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Abstract—We present an error tolerant path planning algo-
rithm for Micro Aerial Vehicle (MAV) swarms. We assume a
MAV navigation system without relying on GPS-like techniques.
The Micro Aerial Vehicles (MAVs) find their navigation path by
using their sensors and cameras, in order to identify and follow
a series of visual landmarks. The visual landmarks lead the
MAVs towards the target destination. MAVs are assumed to be
unaware of the terrain and locations of the landmarks. Land-
marks are also assumed to hold a-priori information, whose
interpretation (by the MAVs) is prone to errors. We distinguish
two types of errors, namely, recognition and advice. Recognition
errors are due to misinterpretation of sensed data and a-priori
information or confusion of objects (e.g., due to faulty sensors).
Advice errors are due to outdated or wrong information
associated to the landmarks (e.g., due to weather conditions).
Our path planning algorithm proposes swarm cooperation.
MAVs communicate and exchange information wirelessly, to
minimize the recognition and advice error ratios. By doing this,
the navigation system experiences a quality amplification in
terms of error reduction. As a result, our solution successfully
provides an adaptive error tolerant navigation system. Quality
amplification is parametetrized with regard to the number of
MAVs. We validate our approach with theoretical proofs and
numeric simulations.

I. INTRODUCTION

MAVs are a popular type of drones. They are equipped
with sensors and cameras, making it possible to hover and
navigate complex three dimensional terrains. They may be
used in a variety of applications, including sewer inspection
[1], search and rescue operations [2], and parcel delivery
[3]. Large terrains can be covered by so called swarms,
namely collaborative teams of MAVs, which may exchange
information gathered during navigation and as such may
become resilient to potential MAV failures of all kinds either
in navigation or sensitivity of sensor equipment. We are
interested in designing swarm algorithms that are resilient
to such random failures.

We present an error tolerant path planning algorithm for
MAV swarms. We assume a MAV navigation system without
relying on GPS-like techniques. MAVs find their navigation
path by using their sensors and downward cameras, in order
to identify and follow a series of visual landmarks. The visual
landmarks lead the MAVs towards the target destination.
We assume that the MAVs are unaware of the terrain and
locations of the landmarks. Figure 1 shows the idea. A swarm
of MAVs collectively identify a series of landmarks over an
inspected terrain. The identification of the landmarks allows
the swarm to find the path that the MAVs must follow.

To address the path finding problem, the swarm considers a
terrain comprising a set of multiple waypoints or landmarks.
The landmarks also include the starting and terminal points of
a well-defined path. The MAVs may hover over the landmarks
either on their own or in formation. They may hop from
anyone landmark to any other. The landmarks are identified
as vertices and the resulting communication system forms a
complete graph. Recall that the MAVs are unaware of the
terrain and locations of the landmarks. However, they have
the capability to visually recognize the landmarks. Further,
the MAVs may communicate and exchange information wire-
lessly as long as they are within communication range of each
other. The MAVs are required to find a flight path from the
starting point, leading to the terminal point.

We also assume that the landmarks hold information whose
interpretation (by the MAVs) is prone to errors. We distin-
guish two types of errors, namely, recognition and advice.
Recognition errors are due to misinterpretation of sensed
data and a-priori information or confusion of objects (e.g.,
due to faulty sensors). Advice errors are due to outdated or
wrong information associated to the landmark (e.g., due to
weather conditions). Our path planning algorithm is based on
swarm cooperation. MAVs may communicate and exchange
information wirelessly, in order to minimize the recognition
and advice error ratios. In other words, by collaboratively
exchanging information, the swarm of MAVs experiences a
quality amplification, in terms of error reduction. As a result,
the swarm gets equipped with an adaptive error tolerant
navigation mechanisms, in which quality gets parameterized
with regard to the number of MAVs.

We show how our approach improves the probability
of navigation correctness when the number of MAVs in

Fig. 1. Sample picture taken from an aerial vehicle, together with the
identification of six landmarks at the campus of Carleton University.
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the swarm increases, i.e., when the wireless communica-
tion among MAVs allows them to cooperatively exchange
information about the landmarks. The idea is as follows.
When the swarm contains only a single MAV, recognition
and advice errors directly affect the whole navigation system.
The MAV can get disrupted by such errors, and get lost
forever. When the number of MAVs in the swarm increases,
communication and exchange of information between MAVs
takes place. The quality of the merged data increases as well.
We analyze the reduction in the error probability induced
by our algorithmic solutions, and experimentally validate the
results via numeric simulations. Hence, quality amplification
is demonstrated both analytically and experimentally.

Section II surveys related work. Sections III and IV present
our proposal. Section V evaluates the work.

II. RELATED WORK

Surveys on path planning algorithms for unmanned aerial
vehicles have been authored by Goerzen et al. [4] and
Radmanesh et al. [5]. Several algorithms build on solutions
originally created for computer networks. Some of the pro-
posed solutions leverage algorithms created in the field of
classical robotics, such as approaches using artificial potential
functions [6], random trees [7] or Voronoi diagrams [8]. Path
planning may be addressed in conjunction with team work
and formation control [9]. There are ideas that have been
tailored specifically to quadcopters [10].

Our research is closely related to works on navigation
using topological maps [11]. Navigation does not rely on co-
ordinates. The MAVs find their way recognizing landmarks.
Weinstein et al. [12] propose the use of visual odometry as
an alternative localization technique to, e.g., GPS-like tech-
niques. The idea is as follows. The MAVs use their onboard
cameras (e.g., downward facing cameras), combined by some
inertial sensors, to identify and follow a series of visual
landmarks. The visual landwarks lead the MAV towards the
target destination. Unlike GPS, the technique allows the MAV
to operate without boundaries in both indoor and outdoor
environments. No precise information about concrete visual
odometry techniques are reported by Weinstein et al. in their
work. However, some ideas can be found in [13], [11].

Maravall et al. [13], [11] propose the use of probabilistic
knowledge-based classification and learning automata for the
automatic recognition of patterns associated to the visual
landmarks that must be identified by the MAVs. A series of
classification rules in their conjunctive normal form (CNF)
are associated to a series of probability weights that are
adapted dynamically using supervised reinforcement learning
[14]. The adaptation process is conducted using a two-stage
learning procedure. During the first process, a series of vari-
ables are associated to each rule. For instance, the variables
associated to the construction of a landmark recognition
classifier are constructed using images’ histogram features,
such as standard deviation, skewness, kurtosis, uniformity
and entropy. During the second process, a series of weights

are associated to every variable. Weights are obtained by
applying a reinforcement algorithm, i.e., incremental R-L
algorithm in [14], [11], over a random environment. As a
result, the authors obtain a specific image classifier for the
recognition of landmarks, which is then loaded to the MAVs.

Our proposed search algorithms resemble graph search
with advice and the reader is referred to [15] for related work
on the ring and to [16] for complete networks.

III. ERROR PRONE NAVIGATION

We identify the landmarks with the n vertices of a com-
plete graph G = (V,E). Starting at s and ending at t, the
MAVs are seeking a flight path connecting k + 1 vertices

s := v0, v1, . . . , vi, vi+1, . . . , vk := t

where v0, v1, . . . , vi, vi+1, . . . , vk are in V , see Figure 2. The
MAVs have to navigate and find a flight path from s to t using
clues. When hovering over an area, a MAV acquires data
through its camera and other sensors, which may be visual,
acoustic, etc. This data is used for landmark searching. A
priori, the MAVs are given clues and specific characteristics
about the landmarks. For example, the MAVs may be seeking
a green door or a tall building.

The landmarks provided have a-priori information whose
interpretation (by the MAVs) is prone to errors. We distin-
guish two types of errors, namely, recognition and advice.
Recognition errors are due to misinterpretation of sensed data
and a-priori information or confusion of objects. For example,
a MAV has found a green door which in fact is not a door
but rather a window. The recognized object is incorrect. We
assume that for some real number p in the interval [0, 1], the
value p is the probability that a MAV performs recognition
erroneously and 1− p that it is correct.

Advice errors about landmarks occur because the informa-
tion provided is not up to date or even wrong. For example,
upon finding a landmark a MAV is advised to traverse a
certain distance within the terrain in direction north where
it will find the next landmark, say a restaurant, but this
information is wrong because the restaurant is no longer
there. We assume that for some real number q in the interval
[0, 1], the value q is the probability that the advice provided to
a MAV about a landmark is invalid or erroneously interpreted
and 1− q that it is valid and correctly interpreted.

Recognition and advice errors are independent of each
other. An important point to be made is that we assume

s

t
vi

vi+1

Fig. 2. Flight path from source s to destination t. Edge (vi, vi+1) is an
intermediate segment connecting landmarks vi and vi+1.
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that recognition and advice are random processes. For all
MAVs, we make the assumption that recognition errors are
independent and identically distributed and advice errors are
also independent and identically distributed. The MAVs act
independently of each other. Moreover, the outcome of the
recognition process is random with probability of success that
depends on the parameter p. A similar observation applies to
the advice process. As a consequence, we can use this to
our advantage so as to improve the recognition and advice
mechanisms for swarms of MAVs.

Assume a MAV is navigating the terrain through a
flight path, denoted as P , consisting of k vertices v0 :=
s, v1, . . . , vi, vi+1, . . . , vk := t from s to t. An edge
{vi, vi+1} corresponding to a segment of flight path P is said
to be correctly traversed if and only if the advice provided
about the landmark associated with vertex vi is valid and
correctly interpreted and the landmark associated with vertex
vi+1 is correctly recognized. For i = 0, . . . , k − 1, the flight
path P is correctly traversed if and only if each of its segment
defined by an edge {vi, vi+1} is correctly traversed.

At the start, a MAV is given a flight plan. The flight plan
defines the flight path P . For each vertex vi, i = 0, . . . , k−1,
the flight plan comprises advice for searching the next
landmark, such as directional data. For each vertex vi+1,
the flight plan contains recognition data, such as landmark
characteristics. A flight plan is correctly performed solely if
every single segment is correctly traversed.

We obtain the following quantitative characterization of
segment correctness and flight path in terms of recognition
and advice probabilities.

Lemma III.1. A flight plan leading to a path of length k is
correctly performed with probability (1− p)k(1 − q)k.

Proof. For individual segments i = 0, . . . , k − 1, we have

Pr[{vi, vi+1} is correct] = Pr[advice at vi and recognition
at vi+1 are correct] = (1− p)(1 − q).

For the whole flight plan for path P , we have

Pr[P is correct] = Pr[∀i({vi, vi+1} is correct)]

=
k−1∏

i=0

Pr[{vi, vi+1} is correct]

= (1− p)k(1− q)k.

This proves the lemma.

Lemma III.1 is valid for a single MAV that is recognizing
landmarks and navigating from a start point to a terminal
point. In Section IV it is shown how to improve the proba-
bility of correctness for a swarm of co-operating MAVs that
communicate and exchange information with each other.

In a swarm, we may take advantage of communications and
collaboration among the MAVs so as to amplify the quality
of a-priori and sensed data. To this end, we use the principle
of maximum likelihood.

Algorithms 1 and 2 define the main processes. Algorithm 1
applies majority recognition. Algorithm 2 applies the advice.

Algorithm 1 Majority Recognition Algorithm for a swarm of m MAVs

1: Each MAV performs landmark recognition
2: MAVs exchange information
3: if there is a landmark common to the majority (of at least

⌈m/2⌉ MAVs) then
4: the MAV swarm adopts this common landmark
5: else
6: every MAV adopts its own recognized landmark

Algorithm 2 Majority Advice Algorithm for a swarm of m MAVs

1: Each MAV takes the advice provided for the visited
landmark

2: MAVs exchange information
3: if there is a majority advice interpretation (for at least

⌈m/2⌉ MAVs) then
4: all MAVs follow this common advice interpretation
5: else
6: the MAVs follow their own advice interpretation

It should be emphasized that the amplification of recogni-
tion and advice, implied by the majority rule used in the two
algorithms above, is based on a binary decision. To illustrate
this fact, consider the case of amplification of the quality of
recognition. First of all, it is assumed that all the MAVs in
the swarm run the same visual recognition software. Hence,
the set of possible outcomes of the MAVs’ visual systems
is partitioned into two mutually disjoint sets. The first set
can be interpreted as the container of positive outcomes. The
second set as the container of negative outcomes. This is to
be the same for all the MAVs. For a binary decision example,
consider a swarm of five MAVs which is to decide whether
the object viewed is either a Door (D) or a Window (W). If
the answers of the individual MAVs are D, W, D, W, D, then
the majority output will be Door.

A similar interpretation is being used for the advice
algorithm software which is executed by “smart landmarks”
giving advice to the MAVs, i.e., providing the direction the
swarm should follow next. For a binary example with a
swarm of five MAVs, assume that the landmarks may give
either the answer North (N) or South (S). If the advice
collected by the MAVs are N, S, S, N, N, then the majority
decision will be North.

IV. QUALITY AMPLIFICATION AND ERROR REDUCTION

A. Reducing the error probability
The collaborative landmark recognition process defined by

Algorithm 1 applies to a swarm composed of m MAVs. Let
pm denote the error probability of the majority rule applied
in Algorithm 1; this is given by the following formula.

pm = 1−
m∑

i=⌈m/2⌉

(
m

i

)
(1− p)ipm−i (1)
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Now we show that the majority rule improves the error
probability p.

Lemma IV.1. For p < 1/2, we have the following inequality

1− p < pm
m∑

i=⌈m/2⌉

(
m

i

)(
1

p
− 1

)i

. (2)

Proof. (Lemma IV.1) The inequality is proved by considering
two cases depending on the parity of m, the number of
MAVs.

Case 1: m is odd. If m is odd, we can express the value as
m = 2d+1, for some integer d ≥ 1 so that ⌈m/2⌉ = d+1.
Let a = 1

p − 1 and observe that a > 1, since p < 1
2 . From

the binomial theorem we have that

(a+ 1)m =
m∑

i=0

(
m

i

)
ai

=
d∑

i=0

(
m

i

)
ai +

m∑

i=d+1

(
m

i

)
ai

= L+ U, (3)

where L and U are defined as follows

L :=
d∑

i=0

(
m

i

)
ai =

d∑

i=0

(
m

d− i

)
ad−i, and (4)

U :=
m∑

i=d+1

(
m

i

)
ai =

d∑

i=0

(
m

d+ i+ 1

)
ad+i+1. (5)

Now observe that L and U have the same number of
summands with identical respective binomial coeficients,
namely

(
m

d− i

)
ad−i and

(
m

d+ i+ 1

)
ad+i+1,

for i = 0, 1, . . . , d. In Formulas (4)-(5) observe that the
left term when multiplied by a2 i+1 is equal to the right
term, namely a2 i+1

( m
d−i

)
ad−i =

( m
d+i+1

)
ad+i+1, for i =

0, 1, . . . , d. Since a > 1 and d ≥ 1 we conclude that

aL =
d∑

i=0

a

(
m

d− i

)
ad−i <

d∑

i=0

a2 i+1

(
m

d− i

)
ad−i = U.

(6)

From Equations (3) and (6), it follows that (a+ 1)m = L+
U <

(
1
a + 1

)
U . Since a+ 1 = 1

p , we conclude that

U >
(a+ 1)m

1
a + 1

=
1− p

pm
.

Case 2: m is even. The proof is similar to the case when
m is odd. Since m is even it can be written as m = 2d, for
some integer d ≥ 1 so that ⌈m/2⌉ = d. Let a = 1

p − 1 and

observe that a > 1, since p < 1
2 . From the binomial theorem

we have that

(a+ 1)m =
m∑

i=0

(
m

i

)
ai

=
d−1∑

i=0

(
m

i

)
ai +

m∑

i=d

(
m

i

)
ai

= L′ + U ′, (7)

where L′ and U ′ are defined as follows

L′ :=
d−1∑

i=0

(
m

i

)
ai =

d∑

i=1

(
m

d− i

)
ad−i, and (8)

U ′ :=
m∑

i=d

(
m

i

)
ai =

d∑

i=0

(
m

d+ i

)
ad+i. (9)

Now we compare summands in L′ and U ′, namely
(

m

d− i

)
ad−i and

(
m

d+ i

)
ad+i,

for i = 0, 1, . . . , d. In Formulas (8)-(9) observe that the left
term when multiplied by a2 i is equal to the right term, namely
a2 i

( m
d−i

)
ad−i =

( m
d+i

)
ad+i, for i = 0, 1, . . . , d. Since a > 1

and d ≥ 1 we conclude that

aL′ ≤
d∑

i=0

a

(
m

d− i

)
ad−i <

d∑

i=0

a2 i
(

m

d− i

)
ad−i = U ′.

(10)

From Equations (7) and (10), it follows that (a + 1)m =
L+ U <

(
1
a + 1

)
U . Since a+ 1 = 1

p , we conclude that

U ′ >
(a+ 1)m

1
a + 1

=
1− p

pm
.

Therefore Inequality (2) is proved in both cases of m odd
and m even and thus the proof of Lemma IV.1 is complete.

We may now conclude the following.

Theorem IV.2. The majority rule applied to a swarm of m
MAVs executing Algorithm 1 reduces the probability of error
of the recognition process as long as p is less than 1/2.

Proof. Let m be the number of MAVs. Therefore 1 − pm
is the probability that the majority is at least composed of
⌈m/2⌉ MAVs correctly performing recognition, i.e.,

1− pm =
m∑

i=⌈m/2⌉

(
m

i

)
(1− p)ipm−i

= pm
m∑

i=⌈m/2⌉

(
m

i

)(
1

p
− 1

)i

. (11)

Now, for p < 1/2 Lemma IV.1 says that

1− p < pm
m∑

i=⌈m/2⌉

(
m

i

)(
1

p
− 1

)i

, (12)
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which in view of Equation (11) implies that pm < p, i.e., the
probability of error for a swarm of m MAVs is less than for
MAV in solo. This proves the theorem.

A similar proof also yields the following.

Theorem IV.3. The majority rule applied to a swarm of m
MAVs executing Algorithm 2 reduces the probability of error
of the advice process as long as q < 1/2,

Proof. The proof is similar to the proof of Theorem IV.3.

Note that there are additional possibilities in Algotithm 2.
The MAVs in a swarm could also acquire information ei-
ther from the same landmark or from different landmarks
(although we do not investigate the latter case further).

B. Approximating the majority
Let Sm be the sum of m mutually independent random

variables each taking the value 1 with probability p and
the value 0 with probability 1 − p (i.e., Bernoulli random
trials). The majority probability discussed above is given by
the formula Pr[Sm ≥ ⌈m

2 ⌉]. Good approximations of the
majority probability for large values of m can be obtained
from the central limit theorem which states that

Pr

[
a ≤

Sm −mp
√

mp(1− p)
≤ b

]
→

1
√
2π

∫ b

a
e−x2/2dx. as m → ∞

(13)
(see e.g., [17]). For example, for any m we have that

Sm ≥
⌈m
2

⌉
⇔ Sm −mp√

mp(1− p)
≥

⌈
m
2

⌉
−mp

√
mp(1− p)

.

Hence, the central limit theorem (13) is applicable with a =
⌈m

2 ⌉−mp√
mp(1−p)

and b = +∞, where p < 1/2 is a constant..

V. EXPERIMENTS AND SIMULATIONS

There is an interesting tradeoff between the majority
probability pm and the cost of using a swarm of m MAVs.
This might help us put the probabilistic gains in context w.r.t.
the energy consumption and/or time costs of the swarm.

A. Cost measures and tradeoffs
We know that Theorem IV.2 reduces the error probability

for any number m of MAV from p to pm (similarly for
Theorem IV.3). We now examine quantitative estimates of
this reduction in error that depends on the number m of
MAVs employed.

Observe from Equation (11), that we can derive the fol-
lowing identity concerning the ratio of improvement of the
probability of correctness, namely

1− pm
1− p

=
m∑

i=⌈m/2⌉

(
m

i

)
(1 − p)i−1pm−i. (14)

In a way, one can think of the righthand side of Equation (14)
as the “fractional gain” in the correctness probability (because
we are employing a majority rule) that improves it from 1−p
to 1−pm. In general, we would like on the one hand to ensure

that 1−pm

1−p > 1 and on the other hand optimize the righthand
side of Equation (14). Since we are also interested in applying
the majority algorithms for a relatively small number of
MAVs, we give precise estimates for m = 2, 3, 4, 5, 6, 7.

Theorem V.1. Valid values for a fractional gain of 1−pm

1−p

m maximized for max. value m maximized for max. value
2 p=0.500 1.500 3 p=0.250 1.125
4 p=0.462 1.379 5 p=0.276 1.198
6 p=0.398 1.368 7 p=0.294 1.249

Proof. For m = 2 MAVs, we can show that the ratio 1−p2

1−p =
1−p2

1−p = 1 + p is maximized for p = 1/2 and its maximum
value is 1 + 1/2 = 1.5.

For m = 3, the ratio 1−p3

1−p is maximized for p = 1/4 and
its maximum value is 1 + 1/8 = 1.125. Indeed, calculations
show that for m = 3 the righthand side of Equation (14) is
equal to 1+p− 2p2 . Calculations also show that 1+p− 2p2

is maximized when p = 1/4 and attains the maximum value
1 + 1/8. Hence also 1−p3

1−p is maximized when p = 1/4 and
attains the maximum value 1 + 1/8 = 1.125.

For m = 4, we have 1−p4

1−p = (1 − p)(3p2 + 2p + 1),
maximized for p = 1+

√
10

9
For m = 5, 1−p5

1−p = 10(1− p)2p2 +5(1− p)3p+(1− p)4.
The derivative of the righthand side with respect to p is equal
to 24p3− 27p2 +2p+1. One of the roots of this polynomial
is p = 1 and therefore 24p3−27p2+2p+1 = (p−1)(24p2 −
3p+ 1). The positive root of the quadratic 24p2 − 3p+ 1 is
equal to p = 3+

√
9+96
48 = 3+

√
105

48 ≈ 0.275978 and attains
the maximum value 1.1917.

For m = 6, 1−p6

1−p = (1− p)2 (20p3 +15(1− p)p2 + 6(1−
p)2 )p+ (1 − p)3). This is maximized for 1.368.

For m = 7, 1−p7

1−p = (1− p)3(35p3 +35(1− p)p2 + 7(1−
p)2 ·p+(1−p)3). The derivative of the righthand side above
is (1− p)2 (−42 · p3 − 102 · p2 +32 · p+1) which yields the
root p ≈0.294 and attains the maximum value 1.249.

Table I displays the polynomials arising in the fractional
gain for m = 2, 3, . . . 7. The improvement provided in The-
orem IV.2 is more substantial when the number m of MAVs
gets larger. This is also confirmed by the calculations above.
Table II displays the optimal error probability and fractional
gain and the last column the majority error probability pm
for a given number m of MAVs, where m ≤ 21. Figure 3

TABLE I
LEFT TO RIGHT COLUMNS PROVIDE (1) THE NUMBER OF MAVS, (2) THE
ERROR PROBABILITY (p), (3) THE FRACTIONAL GAIN 1−pm

1−p
FROM m =

2 TO m = 7, AND (4) THE CORRESPONDING MAJORITY ERROR.

# MAVs Optimal Error p Fractional Gain 1−pm
1−p Majority Error pm

m = 2
0.500 1.500 0.250

1 + p

m = 3
0.250 1.125 0.156

−2p2 + p+ 1

m = 4
0.462 1.379 0.257

−3p3 + p2 + p+ 1

m = 5
0.276 1.198 0.133

6p4 − 9p3 + p2 + p+ 1

m = 6
0.398 1.368 0.176

10p5 − 14p4 + p3 + p2 + p+ 1

m = 7
0.294 1.249 0.118

−20p6 + 50p5 − 34p4 + p3 + p2 + p+ 1
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TABLE II
LEFT TO RIGHT COLUMNS PROVIDE (1) THE NUMBER OF MAVS, (2) THE
ERROR PROBABILITY (p), (3) THE FRACTIONAL GAIN 1−pm

1−p FROM M = 9
TO M = 21, AND (4) THE CORRESPONDING MAJORITY ERROR.

# MAVs Optimal Error p Fractional Gain 1−pm
1−p Majority Error pm

m = 9 0.307 1.288 0.108
m = 10 0.372 1.396 0.123
m = 11 0.317 1.319 0.099
m = 12 0.370 1.411 0.110
m = 13 0.326 1.345 0.093
m = 14 0.370 1.426 0.101
m = 15 0.333 1.368 0.088
m = 16 0.371 1.440 0.094
m = 17 0.339 1.387 0.083
m = 18 0.373 1.452 0.089
m = 19 0.344 1.404 0.079
m = 20 0.374 1.464 0.083
m = 21 0.349 1.420 0.076
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(a) Even numbers of MAVs
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(b) Odd number of MAVs

Fig. 3. Plots of the fractional gain function 1−pm
1−p for varied p’s.

(a) plots the evaluation of equation 1−pm

1−p from m = 2 to
m = 20 and Figure 3 (b) from m = 3 to m = 21. The
resulting curve indicates the maximum value of 1−pm

1−p for p.

B. Numerical Simulations

Algorithms 1 and 2 have been integrated into a Java
discrete simulator, which implements swarm populations
modeled as mobile agents. Each swarm population executes
the algorithms within a terrain of interconnected landmarks. It
consists of a simple discrete event, time-step based simulation
engine, in which the swarm executes our algorithms at every
step of simulated time. The simulation engine implements a
discrete event scheduler, a graphical view, a data collection
system, and the simulated objects themselves, i.e., landmarks
and agents. Videocaptures and simulation source code are
available online (cf. http://j.mp/mavsim and GitHub). De-
tailed experimental and simulation results are also available
online in Ref. [18].

VI. CONCLUSION

We have presented an error tolerant path planning al-
gorithm for MAV swarms. We have assumed a navigation
system for the swarm, in which the MAVs find their path by
using their onboard cameras, by identifying and following
a series of visual landmarks. We have assumed that the
landmarks have a-priori information whose interpretation (by
the MAVs) is error prone. We have defined two types of
errors: (1) recognition errors (e.g., due to faulty sensors
which misinterpret the sensed data) and (2) advice errors
caused by the landmarks (e.g., due to weather conditions

or outdated information). Our solution benefits from swarm
cooperation. If the MAVs in the swarm can communicate
and exchange information, the recognition and advice error
ratios get minimized to one fourth with the cost of increasing
the total number of MAVs by twenty. We have validated our
proposal with appropriate simulations, implemented over a
Java simulator available at http://j.mp/mavsim and GitHub.
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