximately perform the transformation, 

|i〉 |0〉 → |i〉
∣∣∣Φ̃i

〉
. (7)

+,
Lemma 2 (Shapley Values and Unreliable Value Functions). Consider 
the cooperative game GH = (F, V ) on graph H = (N, E) where F ⊆ N . We  
wish to find the Shapley value Φi of node i. Suppose  V : P(F ) → {0, 1} is 
a binary classifier, and that V is monotonic, i.e., if Q, R ⊆ F then V (Q ∪ 
R) ≥ V (Q). We define V̂ , that, given Q ⊆ F , fails and outputs 1 − V (Q) 
with probability κ ∈ [0, 1], or succeeds and outputs V (Q) with probability 1 − κ. 
Note, for simplicity, we assume a perfect implementation of the γ distribution, in 
reality, the implementation is an exponentially accurate approximation. Applying 
the Shapley value approximation using V̂ as a substitute for V has an expected 
value 

Φi + , 
where , is bounded, |,| ≤  2κ.
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Proof. We must find the expected value of the following equation,
∑

R∈F \{i} 

γ(|F \ {i}|, |R|)
(
V̂ (R ∪ {i}) − V̂ (R)

)
, (8) 

By definition, the expected value of V̂ (Q), Q ⊆ F , is  κ·(1−V (Q))+(1−κ)·V (Q). 
Rearranging gives, E

[
V̂ (Q)

]
= V (Q)+  κ − 2κV (Q). Thus, Eq. (8) has expected 

value,
∑

R∈F \{i} 

γ(|F \ {i}|, |R|) [(V (R ∪ {i}) − V (R))(1 − 2κ) + 2κ] . 

Applying Definition 3 and Lemma 1 from [ 6], the expected value is equal to, 
Φi + 2κ(1 − Φi). Since V is monotonic and the output is in the range {0, 1}, Φi 
is in the range [0, 1]. +,

3.2 Combining the Algorithms 

In this section, we describe a quantum approach for finding the st-connectivity-
based node centrality. Consider the cooperative game GH = (F, Vst) on graph  
H = (N, E), where s, t ∈ N and F = N \ {s, t}. Suppose that we wish to find 
the Shapley value Φi of node i ∈ F . We can represent each subset Q ⊆ F with 
a binary string bQ = bQ 

0 · · ·  b
Q 
|N |−1 where b

Q 
j is equal to 1 if j ∈ Q else bQ 

j is 0. 
Note that Vst(Q) is either 0 or 1. Hence, we can take Vmax = 1  and  Vmin = 0.  

Consider a modified quantum algorithm for the st-connectivity algorithm 
based on Remark  2. We define Ust(Q), Q ⊆ F as the quantum st-connectivity 
algorithm for graph HQ∪{s,t}. This requires a small alteration to the projection 
Πx, Eq.  (1). We replace Πx with, 

ΠQ 
x = |0〉 〈0| +

∑

(u,w)∈EQ 

|uw〉 〈uw| . 

This can often be done efficiently. Instead of directly using the adjacency bit xuw, 
we use the binary value xuw ∧ bQ 

u ∧ bQ 
w . Note that this implementation allows 

us to perform the calculation for all Q ⊆ F in superposition. The modification 
makes the algorithm easily compatible with the Shapley value algorithm. 

The base quantum algorithm for st-connectivity only has a success probabil-
ity of 9/10 (Theorem 2). This is insufficient, as demonstrated by Lemma 2. How-
ever, it is possible to improve our accuracy with logarithmic factor increase to 
time and space complexity; we repeatedly perform the quantum st-connectivity 
algorithm and take the majority answer (Lemma 1). In particular, assuming a 
desired error κ, we can apply Ust(Q) (Remark 2) n ∈ O(log κ−1) times indepen-
dently and take the majority vote. We begin with, 

Ust(Q)⊗n 
n−1⊗

k=0 

|0〉⊗O(log |N |) 
auxk

|0〉outk 
.
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Tracing the auxiliary registers gives us a state of the form required in Lemma 1. 
Thus, we can take the majority vote UMAJ and output it to a new one-qubit 
register. If we consider this new register as our utility register Ut described in 
Theorem 3, we can apply the logic of Lemma 2. Specifically, for each possible 
subgraph Q ⊆ F represented in the Pl register, the output, stored in the Ut 
register, holds the correct value V (Q) with probability 1−κ. As a result, we can
define UV as the product of repeatedly computing Ust(Q) order O(log κ−1) times,
followed by a UMAJ operation on the output. Thus, by Lemma 2, the expected 
value that we extract, Φi, is shifted to Φi + ,, , ≤ 2κ. Applying the Monte-Carlo
quantum acceleration routine extracts the value Φi + ε + ,. Since both ε and 
, can be bounded to arbitrarily small values, the algorithm is asymptotically 
correct. 

3.3 Finding Important Nodes 

Suppose that we wish to find the index of a node with a large Shapley value. 
Let node m have the largest Shapley value Φm. We find node j such that their 
Shapley value Φj is greater than or equal to Φm − ε.

Lemma 3. Consider a game  GH = (F, V ), where  F is a subset of nodes in the 
graph H, and  V : P(F ) → R is the value function. Suppose that the player m
has the largest Shapley value; Φm ≥ Φj for all j ∈ F . Then, the Shapley value
of the player m’ has the following lower bound, 

Φm ≥ V (F ) 
|F | .

Proof. By the property of efficiency [ 6], we have
∑|F |−1 

k=0 Φk = V (F ). Suppose
that Φm is the maximum Shapley value. We proceed by contradiction; let Φm = 
(V (F )/|F |) − ε for ε >  0. It follows that for all k, Φk ≤ (V (F )/|F |) − ε. Thus,

V (F ) =
|F |−1∑

k=0 

Φk ≤
|F |−1∑

k=0 

((V (F )/|F |) − ε) =  V (F ) − |F |ε. (9) 

A contradiction, therefore Φm cannot be less than V (F )/|F |. +,

As a result, when looking for an important node, at worst, we need precision 
that is inversely proportional to V (F )/|F |. Thus, to find our importance nodes,
we create a uniform superposition of the nodes stored in the Ind register, where 
each has the same probability, (1/|F |)

∑
k∈F |k〉Ind. We perform our combined

algorithm to assess the Shapley values in the st-connectivity game, storing the 
results Φ̃k ≈ Φk in a new Shp register,

1 
|F |

∑

k∈F

|k〉Ind
∣∣∣Φ̃k

〉

Shp 
,

where |Φ̃k − Φk| ≤ O(V (F )/|F |). We can find the k so that Φ̃k is maximized
in O(

√
|F |) applications of the combined algorithm using a quantum algorithm
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to find the maximum [ 1]. If there are multiple high-value players or the most 
valuable player is not yet found, the algorithm can be repeated to find multiple 
high-value players. 

Fig. 1. Practical example (see our companion Github repository for further details). 
(a) Shapley Values for the intermediate nodes between s and t. (b) Coalitions of Nodes 
(in which coalitions of nodes are represented by binary string 1100000). 

3.4 Practical Example 

Let H = (N, E) be the graph as shown in Fig. 1a. We define cooperative game 
GH = (F, Vst), with s, t ∈ N and F = N \ {s, t}. Suppose that we wish to 
find the Shapley value Φa of node a ∈ F . We can represent each subset R ∈ F 
with binary string bR = bR 

a · · ·  bR 
g where bR 

j is  equal to 1 if  j ∈ R else bR 
j is 0. 

Note that, V (R) is either 0 or 1, so we can take Vmax = 1  and  Vmin = 0.  We  
define UV as we did in the previous section. For example, suppose that we apply 
UV with input string |1100000〉Pl, this represents the subgraph in Fig. 1b. This 
subset is st-connected, since the path s, a, b, t is valid. As a result, if we perform 
UV |1100000〉Pl |0〉Ut, the  Ut register stores the correct answer 1, with probability 
1−κ. However, if we removed node a, the graph would no longer be st-connected. 
So, the state UV |0100000〉Pl |0〉Ut has the answer 0 stored in the Ut register with 
probability 1 − κ. 

To find Shapley value Φa, we proceed as follows: (i) craft a quantum state that 
encodes every possible subset of nodes, that does not include node a, with correct 
amplitude probability weights corresponding to γ (Definition 3); (ii) perform the 
unitary UV outputting to Ut, i.e., repeatedly check for st-connectivity leveraging 
Theorem 2 and take the majority answer; (iii) extract the expected value of the 
utility register Ut using the Monte-Carlo speed-up [ 13]; (iv) repeat the previous 
steps where each subset that includes node a is considered and compared outputs. 
Using this strategy, we can approximate the Shapley values of each node with 
arbitrary precision (see Fig. 1a). As a result, we can also take advantage of the 
techniques described in Sect. 3.3, to quickly identify which nodes have the highest 
Shapley values.
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3.5 Complexity Analysis 

Baseline Classical Complexity – We now describe a reasonable, though not nec-
essarily optimal method to approximate st-connectivity based node-centrality 
through classical methods. Let GH = (F, Vst) be a cooperative game in H = 
(N, E), where s, t ∈ N and F = N \ {s, t}. Let us discuss the complexity of 
approximating the Shapley value of the player i’, Φi. The  st-connectivity can 
be assessed using a breadth-first search, with a time complexity of O(|N |2). By 
Chebyshev’s inequality, we need to query the st-connectivity algorithm O(σ2 /ε2) 
times, where ε is the desired error, and σ2 is the variance of Vst over the distri-
bution matching the Shapley value Definition 3. Since the only outputs of Vst 
are zero and one, we effectively have a Bernoulli distribution with the expected 
value Φi. Thus, the variance is Φi(1 − Φi). Since nontrivial situations do not 
allow Φi to be close to one, we effectively have a variance of O(Φi). Thus, given 
a fixed likelihood of success, the time complexity of approximating the Shapley 
value Φi with an error bounded by ε is O

(
Φiε−2|N |2

)
. 

Next, we briefly consider a method to extract important nodes. In the worst 
case, the largest Shapley value is of size O(V (F )/|F |) =  O(1/|N |), and in this 
case, most values are close together. So, an error bound ε ∈ O(1/|N |) and  
Shapley value Φi ∈ O(1/|N |) are appropriate values. Thus, we require O(|N |3) 
operations for sufficient accuracy. Finally, we must find the Shapley value for each 
node, thus, naively, the worst-case scenario involves about O(|N |4) operations. 

Quantum Complexity – Finally, let us address the complexity of our quantum 
approach. Note that in this section, we drop polylogarithmic factors for nota-
tional simplicity. We now describe the complexity of approximating the Shapley 
value of the player i’, Φi, with quantum methods. UV involves repeating the 
algorithm from Theorem 2 a logarithmic number of times. Thus, UV has a time 
complexity of Õ

(
|N |3/2

)
. Note that Theorem 2 implicitly requires an easily 

addressable form of adjacency matrix, which can be implemented with qRAM, or  
possibly through native interactions with a quantum network. In this context, 
the Shapley value algorithm has complexity Õ

(√
Φi/ε

)
(Theorem 3). Thus, the 

complexity in finding the Shapley value of node i’ is  Õ
(√

Φiε−1|N |3/2
)
. 

Applying the same rationale as above, we consider the problem of extracting 
important nodes. Suppose that the largest Shapley value is O(1/|N |) and as a 
result we want ε ∈ O(1/|N |). Thus, calculating the Shapley values to the required 
precision takes Õ(|N |2) time. As discussed in Sect. 3.3, we can approximate 
all Shapley values in superposition, then extract the maximum in Õ

(√
|N |

)

queries. Thus, our total complexity for finding important nodes takes Õ(|N |5/2) 
operations. 

4 Related Work 

The work presented in this paper combines quantum computing with distributed 
system security. Some existing research directions related to our work include (i)
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the study of potential advantage or speed-up optimizations of quantum comput-
ing associated with probing, control, and planning of cyber-physical systems [ 2], 
as well as formally verifying properties and providing explainability of the related 
processes [ 11]; (ii) use of quantum technologies to secure quantum data commu-
nications (e.g., protecting the authenticity of quantum signals when in transit, 
the detection of adversaries maliciously modifying quantum messages, and anal-
ysis of any other threat models affecting the security of entanglement rates to 
endanger applications built upon distributed quantum networks [ 3]); (iii) advan-
tages of quantum technologies to build more secure ways to protect classical 
data with key expansion protocols like QKD, any of its flavors [ 14]; (iv) risks and 
threats posed by quantum science to contemporary information security, includ-
ing the use of quantum annealers or any other quantum-inspired metaheuristics 
paving the way for new cracking strategies against classical or post-quantum 
cryptography [ 8]. 

Compared to previous work, we provide in this paper a formal approach built 
on game-theoretic node centrality following in line with [ 12,18]. Game-theoretic 
node centrality provides a more flexible and nuanced concept of node central-
ity. The st-connectivity attack, in the context of game-theoretic node centrality, 
relies on novel methods to quantify the security properties of a graph. As pre-
viously shown [ 5], the Shapley values necessary for our node centrality can be 
approximated with quadratically fewer value function queries using quantum 
methods, up to polylogarithmic factors. Moreover, our value function, based on 
st-connectivity, can be assessed faster on a quantum computer by taking advan-
tage of [ 4]. The combination of these two factors allows for a faster calculation 
than is possible with a classical Monte Carlo approach to solving the problem. 
Finally, to find high-importance nodes, we can calculate each node’s Shapley 
value simultaneously using quantum superposition, which yields a database of 
Shapley values. We then search this database of nodes to find the node with the 
largest Shapley value; this is quadratically faster than a classical search would 
allow [ 1]. 

5 Conclusion 

We have described a quantum approach to approximating the importance of 
nodes that maintain a target connection, as well as how to quickly identify high-
importance nodes. Our methods are built upon multiple subroutines: one for st-
connectivity, another for the Shapley value approximation, and a final subroutine 
for finding the maximum of a list. We have considered a formal attack scenario, 
denoted as the st-connectivity attack, in which a malicious actor disrupts a 
subset of nodes to disrupt the system functionality. Using our methods, we can 
identify the nodes that are the most important and use this information to guide 
topological adjustments to increase resilience. Our solution can also be used as 
a security metric to guide remediation strategies. Perspectives for future work 
include investigating extended subroutines that leverage node values to improve 
resilience.
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