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Abstract—With technological advances, Cyber-Physical Sys-
tems (CPS), specifically critical infrastructures, have become
strongly connected. Their exposure to cyber adversaries is higher
than ever. The number of cyber-attacks perpetrated against
critical infrastructure is growing in number and sophistication.
The protection of such complex systems became of paramount
importance. Resilience applied to critical infrastructures aims at
protecting these vital systems from cyber-attacks and making
them continue to deliver a certain level of performance, even
when attacks occur. In this work, we explore new advances re-
lated to cyber-resilience applied to CPSs. We also explore the use
of a metric to quantify the resilience of critical infrastructures.
As a use case, we consider a water treatment system.

Index Terms—Cyber-resilience, critical infrastructures, cyber-
physical system, resilience, spectral radius.

I. INTRODUCTION

Nowadays, the increase in competitiveness leads to a race
to digitization, making the Cyber-Physical Systems (CPS)
domain, and specifically, critical infrastructures, more and
more connected and, thus, more exposed to cyber-attacks.
The term CPS was first coined by Gill [11]. They comprise
hardware and software components communicating with the
real and the cyber worlds. We live in a digitization era.
The race for competitiveness in every field (health, robotics,
avionics, railways, etc.) implies that critical systems have
become increasingly connected to the cyber-space. Thus, they
become more and more exposed to cyber-attacks. Critical
infrastructures are considered as complex CPS. Every day,
the news proves how essential systems protection is. Indeed,
critical infrastructures are considered vital for industries, orga-
nizations, and countries. An attack perpetrated against complex
systems could have disastrous consequences and damages.
As an example of such devastating consequences, we can
cite the cyber-attack perpetrated against the Florida water
treatment station [18]. The cyber-adversary responsible for this
attack has delivered a quantity of sodium hydroxide 100 times
higher than the usual amount. A significant quantity of such
a product added to drinking water can harm citizens’ health
and, in extreme cases, may cause death. Infrastructures such as
water treatment systems, nuclear plants, electrical distribution
stations, petroleum stations, and railways are called critical
because they directly impact people’s lives. Resilience applied
to critical infrastructures aims at protecting these systems from
the adverse effects of cyber adversaries.

We explore recent works published in the field of quan-
tification and assessment of cyber resilience. We seek to
use metrics for quantifying resilience by applying them to
a critical infrastructure example, namely a water treatment
system whose architecture is inspired by the Secure Water
Treatment System (SWaT). We have deployed the STPA
method (Systems-Theoretic Process Analysis), a hazard analy-
sis based on STAMP (Systems-Theoretic Accident Model and
Processes), on the water treatment system.

This paper is organized as follows. Section II goes over
commonly recognized definitions of the notion of cyber-
resilience. Section III reviews related work. In Section IV, we
apply a resilience assessment strategy to a water treatment
system and compare the results obtained with two metrics
previously introduced in the literature. We discuss axes for
further research in Section V. Finally, Section VI concludes
this work.

II. CYBER-RESILIENCE, A CONSENSUS FOR A DEFINITION

The resilience term, initially applied in ecology by Holling
[15] to quantify a population’s ability to recover from changes,
became an important research axis in the cybersecurity com-
munity. Resilience is used in many fields [16] such as ecology
(resilience facing natural events), psychology (resilience facing
a trauma), economy (resilience facing market changes), etc. In
the field of computer sciences, the notion of resilience is called
cyber-resilience when it is related to cyber-physical systems
and, in a more general way, to cybersecurity. However, in
many cybersecurity-related works, the authors do not usually
use the cyber-resilience designation and use the resilience
appellation. Various definitions of resilience can be found
in the literature. Many of these definitions have the notion
of performance as a common basis. Indeed, a well-known
way to quantify the resilience of a system is to consider
its performance degradation facing a disruptive event, for
example, a cyber-attack. The performance of a system is
highly related to mission delivery, and most of the definitions
of resilience applied in the cybersecurity field consider this
aspect. A well-known definition from [23] defines cyber-
resilience as The system’s ability to recover or regenerate its
performance after a cyber-attack produces a degradation to its
performances. Another similar definition describes resilience
as The ability to anticipate, withstand, recover from, and adapt
to adverse conditions, stresses, attacks, or compromises onISBN 978-3-903176-57-7 © 2023 IFIP



systems that use or are enabled by cyber resources. [31]. Other
works such as [8] provide a more exhaustive classification
of resilience definitions found in the literature, depending
on systems properties, service delivery, and events handling.
According to [9], it is possible to highlight the main principles
of resilience as: (i) Anticipate, i.e., maintain a state of informed
preparedness to forestall compromises of mission functions
from adversarial activities; (ii) Withstand, i.e., continue es-
sential mission/business functions despite successful execution
of an attack by an adversary; (iii) Recover, i.e., restore
mission/business functions to the maximum extent possible
after the successful execution of an attack by an adversary; and
(iv) Adapt, i.e., change the mission functions or the supporting
cyber capabilities to minimize adverse impacts from actual or
predicted attacks. Without being able to define and measure
cyber resilience adequately, it will be difficult for organizations
to self-monitor and share critical infrastructure among other
organizations and policymakers to observe the posture of
systems and enforce policies [33], and as noted by Linkov
and Kott [24], to improve the cyber resilience of a system, you
have to measure it. That’s why in the past years, there have
been massive efforts from academics and organizations to de-
velop new metrics, models, and frameworks to identify cyber
resilience goals, objectives, practices, and costs [6]. According
to Linkov and Kott, there are two different approaches to
measuring resilience [23]. The first approach considers the use
of metrics based, seen as technical measurements of individual
properties of system components or functions, to assess overall
system performance. The second approach relies on modeling,
using system configuration modeling and scenario analysis to
predict system evolution.

We focus on metrics to measure CPS cyber resiliency.
Metrics are defined as measurable properties of the system
that quantify the degree to which the objectives of the system
are achieved. They can be either qualitative (connected with
what something is like rather than how much of it there is)
or quantitative (connected with the amount or number rather
than with how good it is). The development of the Cyber Re-
siliency Metrics Catalog by MITRE [7] alongside a new NIST
standard on Developing Cyber-Resilient Systems [31] and a
standard Cyber Resiliency Engineering Framework (CERF)
by the MITRE [6] show that this domain is taken seriously
by stakeholders. The next section presents works related to
the vulnerability quantification of systems, formalization of
loss scenarios, attack impact quantification techniques, func-
tional diversity and variability for enhancing resilience, and
resilience quantification techniques.

III. RELATED WORK

A. Vulnerability quantification

The use of prediction techniques to estimate the evolution
of adversarial activities can combine the use of attack sur-
face metrics [14], combined with tree structures and graph
theoretic-solutions [19], [22], [32]. The goal is to analyze and
quantify the likelihood of being affected by cyber-attacks due
to existing vulnerabilities in the system. Extended solutions

can also lead to proactive automation of countermeasures right
after mapping threats to handle vulnerability exploitation [29]
properly. Early solutions based on attack graphs can be
constructed using the results of network scanners [30], i.e.,
building a mapping between network topology and existing
vulnerabilities in each node. This type of graph offers a well-
structured strategy to add weights to network resources based
on their likelihood of being affected by cyber-attacks. This
way, attack evolution can be formally represented as how
adversaries keep accessing new resources by exploiting exist-
ing vulnerabilities. Another strategy relies on Bayesian-based
reasoning, in which graph edges and vertices are assigned
probabilities based on their likelihood of being affected by the
exploitation of underlying vulnerabilities. However, the nature
of adversaries is driven by the achievement of detrimental
goals against the system rather than probabilities or topological
weights [3].

B. The importance of critical sequences

STAMP-STPA is a hazard analysis method used to accu-
rately find loss scenarios from different families of complex
system incidents and control structure models [25]. The out-
puts are the following ones: (1) loss scenarios leading to unsafe
control actions and (2) scenarios where control actions are
not or are improperly executed. These loss scenarios describe
the causal factors that can lead to unsafe control actions and
hazards and, as such, can be viewed as critical sequences
that cybersecurity stakeholders must avoid to occur. STAMP-
STPA considers not only cyber-based threats but also errors or
control actions improperly executed by human staff interacting
with the systems. Indeed, it is well-known that the human
factor could be the cause of many failures or security breaches,
which is not necessarily a correct assumption as operator
behavior are a product of their environment. To reduce op-
erator error, we must change the environment in which they
work [25].

C. Attack impact quantification

Any cyber-security enhancement strategy must take into
consideration attack impact quantification metrics. Kotenko et
al. [21] present such quantification methods by considering
the resilience assessment of computer networks and their
stochastic network representations. Several previous works
deal with this notion of attack impact quantification. Kotenko
and Chechulin present a tool used for modeling and analysis
of attacks using attack graph and service dependency models
combined with several cybersecurity metrics such as the
Common Vulnerability Scoring Systems (CVSS) scores, and
several lists of known information security vulnerabilities such
as Common Vulnerabilities and Exposures (CVE) or the Na-
tional Vulnerability Database (NVD) to evaluate the security
and quantify the possible impact of an attack [20]; Dudorov
et al. introduced an approach for the generation of stochastic
models of attacks [10]; Abraham and Nair have presented a
framework that allows to take into account vulnerabilities and
to calculate quantitative values for security metrics [2].



D. Functional diversity and variability for resilience purposes

Resilience strategies applied to complex systems are very
diversified. Functional diversity and redundancy are significant
aspects of resilience strategies. Redundancy is more related to
safety and robustness. Functional diversity is generally applied
in resilience enhancement strategies. Indeed, it is known that
redundancy does not consist in a sufficient challenge for cyber-
adversaries than functional diversity in resilience improvement
of CPSs. However, functional diversity includes components
that measure or act at the level of different physical phenom-
ena, which is a higher challenge for an adversary who attempts
to remain invisible from an attack detection strategy [4], [5].

E. Resilience quantification

1) Spectral radius: Lewis highlighted the importance of
quantifying system resilience with metrics [26]. Design alter-
natives can be objectively evaluated and compared. It can be
done using either empirical data and/or analyzing the structure
of a representation of a system. In his article, two empirical
metrics are introduced, exceedance probability and probable
loss, and one structural metric, spectral radius.

Spectral radius is a metric calculated over a CPS modeled
as a graph. The network nodes correspond to the components
of the CPS while the links represent relationships between
components. Let n be the number of components. A CPS can
be represented as a n×n connection matrix C with elements
in {0, 1}. For i, j ∈ 1, . . . , n, ci,j = 1 when component i
is related to component j. Otherwise, is it equal to 0. A
relationship may be a physical or logical connection. Let
λ1, . . . λn be the eigenvalues of C. The spectral radius of the
connection matrix C, denoted as ρ(C), is defined as

ρ(C) = argmax
i=1,...,n

|λi|. (1)

It is the largest absolute value of the eigenvalues. Lewis
observed that the spectral radius increases with the density
of links, i.e., the number of links per node, or the number
of connections that network hubs may have [26]. The high
density of links and presence of hubs increase the risk of
cascading failures, i.e., propagation of failures from neighbor
component to neighbor component. However, this is not the
only way to interpret the spectral radius. Indeed, an increase
in the value of the spectral radius versus different architectures
also reflects a lower risk of getting unreachable nodes or states
in the case of a node deletion, i.e., a component failure. Thus,
this interpretation implies that a higher spectral radius reflects
a higher resiliency due to more connections between the graph
nodes.

2) (k, ℓ)-resilience: The works [4], [5] have introduced the
(k, ℓ)-resiliency metric and how to compute it. We present the
necessary material to understand the (k, ℓ)-resiliency property,
applied to CPSs modeled by state-space representations with
A, B, C and D be respectively the state, input, output and
direct transmission matrices of a system based on a differential
equations representation; and x, u and y be respectively the
state, input and output vectors. The (k, ℓ)-resiliency is based

on inter-variable dependencies and on dependency graphs. The
notion of inter-variable dependencies is based on the Pearson
correlation coefficient. This correlation coefficient is unitless
between −1 and 1. If ρ(A,B) = 1 their is a perfect positive
correlation between A and B [34].

Now we consider u, x, and y, which are respectively p-
element, m-element, and n-element column vectors represent-
ing the input, state, and output variables of a CPS modeled as a
state-space representation. Correlation coefficient matrices are
used to capture in structures the relationships between state
variables and input or output variables. The following notions
have been presented in the works [4], [5].

An m × p [m × n] input [output] correlation coefficient
matrix Q [R] is equal to (qi,j) [(ri,j)] with i = 1, . . . ,m, j =
1, . . . , p [j = 1, . . . , n]. An entry of this matrix qi,j [ri,j] is
the correlation coefficient ρ(xi, uj) [ρ(xi, yj)] between xi and
uj [yj], i.e., between the state variable and the input [output]
variable.

An input [output] dependency graph consists of a bipartite
graph GU = (X,U,E) [GY = (X,Y,E)] where the two sets
of vertices are X = {x1, . . . , xm} and U = {u1, . . . , up}
[Y = {y1, . . . , yn}] the state and input [output] variables,
respectively. There is an edge (xi, ui) [(xi, yi)] in E if-and-
only-if the absolute value of the correlation between xi and
ui [yi] is greater than or equal to a threshold T , chosen to be
close to one.

Following these notions, by considering a dependency graph
GU [GY ] and a vertex x in X , the expression deg(x)
represents its input [output] degree, i.e., the number of adjacent
vertices in U [Y ]. The ℓ-monitorability degree has been built
to reflect the availability of at least ℓ sensor output signals for
monitoring any state variable. With GY the output dependency
graph of a CPS, let ℓ be equal to min

x∈X
deg(x). A CPS

has ℓ-monitorability degree (ℓ-monitorability for short). The
notion of k-steerability has also been introduced, indicating
the availability of at least k actuator input signals for acting
on every plant state variable. With GU the input dependency
graph of a CPS, let k be equal to min

x∈X
deg(x). The CPS is said

to have k-steerability degree (k-steerability for short). A CPS
which has k-steerability and ℓ-monitorability (with k ≤ ℓ) is
said to be (k, ℓ)-resilient.

The (k, ℓ)-resiliency metric calculates a CPS’s resilience
according to the ability to steer and monitor the plant and
make it return to its original state when an attack occurs.
Furthermore, it has been admitted that the relationship k ≤ ℓ
is desirable. Indeed, a higher steerability does not increase the
resiliency potential without sufficient monitorability capacities.

The next section explores a quantitative assessment method
of the SWaT’s resilience.

IV. QUANTITATIVE RESILIENCE ASSESSMENT OF SWAT

As a use-case, we choose the SWaT CPS [13], [27]. It is a
testbed built by the Singapore University of Technology and
Design (SUTD). This system reproduces on a small scale
the behavior of a real treatment station in Singapore. The



criticality and need to protect such a system from cyber
adversaries are topical.

Figure 1 presents the architectures of the water treatment
system that we consider, inspired by SWaT [17]. It comprises
six phases. The first phase pumps water from a reservoir
to the second phase. This second phase includes a chemical
dosing station and a mixer to purify the water from bacteria
and contaminants. In the third phase, an Ultrafiltration (UF)
membrane removes micro-particles from the water. Then, the
water is sent at high pressure to an ultraviolet system in
the dichlorination fourth phase. A reverse osmosis system
eliminates residual viruses and impurities during the fifth
phase. The water arriving in the sixth phase is stored in two
different tanks. One of them is intended for water distribution.
The second one is connected to a pump that sends a backwash
flow of water to clean the UF membrane of the third phase.
Indeed, a cake layer formation occurs at the UF membrane
during the water treatment process. Thus, the system alternates
between filtration and backwash cycles. Depending on the
concentration of particles in the water, a filtration cycle could
last between thirty minutes to one hour. A backwash cycle
generally lasts for less than one minute. A manual-cleaning
step of the UF membrane is required every twelve hours.
A water treatment system such as SWaT is controlled by
a Human Machine Interface-Supervisory Control and Data
Acquisition (HMI-Scada) system. There is one controller for
each phase. The controllers communicate with each other for
global management purposes.

A. Spectral radius evaluation

The spectral radius calculation approach considers a whole
system as a graph structure. The nodes of the graph represent
the different components. Links between the nodes represent
physical connections, e.g., a level sensor attached to a tank,
and logical relationships corresponding to communication
links between components, such as the flow rate readings
from a sensor to a controller. We present several architectural
variations of SWaT. Each of them incorporates n different
components contributing to the steerability and monitorability
capabilities of the system. We compute the spectral radius for
every architecture by mapping it to a n×n connection matrix
C. Element ci,j equals k when there is a logical or physical
link between the components i and j, where k is called
the functional diversity, i.e., the number of links between i
and j. We notice that the numerical values presented at the
level of the steerability and monitorability components of the
architectures shown in Fig 1 highlight a functional diversity
that increases the resiliency potential of the system. Thus, we
have identified a family of steerability components composed
of controllers, pumps, and valves. Monitorability components
are the sensors.

Architecture A0, presented in Fig. 1 is similar to the original
SWaT. In A1, two controllers are working in tandem in
each phase. When one of them fails, the water treatment
process is not impacted. The redundant controllers increase
the steerability of the system [4], [5]. Architecture A2 is based

on A0. It integrates new components such as sensors and
redundant pumps to achieve a higher degree of monitorability
[4], [5]. Thus, from an illustrative point of view, A2 does
not differ from A0. However, it has higher numerical degrees
on its links, i.e., greater functional diversity. Architecture A12

is based on A0. It also comprises the new elements added
into the architectures A1 and A2. The calculation of the
spectral radius for each architecture has been obtained by
modeling each architecture as square-adjacent matrices with
degrees representing the functional diversity. Then, we built a
MATLAB script to read the matrices from an Excel file and
compute the spectral radius of each architecture. These results
are presented in Table I, and the associated files can be found
at [1]. The numerical results are consistent with an expected
increase in the degree of resilience, ρ(A1) and ρ(A2) both
greater than ρ(A0), and ρ(A12) greater than both ρ(A1) and
ρ(A2).

B. (k, ℓ)-resilience evaluation

The k-steerability means that at least distinct k actuators
are available for affecting every single plant state variable [4],
[5]. Besides, the ℓ-monitorability signifies the readings from
at least ℓ different sensors observe any state variable. The
water levels in the tanks are the state variables of the SWaT-
derived architectures. Nine tanks (water and chemical) are
distributed in the six phases. A maximum of two pumps are
connected to each tank, and only one is in Phase 6. There
is a total of fifty-one sensors of all kinds in the system.
Thus, a state-space representation of SWaT is as follows:
A state matrix A of size (9 × 9); an input matrix B of
size (9 × 25); an output matrix C of size (51 × 9); and
a direct transition matrix D of size (51 × 25). We know
that the parameters k and ℓ are the minimum degrees of
adjacent vertices in the input and output dependency graphs,
which are bipartite. Thus, in the A0 architecture, we have (i)
1-steerability capacity on all the tanks (since there is only
one pump on one of the tanks in Phase 6); (ii) at least 5-
monitorability capacity on all the tanks (the sensors of SWaT
have a high correlation with the water levels of the tanks since
the physical phenomena they measure are related to water and
the dosage of all kinds of chemicals depends on a specific
quantity of water). Hence, A0 is (1, 5)-resilient. By applying
the same reasoning to the other architectures, we get the results
provided in the third column of Table I. A1 has redundant
controllers, which doubled the k value. A2 has a k and ℓ
parameters greater than A1 because new sensors have been
incorporated in the whole system (which increments the ℓ).

TABLE I
SPECTRAL RADIUS AND (k, ℓ)-RESILIENCE EVALUATION.

Architecture (A) Spectral radius (ρ(A)) (k,ℓ)-resilience
A0 10.91 (1, 5)
A1 15.95 (2, 5)
A2 14.85 (2, 9)
A12 21.41 (4, 9)



(a) Architecture A0

(b) Architecture A1

(c) Architecture A2

(d) Architecture A12

(e) Legends

Fig. 1. A0 presents the original architecture of SWaT [17]. A1 is based on A0 and it incorporates redundant controllers green-marked. A2 is similar to A0

and incorporates new sensors and one red-marked redundant pump. A12 incorporates the additional elements of A1 and A2.

Also, a redundant pump has been added in the sixth phase
(which increments the k parameter). Table I provides two
different interpretations of the architectures’ resilience. The
spectral radius emphasizes a resilience estimation based on the
functional structure of a CPS. In contrast, the (k, ℓ)-resilience
metric focuses on hardware and software components that
make a system resilient by design.

V. DISCUSSION

We are searching for methodologies for the quantitative
assessment of the resilience of a CPS. As a case study, we
use architectural variants of the SWaT CPS. While small, it
comprises several aspects of a full-scale CPS, making it an
ideal candidate for exploratory studies. For every architecture,
we calculated the spectral radius. The results are consistent
with an expected increase in resilience. We also evaluated
the (k, ℓ)-resilience, with somewhat consistent results for the
architectures A0, A1, A2, and A12.

We have identified several research axes that must be inves-
tigated in the quantitative resilience analysis of CPSs. Firstly, it
is essential to notice that the resilience capabilities of a specific

CPS’ architecture are limited. In the case of resilience-by-
design strategies, adding new components such as controllers
or sensors can bring more steerability and monitorability,
which are resilience enhancement as shown in the works [4],
[5]. However, it has also been proven that adding components
to a CPS increases the attack surface. Thus, a delicate balance
between risk mitigation and enhancing resiliency capacities
must be achieved. Another approach to consider in resilience
enhancement is in relation to the different operating layers
of a CPS. A CPS can be viewed as a stack of layers. Each
layer communicates with the others via different mechanisms.
The physical layer represents the plant itself. The mission
layer consists of a functional view of the system’s mission.
The business layer can be viewed as an interconnection
between the stakeholders involved in the system’s operating
cycle. Resilience enhancement strategies must be exercised at
each layer, but with no detrimental effects to the other ones.
Extending a physical plant with a digital twin is also a topic
to explore for resilience enhancement purposes.

One may also find inspiration in automated synthesis ap-
proaches that use symbolic control refinement to guarantee



that desired properties are obtained, such as safety [12]. Top-
down formal refinement of CPS configurations could also
model Boolean satisfiability of loss scenarios. From the high-
level description of CPS configurations (e.g., those abstracting
the details of the concrete system), the automated refinement
could interface low-level descriptions satisfying the absence
of loss scenarios, assuring that both high- and low-level de-
scriptions behave identically (low-level configurations refined
automatically from high-level verifiable descriptions with good
resilience properties). The approach could combine property-
proving techniques, at the high layers, with model-checking
techniques, at the low layers [28].

VI. CONCLUSION

Resilience assessment of critical infrastructures is challeng-
ing because of their complexity. Many modeling strategies
reason on virtual representations, making obtaining a complete
overview of the elements used in resiliency-quantification
strategies difficult. For example, the (k, ℓ)-resilience and
spectral radius metrics return different interpretations of the
architectures of SWaT. This is due to the elements the metrics
are considering. Indeed, the (k, ℓ)-resilience metric focuses on
design configurations. In contrast, the spectral radius metric
builds upon a graphical representation of the system capturing
node and state distribution. The system itself is not the only
element to consider in resilience quantification and enhance-
ment strategies. Its environment and related interactions must
also be examined.
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of attack–defense trees. In Formal Aspects of Security and Trust: 7th
International Workshop, FAST 2010, Pisa, Italy, September 16-17, 2010.
Revised Selected Papers 7, pages 80–95. Springer, 2011.

[20] I. Kotenko and A. Chechulin. A cyber attack modeling and impact
assessment framework. In 2013 5th International Conference on Cyber
Conflict (CYCON 2013), pages 1–24. IEEE, 2013.

[21] I. Kotenko, I. Saenko, and O. Lauta. Modeling the impact of cyber
attacks. In A. Kott and I. Linkov, editors, Cyber Resilience of Systems
and Networks, chapter 7, pages 135–169. Springer, Switzerland, 2018.

[22] I. Kotenko and M. Stepashkin. Attack graph based evaluation of network
security. Lecture Notes in Computer Science, 4237:216–227, 2006.

[23] A. Kott and I. Linkov. Cyber Resilience of Systems and Networks.
Springer Publishing Company, Incorporated, 1st edition, 2018.

[24] A. Kott and I. Linkov. To improve cyber resilience, measure it.
Computer, 54(2):80–85, 2021.

[25] N. G. Leveson. Engineering a Safer World: Systems Thinking Applied
to Safety. The MIT Press, 01 2012.

[26] T. G. Lewis. The many faces of resilience. Communications of the
ACM, 66(1):56–61, 2023.

[27] A. P. Mathur and N. O. Tippenhauer. Swat: a water treatment testbed for
research and training on ics security. In 2016 International Workshop
on Cyber-physical Systems for Smart Water Networks (CySWater), pages
31–36, 2016.

[28] O. A. Mohamed et al. LCF-style Platform based on Multiway Decision
Graphs. Electronic Notes in Theoretical Computer Science, 246:3–26,
2009.

[29] A. Motzek, G. Gonzalez-Granadillo, H. Debar, J. Garcia-Alfaro, and
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